第九章方差分析及回归分析

合集下载

第九章 复习-方差分析及回归分析

第九章  复习-方差分析及回归分析


s
n j X . j nቤተ መጻሕፍቲ ባይዱ X ij nX 0
j 1 i 1
因此得知SA的自由度是 s -1.
由(1.3),(1.6)及Xij的独立性得知
X ~ N ( , / n)
2
s j 1
(1.14)
E ( S A ) E[ n j X .2j nX 2 ]
j 1
s
(1.13) 可以计算 E( S E ) (n s) 2. SA的统计特性. 它是s个变量 n j ( X . j X )
2
的平方和,且仅有一个线性约束条件:

j 1 s j 1
s
nj

nj ( X. j X ) nj ( X. j X )
j 1 s nj
i 1

( X ij X . j ) 2 / 2 ~ 2 (n j 1)
i 1
nj
(1.11)中各项独立,根据 分布的可加性,得 s
2
S E / 2 ~ 2 ( ( n j 1))
j 1
即S E / 2 ~ 2 ( n s ),
n n j (1.12)
j
Xij - μj可以看成是随机误差. 记为Xij - μj =εij ,
则Xij 可以写为
Xij = μj +εij
εij ~N(0, ζ2),各ε
ij独立
(1.1)
i=1,2,…,nj , j=1,2,…,s
(1.1)称为单因素方差分析的数学模型.
方差分析的任务
X i1 ~ N (1 , 2 ), X i 2 ~ N (2 , 2 ),..., X is ~ N ( s , 2 ) I. 检验s个总体

