椭圆标准方程及性质的应用(作业)
椭圆标准方程及性质的应用 课件

代入椭圆方程并整理,得 (4k2+1)x2-8(2k2-k)x+4(2k-1)2-16=0. 又设直线与椭圆的交点为 A(x1,y1)、B(x2,y2), 则 x1、x2 是方程的两个根, 于是 x1+x2=842kk22+-1k. 又 M 为 AB 的中点, ∴x1+2 x2=442kk22+-1k=2, 解之得 k=-12. 故所求直线的方程为 x+2y-4=0.
法二 设直线与椭圆的交点为 A(x1,y1)、B(x2,y2). 又 M(2,1)为 AB 的中点, ∴x1+x2=4,y1+y2=2. 又 A、B 两点在椭圆上, 则 x12+4y12=16,x22+4y22=16.
两式相减得(x21-x22)+4(y12-y22)=0. 于是(x1+x2)(x1-x2)+4(y1+y2)(y1-y2)=0. ∴xy11--yx22=-4xy11++xy22=-12, 即 kAB=-12. 又直线 AB 过 M(2,1)点, 故所求直线的方程为 x+2y-4=0.
直线与椭圆的位置关系的判断 对不同的实数值 m,讨论直线 y=x+m 与椭圆x42 +y2=1 的位置关系. 【思路探究】 联立两个方程 ―→ 消去y得到关于 x的二次方程 ―→ 求Δ ―→ 讨论Δ得结论
【自主解答】 联立方程组得:
y=x+m
①
x42+y2=1
②
将①代入②得:x42+(x+m)2=1
【思路探究】 设点A,B坐标 → 代入椭圆方程 → 点差法求kAB → 求直线AB方程 → 求弦AB长
【自主解答】 设 A(x1,y1),B(x2,y2),由 A,B 两点在椭圆上得xx2122++22yy2122==44,, 两式相减得
(x1-x2)(x1+x2)+2(y1-y2)(y1+y2)=0 ① 显然 x1≠x2,故由①得:kAB=xy11--yx22=-2xy11++xy22. 因为点 P(-1,1)是 AB 的中点,所以有: x1+x2=-2,y1+y2=2, ② 把②代入①得:kAB=12,
椭圆方程及其应用

椭圆方程及其应用概述椭圆方程是描述平面上椭圆的几何性质的方程。
它是一种二次方程,通常形式为 Ax² + Bxy + Cy² + Dx + Ey + F = 0。
本文将介绍椭圆方程的基本定义、性质,以及它在不同领域的应用。
基本定义与性质椭圆方程的一般形式为 Ax² + Bxy + Cy² + Dx + Ey + F = 0。
其中 A、B、C、D、E 和 F 是实数系数,且 A 和 C 不同时为零。
通过对齐次化和变换,椭圆方程可以转化为标准形式:(x - h)²/a² + (y - k)²/b² = 1其中 (h, k) 是椭圆的中心坐标,a 和 b 分别是椭圆在 x 和 y 方向上的半长轴长度。
椭圆的离心率定义为 c/a,其中 c 是椭圆的焦点之间的距离。
椭圆方程具有如下性质:1. 椭圆是一个封闭的曲线,其形状类似于圆,但更加拉长。
2. 所有椭圆的焦点到椭圆上任意一点的距离之和是常数。
3. 椭圆的直径是椭圆上两个离焦点最远的点之间的距离。
4. 椭圆的离心率决定了椭圆的形状,当离心率接近于 0 时,椭圆接近于圆;当离心率大于 0 但小于 1 时,椭圆呈现出拉长的形状。
应用领域椭圆方程在许多领域中有广泛的应用,以下介绍其中几个典型的应用:1. 天体力学椭圆方程在描述行星、卫星和彗星的轨道时起着重要作用。
行星的轨道通常是近似椭圆的,通过求解椭圆方程可以精确描述行星在椭圆轨道上的运动,从而预测它们的位置和速度。
2. 信号处理在信号处理领域,椭圆滤波器是一种常用的数字滤波器。
椭圆滤波器的频率响应可以用椭圆方程来描述,它具有可调节的通带和阻带波纹特性,能够实现比其他常见滤波器更陡峭的过渡带和更小的波纹。
3. 地理学在地理学中,椭圆方程被广泛用于描述地球的形状。
根据地球的形状和椭圆方程的参数,可以计算出地球的椭球体参数,如长半轴、短半轴和离心率,从而精确地描述地球的地理特征。
椭圆的标准方程及其几何性质

圆心Q(3,0), ,所以P在定圆内 设动圆圆心为 ,则 为半径 又圆M和圆Q内切,所以 ,
即 ,故M的轨迹是以P,Q为焦点的椭圆,且PQ中点为原点,所以 , ,故动圆圆心M的轨迹方程是:
题7。△ABC的两个顶点坐标分别是B(0,6)和C(0,-6),另两边AB、AC的斜率的乘积是- ,求顶点A的轨迹方程.
[解析] 的周长为 , =8
2.如果方程x2+ky2=2表示焦点在y轴的椭圆,那么实数k的取值范围是____________.
解析:椭圆方程化为 + =1.
焦点在y轴上,则 >2,即k<1.
又k>0,∴0<k<1.
答案:0<k<1
3.椭圆 + =1的离心率是____________,准线方程是____________.
所以,以线段 为直径的圆与此椭圆长轴为直径的圆内切
题11。已知椭圆的焦点是 ,P为椭圆上一点,且| |是| |和| |的等差中项.
(1)求椭圆的方程;
(2)若点P在第三象限,且∠ =120°,求 .选题意图:综合考查数列与椭圆标准方程的基础知识,灵活运用等比定理进行解题.
解:(1)由题设| |+| |=2| |=4
∴ , 2c=2, ∴b=
∴椭圆的方程为 .
