第章方差分析与回归分析习题答案

合集下载

茆诗松《概率论与数理统计教程》(第2版)(课后习题 方差分析与回归分析)【圣才出品】

茆诗松《概率论与数理统计教程》(第2版)(课后习题 方差分析与回归分析)【圣才出品】

第8章 方差分析与回归分析一、方差分析1.在一个单因子试验中,因子A有三个水平,每个水平下各重复4次,具体数据如下:表8-1试计算误差平方和s e、因子A的平方和S A与总平方和S T,并指出它们各自的自由度.解:此处因子水平数r=3,每个水平下的重复次数m=4,总试验次数为n=mr=12.首先,算出每个水平下的数据和以及总数据和:T1=8+5+7+4=24.T2=6+10+12+9=37.T3=0+1+5+2=8.T=T l+T2+T3=24+37+8=69.误差平方和S e由三个平方和组成:于是而2.在一个单因子试验中,因子A有4个水平,每个水平下重复次数分别为5,7,6,8.那么误差平方和、A的平方和及总平方和的自由度各是多少?解:此处因子水平数r=4,总试验的次数n=5+7+6+8=26,因而有误差平方和的自由度因子A的平方和的自由度总平方和的自由度3.在单因子试验中,因子A有4个水平,每个水平下各重复3次试验,现已求得每个水平下试验结果的样本标准差分别为1.5,2.0,1.6,1.2,则其误差平方和为多少?误差的方差σ2的估计值是多少?解:此处因子水平数r=4,每个水平下的试验次数m=3,误差平方和S e由四个平方组成,它们分别为于是其自由度为,误差方差σ2的估计值为4.在单因子方差分析中,因子A有三个水平,每个水平各做4次重复试验.请完成下列方差分析表,并在显著性水平α=0.05下对因子A是否显著作出检验.表8-2 方差分析表解:补充的方差分析表如下所示:表8-3 方差分析表对于给定的显著性水平,查表知,故拒绝域为,由于,因而认为因子A是显著的.此处检验的p值为5.用4种安眠药在兔子身上进行试验,特选24只健康的兔子,随机把它们均分为4组,每组各服一种安眠药,安眠时间如下所示.表8-4 安眠药试验数据在显著性水平下对其进行方差分析,可以得到什么结果?解:这是一个单因子方差分析的问题,根据样本数据计算,列表如下:表8-5于是根据以上结果进行方差分析,并继续计算得到各均方以及F 比,列于下表:表8-6在显著性水平下,查表得,拒绝域为,由于故认为因子A (安眠药)是显著的,即四种安眠药对兔子的安眠作用有明显的差别.此处检验的p 值为6.为研究咖啡因对人体功能的影响,特选30名体质大致相同的健康男大学生进行手指叩击训练,此外咖啡因选三个水平:每个水平下冲泡l0杯水,外观无差别,并加以编号,然后让30位大学生每人从中任选一杯服下,2h后,请每人做手指叩击,统计员记录其每分钟叩击次数,试验结果统计如下表:表8-7请对上述数据进行方差分析,从中可得到什么结论?解:我们知道,对数据作线性变换不会影响方差分析的结果,这里将原始数据同时减去240,并作相应的计算,计算结果列入下表:表8-8于是可计算得到三个平方和把上述诸平方和及其自由度填入方差分析表,并继续计算得到各均方以及F比:表8-9若取查表知,从而拒绝域为,由于.故认为因子A(咖啡因剂量)是显著的,即三种不同剂量对人的作用有明显的差别.此处检验的p值为7.某粮食加工厂试验三种储藏方法对粮食含水率有无显著影响.现取一批粮食分成若干份,分别用三种不同的方法储藏,过一段时间后测得的含水率如下表:表8-10(1)假定各种方法储藏的粮食的含水率服从正态分布,且方差相等,试在下检验这三种方法对含水率有无显著影响;(2)对每种方法的平均含水率给出置信水平为0.95的置信区间.解:(1)这是一个单因子方差分析的问题,由所给数据计算如下表:表8-11三个平方和分别为。

