阴离子交换树脂
阴阳离子交换树脂的保存和预处理

阳离子交换树脂树脂的贮存:离子交换树脂肪内含有一定量的水份,在运输及贮存过程中应尽量保持这部分水。
如贮存过程中树脂脱了水,应先用浓食盐水(-10%)浸泡,再逐渐稀释,不直接放于水中,以免树脂急剧膨胀而破碎。
在长期贮存中,强型树脂应转变成盐型,弱型树脂可转变成相应的氢型或游离碱型也可转为盐型,然后浸泡在洁净的水中。
树脂在贮存或运输过程中,应保持在5-40°C的温度环境中,避免过冷或过热,影响质量。
若冬季没有保温设备时,可将树脂贮存在食盐水中,食盐水的温度可根据气温而定。
新树脂的预处理:新树脂常含有溶剂、未参加聚合反应的物质和少量低聚合物,还可能吸铁、铝、铜等重金属离子。
当树脂与水、酸、碱或其他溶液相接触时,上述可溶性杂质就会转入溶液中,在使用初期污染出水水质。
所以,新树脂在投运前要进行预处理。
阳树脂预处理步骤如下:首先使用饱和食盐水,取其量约等于被处理树脂体积的两倍,将树脂置于食盐溶液中浸泡18-20小时,然后放尽食盐水,用清水漂洗净,使排出水不带黄色;其次再用2%-4%NaOH溶液,其量与上相同,在其中浸泡2-4小时(或作小流量清洗),放尽碱液后,冲洗树脂直至排出水接近中性为止。
最后用5%HCL溶液,其量亦与上述相同,浸泡4-8小时,放尽酸液,用清水漂流至中性待用。
阴离子交换树脂树脂的贮存:离子交换树脂肪内含有一定量的水份,在运输及贮存过程中应尽量保持这部分水。
如贮存过程中树脂脱了水,应先用浓食盐水(-10%)浸泡,再逐渐稀释,不得直接放于水中,以免树脂急剧膨胀而破碎。
在长期贮存中,强型树脂应转变成盐型,弱型树脂可转变成相应的氢型或游离碱型也可转为盐型,然后浸泡在洁净的水中。
树脂在贮存或运输过程中,应保持在5-40°C的温度环境中,避免过冷或过热,影响质量。
若冬季没有保温设备时,可将树脂贮存在食盐水中,食盐水的温度可根据气温而定。
新树脂的预处理:新树脂常含有溶剂、未参加聚合反应的物质和少量低聚合物,还可能吸着铁、铝、铜等重金属离子。
阴离子交换树脂的处理方法与原因分析

阴离子交换树脂的处理方法与原因分析阴离子交换树脂的处理方法与原因分析本产品的性能与201×7强碱性阴离子交换树脂相像,但有更好的物理及化学稳定性(耐渗透压力,耐磨损等)及抗污染性能,由于具有大孔结构,因此可用于吸附分子尺寸较大的杂质以及在非水溶液中使用。
本产品相当于美国:AmberliteIRA900,德国:LewatitMP500,日本:DiaionPA308。
相当于我国老牌号:D231;DK251;731;290。
用途:本产品重要用于高纯水的制备(尤其适用于高速混床)及用于凝结水净打扮置(HOH或NH4OH混床系统),也用于废水处理,回收重金属,生化药物分别和糖类提纯。
包装:编织袋,内衬塑料袋。
塑料桶,内衬塑料袋。
使用时参考指标:1.PH范围:0142.允许温度(℃)氯型≤80氢氧型≤603.膨胀率:(C1→OH)≤204.工业用树脂层高度:m1.03.05.再生液浓度:%NaOH:456.再生剂用量(按100计):kg/m3湿树脂NaOH(工业):40807.再生液流速:m/h468.再生接触时间:minute:30609.正洗流速:m/h:152510.正洗时间:minute:约3011.运行流速:m/h,1525高流速:80100 12.工作交换容量:mmol/l(湿树脂)≥400结构式重要性能指标:指标名称D201D201FCD201SC全交换容量mmol/g≥3.8强地基团容量mmol/g≥1.0体积交换容量mmol/ml≥1.15含水量4858湿视密度g/ml0.650.75湿真密度g/ml1.061.10粒度(0.3151.25mm)≥95(0.451.25mm)≥95(0.3150.60mm≥95有效粒径mm0.400.70≥0.50.350.50均一系数≤1.601.601.40磨后圆球率≥95转型膨胀率≤283028外观乳白色或淡黄色不透亮球状颗粒乳白色或淡黄色不透亮球状颗粒乳白色或淡黄色不透亮球状颗粒出厂型式游离胺游离胺游离胺用途通用浮动床双层床一、树脂的运输和贮存:离子交换树脂内含有肯定量的水份,在运输及贮存过程中应尽量保持这部分水份。