(2)设∠ ,则∠ =60°-θ
由正弦定理得:
由等比定理得:
整理得: 故
题12.已知椭圆的中心在坐标原点O,焦点在坐标轴上,直线y=x+1与椭圆相交于点P和点Q,且OP⊥OQ,|PQ|= ,求椭圆方程.
解:设椭圆方程为mx2+ny2=1(m>0,n>0),
(2)过点(0,3)作直线l与曲线C交于A、B两点,设 = + ,是否存在这样的直线l,使得四边形OAPB是矩形?若存在,求出直线l的方程;若不存在,试说明理由.
椭圆的定义、标准方程及几何性质(分层练习)

椭圆的定义、标准方程及几何性质(分层练习)[基础训练]1.[2020天津河北区模拟]已知椭圆C 的中心在原点,焦点在x 轴上,且短轴长为2,离心率为255,则该椭圆的标准方程为( )A.x 25+y 2=1 B .x 23+y 2=1 C.x 24+y 2=1D .y 24+x 2=1答案:A 解析:由题意设椭圆方程为x 2a 2+y 2b 2=1(a >b >0),则2b =2,故b =1.又c a =255,a 2=b 2+c 2,∴a 2=5.∴椭圆C 的标准方程为x 25+y 2=1.故选A.2.[2020河北邯郸一模]椭圆x 212+y 23=1的焦点为F 1,F 2,点P 在椭圆上,如果线段PF 2的中点在y 轴上,那么|PF 2|是|PF 1|的( )A .7倍B .5倍C .4倍D .3倍答案:A 解析:设线段PF 2的中点为D ,则|OD |=12|PF 1|,且OD ∥PF 1, ∵OD ⊥x 轴,∴PF 1⊥x 轴. ∴|PF 1|=b 2a =323=32.又∵|PF 1|+|PF 2|=43, ∴|PF 2|=43-32=732=7|PF 1|. ∴|PF 2|是|PF 1|的7倍.3.[2020黑龙江哈尔滨六中模拟]设椭圆C :x 24+y 2=1的左焦点为F ,直线l :y =kx (k ≠0)与椭圆C 交于A ,B 两点,则|AF |+|BF |的值是( )A .2B .23C .4D .43答案:C 解析:设椭圆的右焦点为F 2,连接AF 2,BF 2.因为|OA |=|OB |,|OF |=|OF 2|,所以四边形AFBF 2是平行四边形,所以|BF |=|AF 2|,所以|AF |+|BF |=|AF |+|AF 2|=2a =4.故选C.4.[2020河南洛阳一模]已知椭圆x 211-m +y 2m -3=1的焦点在y 轴上,且焦距为4,则m 等于( )A .5B .6C .9D .10答案:C 解析:由椭圆x 211-m +y 2m -3=1的长轴在y 轴上,焦距为4,可得m -3-11+m =2,解得m =9.故选C.5.[2020安徽宣城一模]已知椭圆x 2a 2+y 2b 2=1(a >b >0)的左顶点为M ,上顶点为N ,右焦点为F ,若NM→·NF →=0,则椭圆的离心率为( ) A.32 B .2-12 C.3-12D .5-12答案:D 解析:由题意知,M (-a,0),N (0,b ),F (c,0), ∴NM→=(-a ,-b ),NF →=(c ,-b ). ∵NM→·NF →=0, ∴-ac +b 2=0,即b 2=ac . 又知b 2=a 2-c 2,∴a 2-c 2=ac . ∴e 2+e -1=0,解得e =5-12或e =-5-12(舍去). ∴椭圆的离心率为5-12, 故选D.6.[2020安徽六安一中模拟]点P 在椭圆C 1:x 24+y 23=1上,C 1的右焦点为F ,点Q 在圆C 2:x 2+y 2+6x -8y +21=0上,则|PQ |-|PF |的最小值为( )A .42-4B .4-42C .6-25D .25-6答案:D 解析:设椭圆的左焦点为F 1, 则|PQ |-|PF |=|PQ |-(2a -|PF 1|)=|PQ |+|PF 1|-4, 故要求|PQ |-|PF |的最小值, 即求|PQ |+|PF 1|的最小值, 圆C 2的半径为2,所以|PQ |+|PF 1|的最小值等于|C 2F 1|-2=[-1-(-3)]2+(0-4)2-2=25-2,则|PQ |-|PF |的最小值为25-6,故选D.7.[2020山东临沂一模]已知点P 为椭圆x 2+2y 2=98上的一个动点,点A 的坐标为(0,5),则|P A |的最大值和最小值分别是________.答案:237和2 解析:设P (x 0,y 0),则|P A |=x 20+(y 0-5)2=x 20+y 20-10y 0+25.∵点P 为椭圆x 2+2y 2=98上的一个动点,∴x 20+2y 20=98,∴x 20=98-2y 20, ∴|P A |=98-2y 20+y 20-10y 0+25=-(y 0+5)2+148. ∵-7≤y 0≤7,∴当y 0=-5时,|P A |max =237; 当y 0=7时,|P A |min =2.8.设椭圆x 2a 2+y 2b 2=1(a >b >0)的左、右焦点分别为F 1,F 2,右顶点为A ,上顶点为B .已知|AB |=32|F 1F 2|.(1)求椭圆的离心率;(2)设P 为椭圆上异于其顶点的一点,以线段PB 为直径的圆经过点F 1,经过点F 2的直线l 与该圆相切于点M ,|MF 2|=22,求椭圆的方程.解:(1)设椭圆右焦点F 2的坐标为(c,0). 由|AB |=32|F 1F 2|,可得a 2+b 2=3c 2. 又b 2=a 2-c 2,则c 2a 2=12.所以椭圆的离心率e =22. (2)由(1)知,a 2=2c 2,b 2=c 2, 故椭圆方程为x 22c 2+y 2c 2=1.设P (x 0,y 0),因为F 1(-c,0),B (0,c ), 所以F 1P →=(x 0+c ,y 0),F 1B →=(c ,c ). 