第九章 复习-方差分析及回归分析

第九章  复习-方差分析及回归分析


s
n j X . j nቤተ መጻሕፍቲ ባይዱ X ij nX 0
j 1 i 1
因此得知SA的自由度是 s -1.
由(1.3),(1.6)及Xij的独立性得知
X ~ N ( , / n)
2
s j 1
(1.14)
E ( S A ) E[ n j X .2j nX 2 ]
j 1
s
(1.13) 可以计算 E( S E ) (n s) 2. SA的统计特性. 它是s个变量 n j ( X . j X )
2
的平方和,且仅有一个线性约束条件:

j 1 s j 1
s
nj

nj ( X. j X ) nj ( X. j X )
j 1 s nj
i 1

( X ij X . j ) 2 / 2 ~ 2 (n j 1)
i 1
nj
(1.11)中各项独立,根据 分布的可加性,得 s
2
S E / 2 ~ 2 ( ( n j 1))
j 1
即S E / 2 ~ 2 ( n s ),
n n j (1.12)
j
Xij - μj可以看成是随机误差. 记为Xij - μj =εij ,
则Xij 可以写为
Xij = μj +εij
εij ~N(0, ζ2),各ε
ij独立
(1.1)
i=1,2,…,nj , j=1,2,…,s
(1.1)称为单因素方差分析的数学模型.
方差分析的任务
X i1 ~ N (1 , 2 ), X i 2 ~ N (2 , 2 ),..., X is ~ N ( s , 2 ) I. 检验s个总体

概率论与数理统计(茆诗松)第二版课后第八章习题参考答案

概率论与数理统计(茆诗松)第二版课后第八章习题参考答案

⎧Yij = µ + a i + ε ij , i = 1, 2, L , r , j = 1, 2, L , m; ⎪ r ⎪ ⎨∑ a i = 0; ⎪ i =1 2 ⎪ ⎩ε ij 相互独立,且都服从N (0, σ ).
检验的原假设与备择假设为 H0:a 1 = a 2 = … = a r = 0 8.1.3 平方和分解 vs H1:a 1 , a 2 , …, a r 不全等于 0.
i =1 j =1 i =1 j =1 r m r m r m r m r m
= ∑∑ (Yij − Yi⋅ ) 2 + ∑∑ (Yi⋅ − Y ) 2 + 2∑∑ (Yij − Yi⋅ )(Yi⋅ − Y )
i =1 j =1 i =1 j =1 i =1 j =1
= S e + S A + 2∑ [(Yi⋅ − Y )∑ (Yij − Yi⋅ )] = S e + S A + 2∑ [(Yi⋅ − Y ) × 0] = S e + S A + 0 = S e + S A ,
ε i⋅ =
1 m ∑ ε ij , i = 1, 2, …, r, m j =1
ε=
1 r m 1 r ε = ε i⋅ . ∑∑ ij r ∑ n i =1 j =1 i =1
显然有 Yi⋅ = µ i + ε i⋅ , Y = µ + ε . 在单因子方差分析中通常将试验数据及基本计算结果写成表格形式 因子水平 A1 A2 ┆ Ar Y11 Y21 ┆ Yr1 Y12 Y22 ┆ Yr2 试验数据 … … ┆ … Y 1m Y 2m ┆ Yrm 和 T1 T2 ┆ Tr 和的平方 平方和

魏宗舒《概率论与数理统计教程》(第2版)(章节题库 方差分析及回归分析)【圣才出品】

魏宗舒《概率论与数理统计教程》(第2版)(章节题库 方差分析及回归分析)【圣才出品】

第8章 方差分析及回归分析1.今有某种型号的电池三批,它们分别是A、B、C三个工厂所生产的,为评比其质量,各随机抽取5只电池为样品,经试验得其寿命(h)如表8-1所示:表8-1试在显著性水平0.05下检验电池的平均寿命有无显著的差异,若差异是显著的,试求均值差和的置信水平为95%的置信区间。

解:以依次表示工厂A、B、C生产的电池的平均寿命。

提出假设:;:不全相等。

由已知得S T,S A,S E的自由度分别为n-1=15-1=14,s-1=2,n-s=15-3=12,从而得方差分析如表8-2所示:表8-2因=17.07>3.89=(2,14),故在显著性水平0.05下拒绝,认为平均寿命的差异是显著的。

由已知得,极限误差E为从而分别得和的一个置信水平为95%的置信区间为(±5.85)=(6.75,18.45),(±5.85)=(-7.65,4.05),(±5.85)=(-20.25,-8.55)。