阴阳混合离子交换树脂的基本类型与介绍

阴阳混合离子交换树脂的基本类型与介绍阴阳混合离子交换树脂的基本类型与介绍新树脂的预处理:由于运输及保管等各方面的原因,简单使新树脂产生脱水。
凭肉眼和手感均可发觉。
如遇此种情况,为避开树脂与水和其它再生液的接触而产生爆裂碎裂,造成不必要的挥霍,必需将此类树脂浸泡在8的食盐水中16小时左右(浸泡时好常常搅拌),使树脂充分膨胀,经清水漂洗至无盐味后方可使用。
没有上述现象,则树脂不必进行预处理。
树脂装填:国内混床设备的树脂装填高度为阳树脂5(6)00mm,阴树脂10(2)00mm,非再生态时(即阳树脂为钠型,阴树脂为氯型时)阳树脂装填高度不能高过中排口,但也不宜低于中排口5cm。
阴阳树脂装填比例为2:1(或 1.5:1)。
001x7MB阳离子交换树脂在下,201x7MB阴离子交换树脂在上。
________________________________________树脂冲洗:树脂装入交换器后,用干净水反洗树脂层,直至出水清楚、无气味、无细碎树脂为止。
用约2倍树脂体积的45HCl溶液,以2m/h的流速通过树脂层。
全部通入后,浸泡48小时,排去酸液,用干净水冲洗至出水呈中性,冲洗流速为1020m/h。
用约2倍树脂体积的25NaOH溶液,按上面进HCl溶液的方法通入和浸泡。
排去碱液,用干净水冲洗至出水呈中性,冲洗流速同上。
酸、碱溶液若能重复进行23次,则效果更佳。
阴阳树脂混合:冲洗结束后,打开下进、上排阀,启动中心水泵(反冲洗使树脂层松动),将柱内积水排至树脂层面上100150mm处时,关中心水泵和进水阀;2、打开小量排空阀,开启并掌控进气阀门的进气量(进气压力为0.10.15Mpa),察看上下窥视镜内树脂有节律的上下沸腾混合,使上下树脂颜色深浅混合一致。
进气时间一般为1015分钟;3、混合结束后,关闭进气阀、排空阀,再快速开启上进阀、中心水泵、下排阀(使树脂快速沉降,防止树脂在沉降过程中重新分层)。
同时也要防止树脂露出水面,否则树脂间会产生气泡,从而影响混床的出水水质(若混合效果不佳时,可以重复混合操作)。
离子交换树脂的原理

离子交换树脂的原理
首先,离子交换树脂的原理基于离子交换作用。
树脂内部的功能基团能够与水中的离子发生化学反应,吸附或释放离子物质。
通常情况下,树脂上带有阳离子交换基团的被称为阴离子交换树脂,而带有阴离子交换基团的被称为阳离子交换树脂。
这些功能基团能够与水中的阳离子或阴离子发生交换,从而实现对水质的净化和离子的分离。
其次,离子交换树脂的结构对其工作原理也有着重要影响。
树脂通常呈现出多孔的结构,具有较大的比表面积,这样能够增加与水中离子物质的接触面积,提高离子交换效率。
此外,树脂的孔隙结构和孔径大小也会影响其对不同离子的吸附选择性,从而实现对水质的精确调控。
离子交换树脂在工作过程中,通常需要进行再生操作。
当树脂吸附饱和或者需要更换吸附物种时,可以通过用盐溶液或酸碱溶液进行再生,将吸附在树脂上的离子物质释放出来,使树脂重新恢复吸附能力。
这样实现了对树脂的循环利用,延长了其使用寿命。
总的来说,离子交换树脂的原理是基于树脂内部的离子交换作
用,通过树脂结构和再生操作来实现对水质的净化和离子的分离。
它具有操作简便、效果显著、经济实用等优点,在水处理、化工、制药等领域有着广泛的应用前景。