由已知,有F 1P →·F 1B →=0,即(x 0+c )c +y 0c =0. 又c ≠0,故有x 0+y 0+c =0.① 因为点P 在椭圆上,故x 202c 2+y 20c 2=1.② 由①和②可得3x 20+4cx 0=0.而点P 不是椭圆的顶点,故x 0=-43c , 代入①,得y 0=c3,即点P 的坐标为⎝ ⎛⎭⎪⎫-43c ,c 3.设圆的圆心为T (x 1,y 1).则x 1=-43c +02=-23c ,y 1=c3+c 2=23c , 进而圆的半径r =(x 1-0)2+(y 1-c )2=53c . 由已知,有|TF 2|2=|MF 2|2+r 2, 又|MF 2|=22,故有⎝ ⎛⎭⎪⎫c +23c 2+⎝ ⎛⎭⎪⎫0-23c 2=8+59c 2, 解得c 2=3.所以所求椭圆的方程为x 26+y 23=1.[强化训练]1.[2020湖北1月联考]已知椭圆C :y 2a 2+x 216=1(a >4)的离心率是33,则椭圆C 的焦距是( )A .22B .26C .42D .46答案:C 解析:由e =c a =33,得a =3c ,所以c 2=a 2-b 2=3c 2-16,所以c 2=8,因此焦距为2c =4 2.2.[2020浙江温州1月模拟]如图,设P 为椭圆C :x 2a 2+y 2b 2=1(a >b >0)上的动点,F 1,F 2分别为椭圆C 的左、右焦点,I 为△PF 1F 2的内心,则直线IF 1和直线IF 2的斜率之积( )A .是定值B .非定值,但存在最大值C .非定值,但存在最小值D .非定值,且不存在最值答案:A 解析:如图,连接PI 并延长交x 轴于点G ,由内角平分线定理,可得GI IP =F 1G PF 1,GI IP =F 2GPF 2,所以GI IP =F 1G +F 2G PF 1+PF 2=2c 2a =ca=e .设P (x 0,y 0),I (x I ,y I ),G (x G,0),则x 20a 2+y 20b 2=1, 所以a 2y 20a 2-x 20=b 2.由GI IP =c a ,得GI GP =GI GI +IP =y I y 0=c a +c ,故y I =cy 0a +c,由F 2G F 1G =PF 2PF 1,即c -x G x G +c =a -ex 0a +ex 0,得x G =e 2x 0.由GI IP =c a ,得GI GP =x I -x G x 0-x G =ca +c ,所以x I =ex 0.又kIF 1=y I x I +c ,kIF 2=y Ix I -c ,所以kIF 1·kIF 2=y 2Ix 2I -c 2=c 2y 20(a +c )2c 2a2x 20-c 2=1(a +c )2·a 2y 20x 20-a 2=-b 2(a +c )2. 所以直线IF 1和直线IF 2的斜率之积是定值.故选A.3.[2020福建福州一模]已知F 1,F 2为椭圆x 24+y 2=1的左、右焦点,P 是椭圆上异于顶点的任意一点,K 点是△F 1PF 2内切圆的圆心,过F 1作F 1M ⊥PK 于M ,O 是坐标原点,则|OM |的取值范围为( )A .(0,1)B .(0,2)C .(0,3)D .(0,23)答案:C 解析:如图,延长PF 2,F 1M 相交于N 点,∵K 点是△F 1PF 2内切圆的圆心, ∴PK 平分∠F 1PF 2,∵F 1M ⊥PK ,∴|PN |=|PF 1|,M 为F 1的N 中点, ∵O 为F 1F 2中点,M 为F 1N 的中点,∴|OM |=12|F 2N |=12||PN |-|PF 2|| =12||PF 1|-|PF 2||<12|F 1F 2|=c =3, ∴|OM |的取值范围为(0,3). 故选C.4.[2020安徽蚌埠一模]已知F 1,F 2是椭圆x 24+y 23=1的左、右焦点,点A 的坐标为⎝ ⎛⎭⎪⎫-1,32,则∠F 1AF 2的平分线所在直线的斜率为( ) A .-2 B .-1 C .-3D .-2答案:A 解析:解法一:∵F 1,F 2是椭圆x 24+y 23=1的左、右焦点,∴F 1(-1,0),F 2(1,0),又A ⎝ ⎛⎭⎪⎫-1,32,∴AF 1⊥x 轴, ∵|AF 1|=32,则|AF 2|=52,∴点F 2(1,0)关于l (∠F 1AF 2的平分线所在直线)对称的点F ′2在线段AF 1的延长线上,又|AF ′2|=|AF 2|=52,∴|F ′2F 1|=1,∴F ′2(-1,-1),线段F ′2F 2的中点坐标为⎝ ⎛⎭⎪⎫0,-12, ∴所求直线的斜率为32-⎝ ⎛⎭⎪⎫-12-1-0=-2.故选A.解法二:如图.设∠F 1AF 2的平分线交x 轴于点N , ∠F 1AN =β,∠ANF 2=α.∵tan 2β=|F 1F 2||AF 1|,∴232=43=2tan β1-tan 2β,∴tan β=12或-2(舍).在Rt △AF 1N 中,tan β=|F 1N ||AF 1|,即|F 1N |32=12,∴|F 1N |=34,∴k l =tan α=tan(π-∠ANF 1)=-tan ∠ANF 1 =-|AF 1||F 1N |=-3234=-2.故选A.5.[2020江西赣州模拟]已知A ,B 是椭圆E :x 2a 2+y 2b 2=1(a >b >0)上的两点,且A ,B 关于坐标原点对称,F 是椭圆的一个焦点,若△ABF 面积的最大值恰为2,则椭圆E 的长轴长的最小值为( )A .1B .2C .3D .4答案:D 解析:如图所示,设AB 的方程为ty =x ,F (c,0),A (x 1,y 1),B (x 2,y 2).