2.为了寻找飞机控制板上仪器表的最佳布置,试验了三个方案,观察领航员在紧急情况的反应时间(以秒计),随机地选择28名领航员,得到他们对于不同的布置方案的反应时间如表8-3所示:表8-3试在显著性水平0.05下检验各个方案的反应时间有无显著差异,若有差异,试求的置信水平为0.95的置信区间。

解:提出假设::不全相等已知得又的自由度分别为n -1=28-1=27,s -1=3-1=2,n -s =28-3=25,从而得方差分析如表8-4所示:表8-4因=11.3>3.39=(2,14),故在显著性水平=0.05下拒绝,认为差异是显著的。

以下来求置信水平为1-=0.95的置信区间,今2.0595,则从而分别得的一个置信水平为0.95的置信区间为(±1.78)=(0.72,4.28),(±1.95)=(2.55,6.45),(±1.78)=(0.22,3.78)。

回归分析练习题及参考答案

回归分析练习题及参考答案

1 下面是7个地区2000年的人均国内生产总值(GDP)和人均消费水平的统计数据:地区人均GDP/元人均消费水平/元北京辽宁上海江西河南贵州陕西 224601122634547485154442662454973264490115462396220816082035求:(1)人均GDP作自变量,人均消费水平作因变量,绘制散点图,并说明二者之间的关系形态。

(2)计算两个变量之间的线性相关系数,说明两个变量之间的关系强度。

(3)求出估计的回归方程,并解释回归系数的实际意义。

(4)计算判定系数,并解释其意义。

(5)检验回归方程线性关系的显著性(0.05α=)。

(6)如果某地区的人均GDP为5000元,预测其人均消费水平。

(7)求人均GDP为5000元时,人均消费水平95%的置信区间和预测区间。

解:(1)可能存在线性关系。

(2)相关系数:(3)回归方程:734.6930.309y x=+回归系数的含义:人均GDP没增加1元,人均消费增加0.309元。

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 注意:图标不要原封不动的完全复制软件中的图标,要按规范排版。

系数(a)模型非标准化系数标准化系数t 显著性B 标准误Beta1 (常量)734.693 139.540 5.265 0.003人均GDP(元)0.309 0.008 0.998 36.492 0.000 a. 因变量: 人均消费水平(元)%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%(4)模型汇总模型R R 方调整 R 方标准估计的误差1 .998a.996 .996 247.303a. 预测变量: (常量), 人均GDP。

人均GDP对人均消费的影响达到99.6%。

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%注意:图标不要原封不动的完全复制软件中的图标,要按规范排版。

应用回归分析-第2章课后习题参考答案解析

应用回归分析-第2章课后习题参考答案解析

2.1 一元线性回归模型有哪些基本假定?答:1. 解释变量 1x , ,2x ,p x 是非随机变量,观测值,1i x ,,2 i x ip x 是常数。

2. 等方差及不相关的假定条件为⎪⎪⎩⎪⎪⎨⎧⎪⎩⎪⎨⎧≠=====j i n j i j i n i E j i i ,0),,2,1,(,),cov(,,2,1,0)(2 σεεε 这个条件称为高斯-马尔柯夫(Gauss-Markov)条件,简称G-M 条件。

在此条件下,便可以得到关于回归系数的最小二乘估计及误差项方差2σ估计的一些重要性质,如回归系数的最小二乘估计是回归系数的最小方差线性无偏估计等。

3. 正态分布的假定条件为⎩⎨⎧=相互独立n i ni N εεεσε,,,,,2,1),,0(~212 在此条件下便可得到关于回归系数的最小二乘估计及2σ估计的进一步结果,如它们分别是回归系数的最及2σ的最小方差无偏估计等,并且可以作回归的显著性检验及区间估计。

4. 通常为了便于数学上的处理,还要求,p n >及样本容量的个数要多于解释变量的个数。

在整个回归分析中,线性回归的统计模型最为重要。

一方面是因为线性回归的应用最广泛;另一方面是只有在回归模型为线性的假设下,才能的到比较深入和一般的结果;再就是有许多非线性的回归模型可以通过适当的转化变为线性回归问题进行处理。