希望通过本文的介绍,能够对离子交换树脂的原理有一个更加深入的了解。
离子交换树脂的种类

离子交换树脂的种类离子交换剂是指具有离子交换能力的固体物质,依其可交换离子的种类,可分为阳离子剂和阴离子剂两大类。
最主要的当属合成树脂。
离子交换树脂可分别按照功能、内部结构、聚合物单体种类和用途分类。
其中,以功能和内部结构分类为主流方式,故此处以这两种分类方式对离子交换树脂的种类作出说明。
1按功能分类1.1阳离子交换树脂首先,离子交换树脂可分为阳离子树脂和阴离子树脂两大类,它们可分别与溶液中的阳离子和阴离子进行离子交换。
而阳离子树脂又分为强酸性和弱酸性两类,阴离子树脂则可分为强碱性和弱碱性两类。
人工合成的阳离子树脂的官能团是有机酸,并按照酸性的强弱,分为强酸性和弱酸性两类。
强酸性的官能团是苯磺酸,弱酸性的官能团则包括有机磷酸、羟基酸和酚等。
酸主要以H+的形式与其他阳离子进行交换。
例如,用H+与金属离子交换会使树脂变成盐的形式。
强阳离子树脂除了酸形式R-O H外,生产厂家也会以钠盐R-O Nα的形式出售,分别称为氢型和钠型强阳离子交换树脂。
强酸性阳离子树脂含有大量的强酸性基团,如磺酸基−SO3H,容易在溶液中离解出H+,故呈强酸性。
树脂离解后,本体所含的负电基团,如−SO3H,能吸附结合溶液中的其他阳离子。
这两个反应使树脂中的H+与溶液中的阳离子互相交换。
强酸性树脂的离解能力很强,在酸性或碱性溶液中均能离解和产生离子交换作用。
树脂在使用一段时间后,要进行再生处理,即使用化学药品使离子交换反应向相反的方向进行,使树脂的官能基团恢复到原来的状态,以便重复利用。
例如,上述的阳离子树脂一般使用强酸进行再生处理,此时树脂释放出被吸附的阳离子并与H+结合,进而恢复到原来的组成。
弱酸性阳离子树脂含有弱酸性基团,如羧基-COOH,能在水中离解出H+而呈酸性,但因其解离程度不高,因此一般仅程弱酸性,故而属于弱酸性阳离子树-(R为碳氢链基团),可与溶液中脂。
树脂离解后余下的负电基团,如R COO的其他阳离子吸附结合,从而产生阳离子交换作用。
氯型弱阴离子交换树脂

氯型弱阴离子交换树脂
氯型弱阴离子交换树脂是一种广泛应用于水处理领域的重要材料。
它具有高效去除水中阴离子的能力,尤其对于水中的氯离子有着卓越的去除效果。
下面我将为大家介绍一下氯型弱阴离子交换树脂的特点和应用。
氯型弱阴离子交换树脂具有强大的吸附能力。
它的孔隙结构可以有效地吸附水中的氯离子,并与之发生离子交换作用。
这种离子交换使得水中的氯离子被树脂捕获,从而实现了水中氯离子的去除。
与其他常见的水处理方法相比,氯型弱阴离子交换树脂具有更高的去除效率和更低的成本。
氯型弱阴离子交换树脂还具有较强的抗污染能力。
在水处理过程中,水中的杂质和有机物质往往会附着在树脂表面,形成污染物。
然而,氯型弱阴离子交换树脂具有独特的结构和表面性质,能够抵抗污染物的附着,延长树脂的使用寿命。
氯型弱阴离子交换树脂的应用范围非常广泛。
它可以用于家庭自来水的净化,去除水中的氯离子,提高水的口感和质量。
同时,它也可以用于工业生产中,如电子、化工、食品等行业的水处理过程中,去除水中的氯离子,保证生产的质量和安全。
总的来说,氯型弱阴离子交换树脂是一种十分重要的水处理材料,具有高效去除水中氯离子的能力,抗污染性强,应用范围广泛。
它
的出现为我们提供了一种经济、高效的水处理解决方案,对于改善我们的生活和保护环境都具有重要意义。
希望我们能够更加重视氯型弱阴离子交换树脂的应用,为水资源的保护和可持续发展作出贡献。
d301弱碱阴离子树脂交换方程式

弱碱阴离子树脂是一种常用的离子交换树脂,它在许多工业和实验室应用中发挥着重要作用。
本文将探讨弱碱阴离子树脂的交换方程式及其相关内容,以帮助读者更深入理解其化学性质和用途。