联立⎩⎨⎧ty =x ,x 2a 2+y 2b 2=1可得y 2=a 2b 2b 2t 2+a2=-y 1y 2,∴△ABF 的面积S =12c |y 1-y 2| =12c (y 1+y 2)2-4y 1y 2=c a 2b 2b 2t 2+a 2≤cb ,当t =0时等号成立.∴bc =2.∴a 2=b 2+c 2≥2bc =4,a ≥2.∴椭圆E 的长轴长的最小值为4.故选D.6.已知△ABC 的顶点A (-4,0)和C (4,0),顶点B 在椭圆x 225+y 29=1上,则sin A +sin Csin B=________. 答案:54 解析:由题意知,A ,C 为椭圆的两个焦点, 由正弦定理,得sin A +sin C sin B=|BC |+|AB ||AC |=2a 2c =a c =54. 7.[2020山东烟台一模]已知F (2,0)为椭圆x 2a 2+y 2b 2=1(a >b >0)的右焦点,过F 且垂直于x 轴的弦长为6,若A (-2,2),点M 为椭圆上任一点,则|MF |+|MA |的最大值为________.答案:8+2 解析:设椭圆的左焦点为F ′, 由椭圆的右焦点为F (2,0),得c =2, 又过F 且垂直于x 轴的弦长为6,即2b 2a =6, 则a 2-c 2a =a 2-4a =3,解得a =4,所以|MF |+|MA |=8-|MF ′|+|MA |=8+|MA |-|MF ′|, 当M ,A ,F ′三点共线时,|MA |-|MF ′|取得最大值, (|MA |-|MF ′|)max =|AF ′|=2, 所以|MF |+|MA |的最大值为8+ 2.8.[2020河北保定一模]与圆C 1:(x +3)2+y 2=1外切,且与圆C 2:(x -3)2+y 2=81内切的动圆圆心P 的轨迹方程为________.答案:x 225+y 216=1 解析:设动圆的半径为r ,圆心为P (x ,y ), 则有|PC 1|=r +1,|PC 2|=9-r . 所以|PC 1|+|PC 2|=10>|C 1C 2|,即P 在以C 1(-3,0),C 2(3,0)为焦点,长轴长为10的椭圆上,得点P 的轨迹方程为x 225+y 216=1.9.已知椭圆C 的两个顶点分别为A (-2,0),B (2,0),焦点在x 轴上,离心率为32.(1)求椭圆C 的方程;(2)点D 为x 轴上一点,过D 作x 轴的垂线交椭圆C 于不同的两点M ,N ,过D 作AM 的垂线交BN 于点E ,求证:△BDE 与△BDN 的面积之比为4∶5.(1)解:设椭圆C 的方程为x 2a 2+y 2b 2=1(a >b >0).由题意,得⎩⎨⎧a =2,c a =32,解得c =3,所以b 2=a 2-c 2=1.所以椭圆C 的方程为x24+y 2=1.(2)证明:设M (m ,n ),则D (m,0),N (m ,-n ). 由题设知,m ≠±2,且n ≠0. 直线AM 的斜率k AM =nm +2,故直线DE 的斜率k DE =-m +2n .所以直线DE 的方程为y =-m +2n (x -m ), 直线BN 的方程为y =n2-m(x -2).联立⎩⎨⎧y =-m +2n (x -m ),y =n 2-m (x -2),得点E 的纵坐标y E =-n (4-m 2)4-m 2+n 2. 由点M 在椭圆C 上,得4-m 2=4n 2,所以y E =-45n .又S △BDE =12|BD |·|y E |=25|BD |·|n |,S △BDN =12|BD |·|n |,所以△BDE 与△BDN 的面积之比为4∶5.10.[2020云南曲靖模拟]已知椭圆C 的两个焦点分别为F 1(-3,0),F 2(3,0),且椭圆C 过点P ⎝⎛⎭⎪⎫1,32. (1)求椭圆C 的标准方程;(2)若与直线OP (O 为坐标原点)平行的直线交椭圆C 于A ,B 两点,当OA ⊥OB 时,求△AOB 的面积.解:(1)设椭圆C 的方程为x 2a 2+y 2b 2=1(a >b >0),由题意,得⎩⎨⎧ a 2-b 2=3,1a 2+34b 2=1,解得⎩⎪⎨⎪⎧a 2=4,b 2=1. 故椭圆C 的方程为x 24+y 2=1.(2)直线OP 的方程为y =32x ,设直线AB 的方程为y =32x +m ,A (x 1,y 1),B (x 2,y 2).将直线AB 的方程代入椭圆C 的方程并整理,得x 2+3mx +m 2-1=0,由Δ=3m 2-4(m 2-1)>0,得m 2<4,⎩⎪⎨⎪⎧x 1+x 2=-3m ,x 1x 2=m 2-1. 由OA ⊥OB ,得OA→·OB →=0, OA →·OB →=x 1x 2+y 1y 2=x 1x 2+⎝ ⎛⎭⎪⎫32x 1+m ⎝ ⎛⎭⎪⎫32x 2+m =74x 1x 2+32m (x 1+x 2)+m 2=74(m 2-1)+32m ·(-3m )+m 2 =54m 2-74=0,解得m 2=75.又|AB |=1+34(x 1+x 2)2-4x 1x 2=72·4-m 2,O 到直线AB 的距离d =|m |1+34=|m |72. 所以S △AOB =12|AB |·d =12×72×4-m 2×|m |72=9110.。
2020高中数学 2.1.1 椭圆及其标准方程(1)(含解析)

课时作业10 椭圆及其标准方程(1)知识点一椭圆的定义及简单应用1。