方差分析与回归分析

方差分析与回归分析

方差分析与回归分析在统计学中,方差分析和回归分析都是常用的统计方法,用于研究不同变量之间的关系。

虽然两种分析方法的目的和应用领域有所不同,但它们都有助于我们深入理解数据集,并从中获得有关变量之间关系的重要信息。

一、方差分析方差分析(Analysis of Variance,简称ANOVA)是一种用于比较三个或三个以上样本均值是否存在显著差异的统计方法。

方差分析的主要思想是通过比较组间方差与组内方差的大小来判断样本均值之间的差异是否具有统计学意义。

方差分析通常包括以下几个基本步骤:1. 设置假设:首先我们需要明确研究的问题,并设置相应的零假设和备择假设。

零假设通常表示各组均值相等,备择假设表示各组均值不全相等。

2. 计算统计量:利用方差分析的原理和公式,我们可以计算出F值作为统计量。

F值表示组间均方与组内均方的比值,用于判断样本均值之间的差异是否显著。

3. 判断显著性:通过查找F分布表,我们可以确定相应的拒绝域和临界值。

如果计算出的F值大于临界值,则可以拒绝零假设,认为样本均值存在显著差异。

4. 后续分析:如果方差分析结果显示样本均值存在显著差异,我们可以进行进一步的事后比较分析,比如进行多重比较或构建置信区间。

方差分析广泛应用于生物医学、社会科学、工程等各个领域。

通过方差分析可以帮助我们研究和理解不同组别之间的差异,并对实验设计和数据分析提供重要的指导和支持。

二、回归分析回归分析(Regression Analysis)是一种用于探究自变量与因变量之间关系的统计方法。

回归分析的目标是建立一个可信度高的数学模型,用以解释和预测因变量的变化。

回归分析可以分为线性回归和非线性回归两种类型。

线性回归基于一条直线的关系来建立模型,非线性回归则基于其他曲线或函数形式的关系进行建模。

进行回归分析的主要步骤如下:1. 收集数据:首先需要收集自变量和因变量的数据。

确保数据的准确性和完整性。

2. 确定模型:根据数据的特点和研究的目标,选择适当的回归模型。

第九章方差分析及回归分析 第2讲精品PPT课件

第九章方差分析及回归分析 第2讲精品PPT课件

x1, x2, , xn
因此干脆不把X看成随机变量,而将它当作 普通的变量。X的变化将使Y发生相应的变 化,但它们之间的变化是不确定的。由于Y 是随机变量 ,当X取得任一个可能的值x时, Y都相应地服从一定的概率分布。
10
设进行 n 次独立试验,测得试验数据如下表:
xபைடு நூலகம்
x1
x2
xn
y
y1
y2
yn
我们的问题是,如何根据这组观察值,用 “最佳”的形式来表达变量Y与x的相关关系?
比较合理的想法就是,取Xx时随机变量
Y的数学期望EY Xx 作为Xx时Y的估计值。
11
设Y的数学期望EY存在,其值随X的取值
而定,即Y的数学期望是x的函数。将这一函数
记为yx 或x,xEY Xx称为Y关于x
的回归函数。 为 此 , 我 们 就 将 讨 论 Y 与 x的 相 关 关 系 的 问 题
转 换 为 讨 论 E Y x与 x的 函 数 关 系 了 。
由一个或一组非随机变量来估计或预测某 一个随机变量的观察值时所建立的数学模 型及所进行的统计分析称为回归分析
7
如果这个模型是线性的就称为线性回归分析 这种方法是处理变量间相关关系的有力工具,是
数理统计工作中一种常用的方法。它不仅告诉人 们怎样建立变量间的数学表达式,即经验公式, 而且还利用概率统计知识进行分析讨论,判断出 所建立的经验公式的有效性,从而可以进行预测 或估计。 本章主要介绍如何建立经验公式。
14
温度x(oc) 100 110 120 130 140 150 160 170 180 190 得率(%) 45 51 54 61 66 70 74 78 85 89
得率与温度关系的散点图 100 90 80 70 60 50 40

第9章-方差分析与线性回归

第9章-方差分析与线性回归
2
Xij X E
s nj
ST s
n
E
j
j 1
i 1
X ij X
j1 i1
s nj
X ij2 nX
j1 i1
X ij 2
2
2
s nj
X
EE(X
)j
s11ninj1jEs1Xinj1ijjE21(Xiinj1)X
1 n
s
nj ( j )
j 1
s nj
E( Xij2 ) nE( X 2 )
X12 X 22
As : N s , 2
X1s X 2s
X n11
X n2 2
X nss
每个总体相互独立. 因此, 可写成如 下的 数学模型:
ij
~
X ij j ij N (0, 2 ), 各ij独立
i 1, 2, , nj,j 1, 2, , s
方差分析的目的就是要比较因素A 的r 个水平下试验指标理论均值的 差异, 问题可归结为比较这r个总体 的均值差异.
i
ij (0, 2 ),各ij独立
1, 2, , nj,j 1, 2, , s
n11 n22 ... nss 0
假设等价于 H0 :1 2 s 0
H1 :1,2,
,
不全为零。
s
为给出上面的检验,主要采用的方法是平方和 分解。即
假设数据总的差异用总离差平方和 ST 分解为
第九章 回归分析和方差分析
关键词: 单因素试验 一元线性回归
方差分析(Analysis of variance, 简 称:ANOVA),是由英国统计学家费歇尔 (Fisher)在20世纪20年代提出的,可用于推 断两个或两个以上总体均值是否有差异 的显著性检验.