1. 弱碱阴离子树脂的基本特性弱碱阴离子树脂是一种聚合物材料,其特点是具有含有含氮的碱性官能团,通常是二乙烯三胺(DEA)或三乙烯四胺(TEPA)等。
这些碱性官能团能够与阴离子发生离子交换反应,使得树脂能够去除水溶液中的阴离子。
2. 弱碱阴离子树脂的交换方程式弱碱阴离子树脂在交换阴离子时,通常遵循以下化学方程式:R-NH2 + X- ↔ R-NH+X-其中,R代表树脂骨架,NH2代表碱性官能团,X-代表待交换的阴离子,R-NH+X-代表树脂与阴离子形成的复合物。
3. 弱碱阴离子树脂的交换机理当弱碱阴离子树脂与含有阴离子的水溶液接触时,树脂表面的碱性官能团会与阴离子形成化学键。
在交换过程中,树脂上的NH2官能团会与水溶液中的阴离子X-结合,同时释放出树脂上的NH+X-复合物。
这个过程是一个动态平衡过程,当树脂吸附了一定量的阴离子后,交换反应会变得缓慢。
4. 弱碱阴离子树脂的应用弱碱阴离子树脂广泛应用于水处理、食品加工、制药等领域。
在水处理方面,它可以用于去除水中的硝酸盐、磷酸盐等阴离子,从而达到净化水质的目的。
在食品加工和制药领域,它可以用于分离、提纯和浓缩目标分子。
5. 弱碱阴离子树脂的性能特点弱碱阴离子树脂具有交换速率快、容量大、再生性能好、稳定性高等特点。
这使得它在工业和实验室中得到广泛应用,并且受到了广泛关注和研究。
弱碱阴离子树脂的交换方程式是离子交换过程的关键,通过深入了解和研究其交换机理和应用特点,可以更好地利用这一类树脂,为实际生产和科研工作提供更有效的技术支持。
随着对水质和环境要求的不断提高,弱碱阴离子树脂在水处理领域的应用变得日益重要。
其特有的化学性质和优异的性能使其成为水处理过程中不可或缺的一部分。
通过进一步探讨弱碱阴离子树脂的应用和性能特点,可以更全面地理解其在水处理中的作用和优势。
deae阴离子交换层析洗脱多糖

deae阴离子交换层析洗脱多糖
在deae阴离子交换层析洗脱多糖的过程中,我们需要明确几个关键点。
首先,DEAE(二烯丙基氨基乙基)是一种常用的阴离子交换树脂,具有较强的吸附能力和选择性。
其通过静电吸附来分离和纯化多糖。
在进行DEAE阴离子交换层析洗脱多糖的实验中,我们需要先将样品溶液加载到DEAE树脂柱上。
这一步骤可以使用缓冲溶液调节pH 值,以增强多糖与树脂的相互作用。
然后,我们通过缓冲溶液进行洗脱步骤,以去除非特异性吸附的杂质。
在洗脱过程中,我们可以使用不同浓度或pH值的盐溶液来改变DEAE树脂与多糖的相互作用,从而达到洗脱多糖的目的。
通过逐渐增加盐浓度或调整pH值,我们可以逐步提取出不同亲和性的多糖。
DEAE阴离子交换层析洗脱多糖的过程中,我们还需要注意一些关键因素。
首先,树脂的选择和操作条件的优化是成功进行阴离子交换层析的关键。
其次,控制样品的浓度和加载量也是非常重要的,以避免样品过浓或过稀而影响洗脱效果。
我们还需要根据样品的特性和要求,选择适当的缓冲溶液和洗脱条件。
要注意的是,洗脱过程中可能会发生多糖的降解或聚合,因此需要控制洗脱速度和温度。
总的来说,DEAE阴离子交换层析洗脱多糖是一种常用的纯化方法,可以根据多糖与树脂的相互作用来实现多糖的分离。
通过合理选择树脂、操作条件和洗脱方法,我们可以获得高纯度和高活性的多糖样品。
这一方法在生物医药领域的多糖研究中具有重要的应用价值。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
阴离子交换树脂
离子交换法2007年02月05日星期一23:04一、前言
离子交换法(ion exchange process)是液相中的离子和固相中离子间所进行的的一
种可逆性化学反应,当液相中的某些离子较为离子交换固体所喜好时,便会被离子交换固体吸附,为维持水溶液的电中性,所以离子交换固体必须释出等价离子回溶液中。