已知在平面直角坐标系中,点A(-3,0),B(3,0),点P为一动点,且|PA|+|PB|=2a(a≥0),给出下列说法:①当a=2时,点P的轨迹不存在;②当a=4时,点P的轨迹是椭圆,且焦距为3;③当a=4时,点P的轨迹是椭圆,且焦距为6;④当a=3时,点P的轨迹是以AB为直径的圆.其中正确的说法是()A.①②B.①③C.②③D.②④答案B解析当a=2时,2a=4<|AB|,故点P的轨迹不存在,①正确;当a=4时,2a=8>|AB|,故点P的轨迹是椭圆,且焦距为|AB|=6,②错误,③正确;当a=3时,点P的轨迹为线段AB,④错误.2.已知椭圆错误!+错误!=1上一点P到椭圆的一个焦点的距离为3,则点P到另一个焦点的距离为()A.2 B.3 C.5 D.7答案D解析由椭圆方程知a=5,根据椭圆定义有|PF1|+|PF2|=2a=10.若|PF1|=3,则|PF2|=7.3.设F1,F2是椭圆错误!+错误!=1的焦点,P为椭圆上一点,则△PF1F2的周长为()A.16 B.18 C.20 D.不确定答案B解析∵a=5,b=3,∴c=4又|PF1|+|PF2|=2a=10,|F1F2|=2c=8,∴△PF1F2的周长为|PF1|+|PF2|+|F1F2|=2a+2c=10+8=18,故选B。
知识点二求椭圆的标准方程4.写出适合下列条件的椭圆的标准方程.(1)a=5,c=2;(2)经过P1(错误!,1),P2(-错误!,-错误!)两点;(3)以椭圆9x2+5y2=45的焦点为焦点,且经过点M(2,6).解(1)由b2=a2-c2,得b2=25-4=21.∴椭圆的标准方程为错误!+错误!=1或错误!+错误!=1。
(2)解法一:①当焦点在x轴上时,设椭圆方程为错误!+错误!=1(a>b〉0).由已知,得错误!⇒错误!即所求椭圆的标准方程是错误!+错误!=1。
课时作业(二十五) 椭圆的标准方程

课时作业(二十五) 椭圆的标准方程[练基础]1.[2022·湖南长郡中学高二月考]椭圆x 225+y 2=1上一点P 到一个焦点的距离为2,则点P 到另一个焦点的距离为( )A .5B .6C .7D .82.椭圆C :x 2+y 2k=1的一个焦点是(0,2),则k 的值是( ) A .5 B .3C .9D .253.[2022·湖南邵东一中高二期中]2<m <6是方程x 2m -2 +y 26-m=1表示椭圆的( ) A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件4.[2022·湖南长沙一中高二期中]过点A (3,-2)且与椭圆x 29 +y 24=1有相同焦点的椭圆的方程为( )A .x 215 +y 210 =1B .x 225 +y 220=1 C .x 210 +y 215 =1 D .x 220 +y 215=1 5.[2022·湖南衡阳高二期末]P 为椭圆C :x 217 +y 213=1上一动点,F 1,F 2分别为左、右焦点,延长F 1P 至点Q ,使得|PQ |=|PF 2|,则动点Q 的轨迹方程为( )A .(x +2)2+y 2=34B .(x +2)2+y 2=68C .(x -2)2+y 2=34D .(x -2)2+y 2=686.(多选)将一个椭圆绕其对称中心旋转90°,若所得椭圆的两顶点恰好是旋转前椭圆的两焦点,则称该椭圆为“对偶椭圆”.下列椭圆的方程中,是“对偶椭圆”的方程的是( )A .x 28 +y 24 =1B .x 23 +y 25=1 C .x 26 +y 23 =1 D .x 26 +y 29=1 7.在△ABC 中,点A (-3,0),B (3,0),点C 在椭圆x 225 +y 216=1上,则△ABC 的周长为________.8.已知椭圆中心在坐标原点,焦点在x 轴上,椭圆与x 轴的一个交点到两焦点的距离分别为3和1,则椭圆的标准方程为________,其焦点坐标为________.9.求满足下列条件的椭圆的标准方程.(1)两个焦点的坐标分别为F 1(-2,0),F 2(2,0),并且椭圆经过点(52 ,-32). (2)已知椭圆C :x 2a 2 +y 2b 2 =1(a >b >0),四点P 1(1,1),P 2(0,1),P 3(-1,32),P 4(1,32)中恰有三点在椭圆C 上,求C 的方程.[提能力]10.[2022·湖南临澧一中高二期中]已知点A (4,0)和B (2,2),M 是椭圆x 225 +y 29=1上动点,则|MA |+|MB |最大值是( )A .10+210B .10+42C .10+43D .10+21111.[2022·山东师范大学附中高二期中](多选)设椭圆C :x 27 +y 216=1的焦点为F 1、F 2,M 在椭圆上,则( )A .|MF 1|+|MF 2|=8B .|MF 1|的最大值为7,最小值为1C .|MF 1||MF 2|的最大值为16D .△MF 1F 2面积的最大值为1012.已知椭圆x2sin α-y2cos α=1(0≤α<2π)的焦点在y轴上,则α的取值范围是________.13.已知椭圆x212+y26=1的左、右焦点为F1、F2,P在椭圆上,且△PF1F2是直角三角形,这样的P点有________个.14.已知圆M:(x+3)2+y2=64圆心为M,定点N(3,0),动点A在圆M上,线段AN 的垂直平分线交线段MA于点P(1)求动点P的轨迹C的方程;(2)若点Q是曲线C上一点,且∠QMN=60°,求△QMN的面积.[培优生]15.设AB是椭圆x2a2+y2b2=1(a>b>0)的长轴,若把AB一百等分,过每个分点作AB的垂线,交椭圆的上半部分于P1、P2、…、P99 ,F1为椭圆的左焦点,则|F1A|+|F1P1|+|F1P2|+…+|F1P99|+|F1B|的值是()A.98a B.99aC.100a D.101a。
第二课时椭圆的定义及标准方程的应用(导学案,教师版,带答案)