方差分析与回归分析

方差分析与回归分析

方差分析与回归分析在统计学中,方差分析(ANOVA)和回归分析(Regression Analysis)都是常见的统计分析方法。

它们广泛应用于数据分析和实证研究中,有助于揭示变量之间的关系和影响。

本文将对方差分析和回归分析进行介绍和比较,让读者更好地理解它们的应用和区别。

一、方差分析方差分析是一种统计方法,用于比较两个或更多组别的均值是否存在显著差异。

它通过计算组内变异和组间变异的比值来判断不同组别间的差异是否具有统计显著性。

在方差分析中,通常有三种不同的情形:单因素方差分析、双因素方差分析和多因素方差分析。

单因素方差分析适用于只有一个自变量的情况。

例如,我们想要比较不同教育水平对收入的影响,可以将教育水平作为自变量分为高中、本科和研究生三个组别,然后进行方差分析来检验组别之间的收入差异是否显著。

双因素方差分析适用于有两个自变量的情况。

例如,我们想要比较不同教育水平和不同工作经验对收入的影响,可以将教育水平和工作经验作为自变量,进行方差分析来研究其对收入的影响程度和相互作用效应。

多因素方差分析适用于有多个自变量的情况。

例如,我们想要比较不同教育水平、工作经验和职位对收入的影响,可以将教育水平、工作经验和职位作为自变量,进行方差分析来探究它们对收入的联合影响。

方差分析的基本原理是计算组内变异和组间变异之间的比值,即F 值。

通过与临界F值比较,可以确定差异是否显著。

方差分析的结果通常会报告组间平均差异的显著性水平,以及可能存在的交互作用。

二、回归分析回归分析是一种统计方法,用于研究自变量与因变量之间的关系。

它通过建立一个数学模型来描述自变量对因变量的影响程度和方向。

回归分析分为简单线性回归和多元线性回归两种类型。

简单线性回归适用于只有一个自变量和一个因变量的情况。

例如,我们想要研究体重与身高之间的关系,可以将身高作为自变量、体重作为因变量,通过拟合一条直线来描述二者之间的关系。

多元线性回归适用于有多个自变量和一个因变量的情况。

统计学中的方差分析与回归分析比较

统计学中的方差分析与回归分析比较

统计学中的方差分析与回归分析比较统计学是以搜集、整理、分析数据的方法为研究对象的一门学科,随着现代科技的不断进步,统计学在许多领域中都扮演着至关重要的角色。

在统计学的研究中,方差分析和回归分析都是两种常见的方法。

然而,这两种方法之间的区别是什么?它们各自的优缺点又是什么呢?本文将就这些问题进行探讨。

一、方差分析是什么?方差分析,也称为ANOVA (analysis of variance),是一种用于分析各个因素对于某一变量影响力大小的方法。

在统计数据分析中,可能有多个自变量(影响因素),这时我们需要检验这些因素中哪些是显著的,即在该因素下所得的计算值与总计算值之间是否存在显著性差异。

因此,方差分析的基本思想是对总体方差进行分析,检验各个因素是否会对总体造成显著影响。

二、回归分析是什么?回归分析则是研究两个变量之间关系的一种方法。

一个自变量(independent variable)是已知的、独立的变量,一个因变量(dependent variable)是需要预测或解释的变量。

回归分析的主要目的是利用自变量对因变量进行预测,或者解释自变量与因变量之间的关系。

回归分析一般有两种,即简单线性回归和多元回归。

三、方差分析与回归分析的比较1. 适用范围方差分析适用于多个自变量之间的比较;回归分析则适用于对单个因变量的预测。

2. 关心的变量在方差分析中,我们关心的是各个自变量对总体造成的显著影响程度;在回归分析中,我们关心的是自变量与因变量之间的相关性。

3. 变量类型方差分析和回归分析处理的数据类型也不相同。

在方差分析中,自变量通常为分类变量(catogorical variable),而因变量通常为连续量(continuous variable)。

而在回归分析中,自变量和因变量都为连续量。

4. 独立性假设方差分析的独立性假设要求各组之间是相互独立、没有相关的,而回归分析的独立性假设要求各个观测或实验之间是独立的。

方差分析和回归分析

方差分析和回归分析

方差分析和回归分析方差分析和回归分析是统计学中常用的两种数据分析方法。

它们分别用于比较多个样本之间的差异以及建立变量之间的函数关系。

本文将对方差分析和回归分析进行介绍和比较。

一、方差分析方差分析(Analysis of Variance,简称ANOVA)是一种用于比较多个样本均值是否存在差异的统计方法。

方差分析通过比较组间和组内的方差来判断样本均值是否存在显著差异。

方差分析需要满足一些基本假设,如正态分布假设和方差齐性假设。

方差分析可以分为单因素方差分析和多因素方差分析。

单因素方差分析是指只有一个自变量(因素)对因变量产生影响的情况。

多因素方差分析则包含两个或两个以上自变量对因变量的影响,可以用于分析多个因素交互作用的效应。

方差分析的步骤包括建立假设、计算各组均值和方差、计算F值和判断显著性等。

通过方差分析可以得到组间显著性差异的结论,并进一步通过事后多重比较方法确定具体哪些组之间存在显著差异。

二、回归分析回归分析(Regression Analysis)是一种用于分析自变量和因变量之间关系的统计方法。

回归分析通过建立一种数学模型,描述自变量对因变量的影响程度和方向。

回归分析可用于预测、解释和探索自变量与因变量之间的关系。

回归分析可以分为线性回归和非线性回归。

线性回归是指自变量和因变量之间存在线性关系的情况,可以用一条直线进行拟合。

非线性回归则考虑了自变量和因变量之间的非线性关系,需要采用曲线或其他函数来进行拟合。

回归分析的步骤包括建立模型、估计参数、检验模型的显著性、预测等。

回归模型的好坏可以通过拟合优度、回归系数显著性以及残差分析等指标进行评估。

三、方差分析与回归分析的比较方差分析和回归分析都是常用的统计方法,但它们有一些区别。

主要区别包括:1. 目的不同:方差分析用于比较多个样本之间的差异,判断样本均值是否存在显著差异;回归分析则用于建立自变量和因变量之间的函数关系,预测和解释因变量。