离子交换树脂一般呈现多孔状或颗粒状,其大小约为0.1~1mm,其离子交换能力依其交换能力特征可分:
1. 强碱型阴离子交换树脂:主要是含有较强的反应基如具有四面体铵盐官能基之-N+(CH3)3,在氢氧形式下,-N+(CH3)3OH-中的氢氧离子可以迅速释出,以进行交换,强碱型阴离子交换树脂可以和所有的阴离子进行交换去除。
如磺酸基-SO3H,容易在溶液中离解出H+,故呈强酸性。
树脂离解后,本体所含的负电基团,如SO3-,能吸附结合溶液中的其他阳离子。
这两个反应使树脂中的H+与溶液中的阳离子互相交换。
强酸性树脂的离解能力很强,在酸性或碱性溶液中均能离解和产生离子交换作用。
树脂在使用一段时间后,要进行再生处理,即用化学药品使离子交换反应以相反方向进行,使树脂的官能基团回复原来状态,以供再次使用。
如上述的阳离子树脂是用强酸进行再生处理,此时树脂放出被吸附的阳离子,再与H+结合而恢复原来的组成。
2. 弱碱型阴离子交换树脂:这类树脂含弱酸性基团,如羧基-COOH,能在水中离解出H+ 而呈酸性。
树脂离解后余下的负电基团,如R-COO-(R为碳氢基团),能与溶液中的其他阳离子吸附结合,从而产生阳离子交换作用。
这种树脂的酸性即离解性较弱,在低pH下难以离解和进行离子交换,只能在碱性、中性或微酸性溶液中(如pH5~14)起作用。
这类树脂亦是用酸进行再生(比强酸性树脂较易再生)
如氨基,仅能去除强酸中的阴离子如SO42-,Cl-或NO3-,对于HCO3-,CO32-或SiO42-则无法去除。
3 . 对阴离子的吸附
强碱性阴离子树脂对无机酸根的吸附的一般顺序为:
SO42-> NO3-> Cl-> HCO3-> OH-
弱碱性阴离子树脂对阴离子的吸附的一般顺序如下:
OH-> 柠檬酸根3-> SO42-> 酒石酸根2->草酸根2-> PO43->NO2-> Cl->醋酸根-> HCO3-
注意事项
1、离子交换树脂含有一定水份,不宜露天存放,储运过程中应保持湿润,以免风干脱水,使树脂破碎,如贮存过程中树脂脱水了,应先用浓食盐水(10%)浸泡,再逐渐稀释,不得直接放入水中,以免树脂急剧膨胀而破碎。
2、冬季储运使用中,应保持在5-40℃的温度环境中,避免过冷或过热,影响质量,若冬季没有保温设备时,可将树脂贮存在食盐水中,食盐水浓度可根据气温而定。
3、离子交换树脂的工业产品中,常含有少量低聚合物和未参加反应的单体,还含有铁、铅、铜等无机杂质,当树脂与水、酸、碱或其它溶液接触时,上述物质就会转入溶液中,影响出水质量,因此,新树脂在使用前必须进行预处理,一般先用水使树脂充分膨胀,
然后,对其中的无机杂质(主要是铁的化合物)可用4-5%的稀盐酸除去,有机杂质可用2-4%稀氢氧化钠溶液除去,洗到近中性即可。
如在医药制备中使用,须用乙醇浸泡处理。
4、树脂在使用中,防止与金属(如铁、铜等)油污、有机分子微生物、强氧化剂等接触,免使离子交换能力降低,甚至失去功能,因此,须根据情况对树脂进行不定期的活化处理,活化方法可根据污染情况和条件而定,一般阳树脂在软化中易受Fe的污染可用盐酸浸泡,然后逐步稀释,阴树脂易受有机物污染,可用10%NaC1+2-5%NaOH混合溶液浸泡或淋洗,必要时可用1%双氧水溶液泡数分钟,其它,也可采用酸碱交替处理法,漂白处理法,酒精处理及各种灭菌法等等。
5、新树脂的预处理:离子交换树脂的工业产品中,常含有少量低聚物和未参加反应的单体,还含有铁、铅、铜等无机杂质。
当树脂与水、酸、碱或其它溶液接触时,上述物质就会转入溶液中,影响出水质量。
因此,新树脂在使用前必须进行预处理。
一般先用水使树脂膨胀,然后,对其中的无机杂质(主要是铁的化合物)可用4-5%的稀盐酸除去,有机杂质可用2-4%稀氢氧化钠溶液除去洗到近中性即可。