第二课时椭圆的定义及标准方程的应用考点一利用椭圆的定义求轨迹方程如图,圆C:(x+1)2+y2=16及点A(1,0),Q为圆上一点,AQ的垂直平分线交CQ于M,求点M的轨迹方程.[自主解答]由垂直平分线性质可知|MQ|=|MA|,∴|CM|+|MA|=|CM|+|MQ|=|CQ|.∴|CM|+|MA|=4.又|AC|=2,∴M点轨迹为椭圆.由椭圆的定义知:a=2,c=1,∴b2=a2-c2=3.∴所求轨迹方程为:x24+y23=1.——————————————————用定义法求椭圆方程的基本思路是:首先分析几何图形所揭示的几何关系,判断动点的轨迹是椭圆,然后根据题中条件求出a,b的值,直接由椭圆标准方程写出即可.——————————————————————————————————————1.已知B、C是两个定点,|BC|=8,且△ABC的周长等于18,求这个三角形顶点A的轨迹方程.解:以过B、C两点的连线为x轴,线段BC的垂直平分线为y轴,建立直角坐标系xOy,如图.由|BC|=8,可知点B (-4,0),C (4,0).由|AB |+|AC |+|BC |=18,得|AB |+|AC |=10,因此,点A 的轨迹是以B 、C 为焦点的椭圆,但点A 不在x 轴上,由a =5,c =4,得b 2=a 2-c 2=25-16=9,所以点A 的轨迹方程为x 225+y 29=1(y ≠0).考点二用相关点法求与椭圆有关的轨迹方程已知圆x 2+y 2=9,从这个圆上任意一点P 向x 轴作垂线段PP ′,点M 在PP ′上,并且PM ―→=2MP ′―→,求点M 的轨迹方程.[自主解答] 设点M 的坐标为(x ,y ),点P 的坐标为(x 0,y 0),则x 0=x ,y 0=3y . 因为P (x 0,y 0)在圆x 2+y 2=9上,所以x 20+y 20=9.将x 0=x ,y 0=3y 代入,得x 2+9y 2=9,即M 的轨迹方程为x 29+y 2=1.若将“点M 在PP ′上,并且PM ―→=2MP ′―→”改为“点M 在直线PP ′上,并且P ′M ―→=λP ′P ―→ (λ>0)”,则M 点的轨迹是什么?解:设M (x ,y ),P (x 0,y 0),∵PP ′⊥x 轴,且P ′M ―→=λP ′P ―→,∴x =x 0,y =λy 0,即x 0=x ,y 0=1λy .∵点P (x 0,y 0)在圆x 2+y 2=9上,∴x 20+y 20=9.把x 0=x ,y 0=1λy 代入上式得,x 29+y 29λ2=1.当0<λ<1时,点M 的轨迹是焦点在x 轴上的椭圆; 当λ=1时,点M 的轨迹是圆;当λ>1时,点M 的轨迹是焦点在y 轴上的椭圆.——————————————————已知P 的轨迹方程,求M 的轨迹方程的步骤是先设出点P 和M 的坐标,根据条件写出P 点与M 点的坐标之间的关系,然后用M 点的坐标表示P 点的坐标,并代入P 点的坐标所满足的方程,整理即得M 的轨迹方程.动点M 与曲线上的点P 称为相关点(有关系的两点),这种求轨迹方程的方法称为相关点法(代入法).——————————————————————————————————————2.已知圆C 的方程为x 2+y 2=4,过圆C 上的一动点M 作平行于x 轴的直线m ,设m 与y 轴的交点为N ,若向量OQ ―→=OM ―→+ON ―→,求动点Q 的轨迹方程.解:设点Q 的坐标为(x ,y ),点M 的坐标为(x 0,y 0)(y 0≠0),则点N 的坐标为(0,y 0). 因为OQ ―→=OM ―→+ON ―→, 即(x ,y )=(x 0,y 0)+(0,y 0)=(x 0,2y 0),则x 0=x ,y 0=y2.又点M 在圆C 上,所以x 20+y 20=4,即x 2+y 24=4(y ≠0).所以动点Q 的轨迹方程是x 24+y 216=1(y ≠0).考点三与焦点有关的三角形问题如图所示,P 是椭圆x 24+y 23=1上的一点,F 1、F 2为椭圆的左、右焦点,且∠PF 1F 2=120°,求△PF 1F 2的面积.[自主解答] 由已知a =2,b =3, 所以c =a 2-b 2=4-3=1,|F 1F 2|=2c =2.在△PF 1F 2中,由余弦定理,得|PF 2|2=|PF 1|2+|F 1F 2|2-2|PF 1||F 1F 2|·cos 120°, 即|PF 2|2=|PF 1|2+4+2|PF 1|, ① 由椭圆定义,得|PF 1|+|PF 2|=4, 即|PF 2|=4-|PF 1|. ②②代入①解得|PF 1|=65.∴S △PF 1F 2=12|PF 1|·|F 1F 2|·sin 120°=12×65×2×32=335. 即△PF 1F 2的面积是335.若将“∠PF 1F 2=120°”改为“∠F 1PF 2=60°”,其它条件不变,如何求解? 解:由已知a =2,b =3, ∴c =a 2-b 2=4-3=1.∴|F 1F 2|=2c =2,在△PF 1F 2中,|F 1F 2|2=|PF 1|2+|PF 2|2-2|PF 1||PF 2|·cos 60°,∴4=(|PF 1|+|PF 2|)2-2|PF 1||PF 2|-2|PF 1|·|PF 2|cos 60°. ∴4=16-3|PF 1||PF 2|. ∴|PF 1||PF 2|=4.∴S △PF 1F 2=12|PF 1||PF 2|·sin 60°=12×4×32= 3.—————————————————— 在解焦点三角形的有关问题时,一般地利用两个关系式: (1)由椭圆的定义可得|PF 1|,|PF 2|的关系式;(2)利用正余弦定理或勾股定理可得|PF 1|,|PF 2|的关系式,然后求解得|PF 1|,|PF 2|,有时也根据需要,把|PF 1|+|PF 2|,|PF 1|-|PF 2|,|PF 1|·|PF 2|等看成一个整体来处理.