因此,线性回归模型的理论和应用是本书研究的重点。

1. 如何根据样本),,2,1)(;,,,(21n i y x x x i ip i i =求出p ββββ,,,,210 及方差2σ的估计;2. 对回归方程及回归系数的种种假设进行检验;3. 如何根据回归方程进行预测和控制,以及如何进行实际问题的结构分析。

2.2 考虑过原点的线性回归模型 n i x y i i i ,,2,1,1 =+=εβ误差n εεε,,,21 仍满足基本假定。

求1β的最小二乘估计。

答:∑∑==-=-=ni ni i i i x y y E y Q 1121121)())(()(ββ∑∑∑===+-=--=∂∂n i n i ni i i i i i i x y x x x y Q111211122)(2βββ 令,01=∂∂βQ 即∑∑===-n i ni i i i x y x 11210β 解得,ˆ1211∑∑===ni ini ii xyx β即1ˆβ的最小二乘估计为.ˆ1211∑∑===ni ini ii xyx β2.3 证明: Q (β,β1)= ∑(y i-β0-β1x i )2因为Q (∧β0,∧β1)=min Q (β0,β1 )而Q (β0,β1) 非负且在R 2上可导,当Q 取得最小值时,有即-2∑(y i-∧β0-∧β1x i )=0 -2∑(y i-∧β0-∧β1x i ) x i =0又∵e i =y i-( ∧β0+∧β1x i )= y i-∧β0-∧β1x i ∴∑e i =0,∑e i x i =0(即残差的期望为0,残差以变量x 的加权平均值为零)2.4 解:参数β0,β1的最小二乘估计与最大似然估计在εi~N(0, 2 )10ˆˆQQββ∂∂==∂∂i=1,2,……n 的条件下等价。

方差分析与回归分析

方差分析与回归分析
有因素A是显著的,即浓度不同对产量有显著性影响,而温度
以及浓度和温度的交互作用对产量无显著性影响,也就是说为
了提高产量必须控制好浓度。
2 、双因素无重复试验的方差分析 在双因素试验中,对每一对水平组合只做一次试验,即不 重复实验,得到
上一页 下一页 返回
上一页 下一页 返回
总平方和 误差平方和
例9.3 某化工企业为了提高产量,选了三种不同浓度、四种不同 温度做试验。在同一浓度与温度组合下各做两次试验,其数据如
下表所示,在显著性水平α=0.05下不同浓度和不同温度以及它们
间的交叉作用对产量有无显著性影响?
B A
A1 A2 A3
B1
14,10 9,7 5,11
B2
11,11 10,8 13,14
检验温度对该化工产品的得率是否有显著影响。
解: 计算各个水平下的样本均值,得
上一页 下一页 返回
计算 ST=106.4, SA=68.4, SE =38.0
单因素试验的方差分析表:
方差来源 平方和 自由度 F值 临界值
显著性
因素A 误差
总计
68.4 4 38.0 10
106.4 14
4.5 F0.05(4,10)=3.48 ※ 4.5 F0.01(4,10)=5.99
变量Y服从正态分布
,即Y的概率密度为
其中
,而 是不依赖于x的常数。
上一页 下一页 返回
在n次独立试验中得到观测值(x1,y1),(x2,y2),… (xn,yn),利用极大似然估计法估计未知参数a1, a2,… ak,时,
有似然函数
似然函数L取得极大值,上式指数中的平方和
取最小值。
即为了使观测值(xi , yi)(i=1,2,…,n)出现的可能性最大,应当选 择参数a1,a2,…,ak,使得观测值yi与相应的函数值