2. 自变量个数不同:方差分析一般只有一个自变量(因素),用于比较不同组别之间的差异;回归分析可以包含一个或多个自变量,用于描述自变量对因变量的影响关系。

高级统计学中的方差分析和回归分析

高级统计学中的方差分析和回归分析

高级统计学中的方差分析和回归分析统计学是一门非常重要的学科领域,它通过对数据的采集、分析、整理与解释来揭示数据背后的规律和本质。

在统计学中,方差分析和回归分析是两个重要的概念,它们可以用来解释和预测数据的变化趋势,为其他学科领域提供有力的支持。

一、方差分析方差分析是一种用于比较两个或多个样本的平均值差异的方法。

比如,在实验室进行了一项研究,需要比较两个或多个不同处理方式下的数据表现,我们可以采用方差分析的方法。

方差分析的基本思想是将总方差分解为几个部分,其中各部分代表了一些特定的因素,比如不同处理方式、实验误差等。

我们通过对这些因素的方差分析,可以得到它们对总方差的贡献度,从而确定哪些因素是显著的,哪些是不显著的。

在实践中,方差分析可以用于各种不同的领域,比如教育、医学、社会科学等。

例如,我们可以采用方差分析的方法来研究不同教学方法对学生成绩的影响,或者研究不同药物对患者治疗效果的差异。

二、回归分析回归分析是一种用于建立变量之间关系模型的方法。

在回归分析中,我们可以通过对自变量与因变量的相关性研究,来预测因变量对自变量的响应情况。

回归分析可以归为简单线性回归和多元回归两种类型。

简单线性回归是指只有一个自变量和一个因变量的情况,它的数学模型可以用一条直线来表示。

在实际应用中,简单线性回归可以用来研究不同变量之间的关系,比如温度和空调使用时间的关系。

多元回归是指有两个或两个以上自变量和一个因变量的情况,它的数学模型可以用一个多项式来表示。

在实际应用中,多元回归可以用来研究多个变量之间的关系,比如气温、湿度、风力等因素对空调使用时间的影响。

总体来说,方差分析和回归分析是统计学领域中非常重要的概念。

通过对这两个概念的深入研究和应用,我们能够更好地揭示数据背后的规律和本质,为其他学科领域提供更好的支持。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

电路的响应时间
类型1 19 15 22 20 18
类型2 20 40 21 33 27
类型3 16 17 15 18 26
类型4 18 22 19
这里,试验的指标是电路的响应时间。电路类 型为因素,这一因素有四个水平。这是一个单 因素的试验。试验的目的是为了考察各种类型 电路的响应时间有无显著性差异。
第九章 方差分析及回归分析
§1 单因素试验的方差分析
(一)单因素试验
在科学试验和生产实践中,影响一事物的因素很多。 方差分析是根据试验的结果进行分析,鉴别
各个有关因素对试验结果影响的有效方法。
在试验中,我们将要考察的指标称为 试验指标。影响试验 指标的条件称为因素。因素可分为两类,一类是人们可以 控制的(可控因素);一类是人们不可控制的。以下我们 所说的因素都是指可控因素。因素所处的状态,称为该因 素的水平。如果在一项试验中只有一个因素在改变时称为 单因素试验。如果多于一个因素在改变称为 多因素试验。
X ij ? ? ? ?i ? ?ij ,
?ij ~ N (0,? 2 ),各?ij独立,
i ? 1,2, , r, j ? 1,2, , ni
r
? ni?i ? 0.
i?1
而假设(1.2)等价于假设
H0:?1 ? ? 2 ? ? ? r ? 0, H1 : ?1,?2, ,?r不全为零。
(1.1)? (1.2)?
B3 16,18,21 19,22,22 18,18,18 17,17,17
2019/4/11
4
这里试验指标是零件的日产量,工人和机器 是因素,它们分别有 3个、4个水平。这是一个双 因素试验。试验目的在于考察不同工人在不同机 器上生产零件的日产量有无显著差异。
本节先讨论单因素试验的方差分析。
2019/4/11
5
(二)方差检验的基本前提:
1 、对变量因素的某一个水平,第 i 个水平进
行试验,得到的观察结果 X i1, X i2 ,
X
看作是从
ini
正态总体 N (? i ,? 2 )i ? 1,2, r 中取出的一个容
量为 ni 的样本,且 ? i ,? 2均未知 i ? 1,2, r 。
2、对于表示r个水平的r个正态 总体的方差,认为都是相等的。
此时,有n1?1 ? n2?2 ? ? nr?r ? 0,?i表示水平Ai下的总体 平均值与总平均的差异,习惯上将 ?i称为水平Ai的效应。
?? 作下面的记号: X
?
1 n
r i?1
ni
X ij ,
j?1
?1 ni
X i? ? ni
X ij .
j?1
2019/4/11
10
利用上面的记号,模型( 1.1)可以写成
2019/4/11
3
例3 三名工人分别在四种不同的机器上生产同一种零件, 每人在每台机器上工作3天,其日产量如下表所示:
工人 (B )
A1