——————————————————————————————————————3.设F 1、F 2为椭圆x 29+y 24=1的两个焦点,P 为椭圆上一点,已知△PF 1F 2为直角三角形,且|PF 1|>|PF 2|,求|PF 1||PF 2|的值.解:由已知|PF 1|+|PF 2|=6,|F 1F 2|=2 5. 根据直角位置不同,分两种情况:①若∠PF 2F 1=90°,则⎩⎪⎨⎪⎧ |PF 1|2=|PF 2|2+20,|PF 1|+|PF 2|=6,∴有⎩⎨⎧|PF 1|=143,|PF 2|=43,∴|PF 1||PF 2|=72. ②若∠F 1PF 2=90°,则⎩⎪⎨⎪⎧20=|PF 1|2+|PF 2|2,|PF 1|+|PF 2|=6,解得|PF 1|=4,|PF 2|=2. ∴|PF 1||PF 2|=2. 综上所述,|PF 1||PF 2|的值为72或2.解题高手 妙解题 同样的结果,不一样的过程,节省解题时间,也是得分!已知椭圆x 2a 2+y 2b2=1(a >b >0)与x 轴的交点为A 1,A 2,P 是椭圆上任一点,F 是它的一个焦点,证明:以线段PF 为直径的圆与以线段A 1A 2为直径的圆相切.[巧思] 判断两圆的位置关系,即判断两圆的圆心距与两圆的半径之间的关系.若M 为PF 的中点,则圆心距为|OM |.[妙解] 由椭圆方程x 2a 2+y 2b2=1(a >b >0)知,以线段A 1A 2为直径的圆为x 2+y 2=a 2.设F 1是椭圆的另外一个焦点,点M 是线段PF 的中点,则|MO |=12|PF 1|=12(2a -|PF |)=a -12|PF |.即以线段A 1A 2为直径的圆(圆心为O )与以线段PF 为直径的圆(圆心为M )的圆心距等于两圆的半径之差,于是两圆相切.1.到两定点F 1(-4,0),F 2(4,0)的距离之和为8的点的轨迹是( )A .椭圆B .线段C .圆D .直线解析:到两定点距离之和恰好等于两定点间的距离,故为线段. 答案:B2.“m >0且n >0”是“方程mx 2+ny 2=1表示椭圆”的 ( )A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分又不必要条件解析:当m >0且n >0时,方程mx 2+ny 2=1,也可能表示圆;当方程mx 2+ny 2=1表示椭圆时一定有m >0,n >0.答案:B3.已知椭圆x 210-m +y 2m -2=1,焦点在y 轴上,若焦距为4,则m 等于 ( )A .4B .5C .7D .8解析:∵焦距为4,∴2c =4,c =2, ∴m -2-(10-m )=c 2=4,∴2m -12=4,m =8. 答案:D4.椭圆x 29+y 22=1的焦点为F 1,F 2,点P 在椭圆上.若|PF 1|=4,则|PF 2|=________,∠F 1PF 2的大小为________.解析:由|PF 1|+|PF 2|=6,且|PF 1|=4知|PF 2|=2, 在△PF 1F 2中,cos ∠F 1PF 2=|PF 1|2+|PF 2|2-|F 1F 2|22|PF 1||PF 2|=-12.∴∠F 1PF 2=120°.答案:2 120°5.若P 为椭圆x 29+y 25=1上任意一点,F 1,F 2的坐标分别为F 1(-2,0),F 2(2,0),则|PF 1|·|PF 2|的最大值为________.解析:由题意知F 1,F 2是椭圆的两个焦点,于是|PF 1|+|PF 2|=6,|PF 1|·|PF 2|≤⎝⎛⎭⎪⎫|PF 1|+|PF 2|22=9∴当且仅当|PF 1|=|PF 2|=3时,|PF 1|·|PF 2|取最大值9.答案:96.已知动圆M 过定点A (-3,0),并且在定圆B :(x -3)2+y 2=64的内部与其相内切,求动圆圆心M 的轨迹方程.解:设动圆M 和定圆B 内切于点C ,动圆圆心M 到两定点A (-3,0),B (3,0)的距离之和恰好又等于定圆的半径,即|MA |+|MB |=|MC |+|MB |=|BC |=8,∴动圆圆心M 的轨迹是以A 、B 为焦点的椭圆, 且2a =8,2c =6,b =a 2-c 2=7. ∴动圆圆心的轨迹方程是x 216+y 27=1.一、选择题1.已知P 为椭圆C 上一点,F 1,F 2为椭圆的焦点,且|F 1F 2|=23,若|PF 1|与|PF 2|的等差中项为|F 1F 2|,则椭圆C的标准方程为( )A.x 212+y 29=1B.x 212+y 29=1或x 29+y 212=1 C.x 29+y 212=1 D.x 248+y 245=1或x 245+y 248=1 解析:由已知2c =|F 1F 2|=23, ∴c = 3.又2a =|PF 1|+|PF 2|=2|F 1F 2|=43,∴a =2 3.∴b 2=a 2-c 2=9.故椭圆C 的标准方程是x 212+y 29=1或x 29+y 212=1.答案:B2.设集合A ={1,2,3,4},m ,n ∈A ,则方程x 2m +y 2n=1表示焦点在x 轴上的椭圆的个数是 ( )A .6B .8C .12D .16解析:由题意知m >n . 当m =2时,n =1, 当m =3时,n =1,2, 当m =4时,n =1,2,3, ∴共有6个.答案:A3.若椭圆x 216+y 2m=1的焦距为6,则m的值为( )A .7B .7或25C .25 D.7或5解析:①设a 2=16,b 2=m ,∴c 2=16-m ,∴16-m =9,∴m =7;②设a 2=m ,b 2=16,则c 2=m -16,∴m -16=9,∴m =25.