应用回归分析人大前四章课后习题答案详解Word版

应用回归分析人大前四章课后习题答案详解Word版
3.9证明y与自变量 的偏决定系数与(3.42)偏F检验值 是等价的。37
3.10验证决定系数 与F值之间的关系式: 38
3.11研究货运总量y(万吨)与工业总产值38
1)计算出y, x1 ,x2, x3的相关系数矩阵39
2)求y关于x1, x2, x3的三元线性回归方程40
3)对所求的的方程作拟合优度检验41
③不论是时间序列数据还是横截面数据的手机,样本容量的多少一般要与设置的解释变量数目相配套。
4)统计数据的整理中不仅要把一些变量数据进行折算,差分,甚至把数据对数化,标准化等,有时还须注意剔除个别特别大或特别小的“野值”,有时需要利用差值的方法把空缺的数据补齐。
1.7构造回归理论模型的基本根据是什么?
1)绘制y对x的散点图,可以用直线回归描述两者之间的关系吗?31
2)建立y对x的线性回归;32
3)用线性回归的Plots功能绘制标准残差的直方图和正态概率图,检验误差项的正态性假设。32
3多元线性回归34
3.1写出多元线性回归模型的矩阵表示形式,并给出多元线性回归模型的基本假设。34
3.2讨论样本容量n与自变量个数p的关系,它们对模型的参数估计有何影响?35
由于许多经济变量的前后期之间总是有关联的,因此时间序列数据容易产生模型中随机误差项的序列相关。对于具有随机误差项序列相关的情况,就要通过对数据的某种计算整理来消除序列相关性,最常用的处理方法是差分法。
②横截面数据是在同一时间截面上的统计数据。由于一个回归模型往往涉及众多解释变量,如果其中某一因素或一些因素随着解释变量观测值的变化而对被解释变量产生不同影响,就产生异方差。因此当用截面数据作样本时,容易产生异方差。对于具有异方差性的建模问题,数据整理就是注意消除异方差性,这常与模型参数估计方法结合起来考虑。
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第章方差分析与回归分
析习题答案
Document number:WTWYT-WYWY-BTGTT-YTTYU-2018GT
第九章 方差分析与回归分析习题参考答案
1. 为研究不同品种对某种果树产量的影响,进行试验,得试验结果(产量)如下表,试分析果树品种对产量是否有显着影响.
(0.05(2,9) 4.26F =,0.01(2,9)8.02F =)
解:r=3,
12444n n 321=++=++=n n ,
T=120 ,120012
1202
2===n T C 计算统计值?722
8.53,
389
A A A e e SS f F SS f =
=≈……
方差分析表
结论:由于0.018.53(2,9)8.02,
A F F ≈>=故果树品种对产量有特别显着影响.
2.
2700=
10.52
3.56
=≈结论: 由以上方差分析知,进器对火箭的射程有特别显着影响;燃料对火箭的射程有显着影响. 3.为了研究某商品的需求量Y 与价格x 之间的关系,收集到下列10对数据:
31
,58,147,112,410.5,i i i i i i
x y x y x y
=====(1)求
需求量Y 与价格x 之间的线性回归方程; (2)计算样本相关系数;
(3)用F 检验法作线性回归关系显着性检验. 解:引入记号
10, 3.1,
5.8n x y ===
∴需求量Y 与价格x 之间的线性回归方程为
(2)样本相关系数 32.8
0.955634.3248l r
-==
≈≈- 在0H 成立的条件下,取统计量(2)~(1,2)R
e
n S F
F n S -=
-
计算统计值
2
2(32.8)15.967.66,
74.167.66 6.44
R xy xx e yy R S l l S l S ==-≈=-≈-=
故需求量Y 与价格x 之间的线性回归关系特别显着.
4. 随机调查10个城市居民的家庭平均收入(x)与电器用电支出(y)情况得数据(单位:千元)如下:
(1) 求电器用电支出y 与家庭平均收入x 之间的线性回归方程; (2) 计算样本相关系数; (3) 作线性回归关系显着性检验;
(4) 若线性回归关系显着,求x =25时, y 的置信度为的预测区间. 解:引入记号
10,27,
1.9n x y ===
∴电器用电支出y 与家庭平均收入x 之间的线性回归方程为
(2)样本相关系数 0.9845l r
==

在0H 成立的条件下,取统计量(2)~(1,2)R
n S F
F n S -=
-e
计算统计值
2
243.6354 5.37,
5.54 5.370.17
xy xx yy s l l s l s ==≈=-≈-=R e R
故家庭电器用电支出y 与家庭平均收入x 之间的线性回归关系特别显着. 相关系数检验法 0
1:0;:0H R H R =≠
故家庭电器用电支出y 与家庭平均收入x 之间的线性回归关系特别显着. (4) 因为0x
x =处,0y 的置信度为1α-的预测区间为
其中
00.025垐 1.42640.123225 1.6536,
(8) 2.31,0.1458y t σ=-+⨯====
代入计算得当x =25时, y 的置信度为的预测区间为。

相关文档
最新文档