A2
(A)
A3
B1 15,15,17 17,17,17 15,17,16
A4 18,20,22
B2 19,19,16 18,15,15 18,17,16 15,16,17
, r)都取自同一正态总体 N(? ,? 2 ).即
H0 : ?1 ? ? 2 ? ? ?r ? ? ; H1 : ?1, ? 2, ? r中不全相等。
(1.2)
2019/4/11
9
r
r
记?
?
?1
n
? ni? i ,其中n ?
ni,
? 称为总平均。
i?1
i?1
再引入?i ? ? i ? ? ,i ? 1,2, , r.
3、从不同总体中取出的各个样本, 即各个X ij 相互独立。
2019/4/11
6
设因素A有r个水平A1,A2,…,Ar,在每个水平Ai(i=1,2,…, r)下,进行ni (ni≥2)次独立试验,整理试验结果如下表所示。
试验结果
试验批号
样本 样本均 和值
1 2…
j…
ni
1
X 11 X 12 ? X 1 j ? X 1n1
2019/4/11
7
由于Xij ~ N (?i ,? 2 ),即有Xij ? ? i ~ N (0,? 2 ),
故X ij ? ? i可看成是随机误差。记 X ij ? ? i ? ?ij ,则X ij可写成
X ij ? ? i ? ?ij , ?ij ~ N (0,? 2 ),各?ij独立, (1.1)
2019/4/11
11
(四)检验方法
若H 0成立,则r个总体之间无差异。这样,各个 X ij
间的差异只是由随机因素引起的,若 H0不成立,则
所有X
的总变差中,除了随机波动引起的变差之外,
ij
还包含了由于因素的不同水平作用所引起的变差。
r ni
r ni
?? ?? (Xij ? X )2 ?
0.262
这里,试验的指标是薄板的厚度。机器为因素,不同的
三台机器就是这个因素的三个不同的水平。我们假定除
机器这一因素外,材料的规格、操作人员的水平等其他
条件都相同。这就是单因素试验。试验的目的是为了考
察各台机器所生产的薄板的厚度有无显著的差异。
2019/4/11
2
例2 下面列出了随机选取的、用于计算器的 四种类型的电路的响应时间(以毫秒计)。
i ? 1,2, , r, j ? 1,2, , ni.
其中,? i与? 2均为未知参数。则上式称为
单因素试验方差分析的数学模型。
2019/4/11
8
(三)统计假设
如果要检验的因素对试验结果没有显著影响, 则试验的全部结果 X ij应来自同一正态总体。因此, 提出一项统计假设:所有的 X(ij j ? 1, , ni ;i ? 1,2,
2019/4/11
1
例1 设有三台机器,用于生产规格相同的铝 合金薄板。取样,测量薄板的厚度精确至千 分之一厘米。得结果如下表所示。
铝合金板的厚度
机器1
机器2
机器3
0.236
0.257
0.258
0.238
0.253
0.264
0.248
பைடு நூலகம்
0.255
0.259
0.245
0.254
0.267
0.243
0.261
T1?
X 1?

2
X 21 X 22 ? X 2 j ? X 2 n2
T2?
X 2?

? ? ???? ?

i
X i1 X i 2 ? X ij ? X ini
Ti?
X i?

? ? ???? ?
r
X r1 X r 2 ? X rj ? X rnr
Tr?
X r?
其中Xij表示在水平Ai下进行第j次试验的结果(j=1, 2,…,ni,i=1,2,…,r)。
相关文档
最新文档