答案:B4.已知圆x 2+y 2=1,从这个圆上任意一点P 向y 轴作垂线,垂足为P ′,则PP ′的中点M 的轨迹方程是 ( )A .4x 2+y 2=1B .x 2+y 214=1C.x 24+y 2=1 D .x 2+y 24=1解析:设点M 的坐标为(x ,y ),点P 的坐标为(x 0,y 0),则x =x 02,y =y 0.∵P (x 0,y 0)在圆x 2+y 2=1上,∴x 20+y 20=1.①将x 0=2x ,y 0=y 代入方程①,得4x 2+y 2=1. 答案:A 二、填空题5.在平面直角坐标系xOy 中,已知△ABC 的顶点A (-4,0)和C (4,0),顶点B 在椭圆x 225+y 29=1上,则sin A +sin C sin B=________. 解析:由椭圆方程x 225+y 29=1知,a =5,b =3,∴c =4,即点A (-4,0)和C (4,0)是椭圆的焦点.又点B 在椭圆上,∴|BA |+|BC |=2a =10,且|AC |=8.于是,在△ABC 中,由正弦定理,得sin A +sin C sin B =|BC |+|BA ||AC |=54.答案:546.椭圆的两焦点为F 1(-4,0)、F 2(4,0),点P 在椭圆上,若△PF 1F 2的面积最大为12,则椭圆方程为________.解析:如图,当P 在y 轴上时△PF 1F 2面积最大, ∴12×8b =12,∴b =3, 又∵c =4, ∴a 2=b 2+c 2=25.∴椭圆的标准方程为x 225+y 29=1.答案:x 225+y 29=17.椭圆x 225+y 29=1上的一点M 到左焦点F 1的距离为2,N 是MF 1的中点,则|ON |等于________.解析:如图,设椭圆的右焦点为F 2,则由|MF 1|+|MF 2|=10,知|MF 2|=10-2=8.又因为点O 为F 1F 2的中点,点N 为MF 1的中点,所以|ON |=12|MF 2|=4.答案:48.椭圆x 24+y 2=1的两个焦点为F 1,F 2,过F 1作垂直于x 轴的直线与椭圆相交,一个交点为P ,则|PF 2|=________.解析:由椭圆的方程可知F 1的坐标为(-3,0), 设P (-3,y ),把P (-3,y )代入椭圆的方程中,得|y |=12,即|PF 1|=12.根据椭圆的定义,得|PF 1|+|PF 2|=4,故|PF 2|=4-|PF 1|=4-12=72.答案:72三、解答题 9.如图,设P 是圆x 2+y 2=25上的动点,点D 是P 在x 轴上的投影,M 为PD 上一点,且|MD |=45|PD |.当P 在圆上运动时,求点M 的轨迹C 的方程,并判断此曲线的类型.解:设M 的坐标为(x ,y ),P 的坐标为(x P ,y P ),由已知得⎩⎪⎨⎪⎧x P =x ,y P =54y ,∵P 在圆上, ∴x 2+⎝⎛⎭⎫54y 2=25,即C 的方程为x 225+y 216=1.该曲线表示椭圆.10.在直线l :x -y +9=0上取一点P ,过点P 以椭圆x 212+y 23=1的焦点为焦点作椭圆.(1)P 点在何处时,所求椭圆长轴最短; (2)求长轴最短时的椭圆方程.解:(1)由题意知椭圆两焦点坐标分别为F 1(-3,0)、F 2(3,0).设点F 1(-3,0)关于直线l 的对称点F ′1的坐标为(x 0,y 0),则⎩⎪⎨⎪⎧y 0x 0+3=-1,x 0-32-y 02+9=0,解得⎩⎪⎨⎪⎧x 0=-9,y 0=6,∴F ′1(-9,6).则过F ′1和F 2的直线方程为y -6-6=x +93+9,整理得x +2y -3=0联立⎩⎪⎨⎪⎧ x +2y -3=0,x -y +9=0,解得⎩⎪⎨⎪⎧x =-5,y =4,即P 点坐标为(-5,4)(2)由(1)知2a =|F ′1F |=180, ∴a 2=45. ∵c =3, ∴b 2=a 2-c 2=36.∴所求椭圆的方程为x 245+y 236=1.。
《椭圆》方程典型例题20例(含实用标准问题详解)

《椭圆》方程典型例题20例典型例题一例1 椭圆的一个顶点为()02,A ,其长轴长是短轴长的2倍,求椭圆的标准方程.分析:题目没有指出焦点的位置,要考虑两种位置.解:(1)当()02,A 为长轴端点时,2=a ,1=b , 椭圆的标准方程为:11422=+y x ; (2)当()02,A 为短轴端点时,2=b ,4=a , 椭圆的标准方程为:116422=+y x ; 说明:椭圆的标准方程有两个,给出一个顶点的坐标和对称轴的位置,是不能确定椭圆的横竖的,因而要考虑两种情况.典型例题二例2 一个椭圆的焦点将其准线间的距离三等分,求椭圆的离心率.解:31222⨯⨯=c a c ∴223a c =, ∴3331-=e . 说明:求椭圆的离心率问题,通常有两种处理方法,一是求a ,求c ,再求比.二是列含a 和c 的齐次方程,再化含e 的方程,解方程即可.典型例题三 例3 已知中心在原点,焦点在x 轴上的椭圆与直线01=-+y x 交于A 、B 两点,M 为AB 中点,OM 的斜率为0.25,椭圆的短轴长为2,求椭圆的方程.解:由题意,设椭圆方程为1222=+y ax ,由⎪⎩⎪⎨⎧=+=-+101222y ax y x ,得()021222=-+x a x a , ∴222112a a x x x M +=+=,2111a x y M M +=-=,4112===ax y k M M OM ,∴42=a , ∴1422=+y x 为所求. 说明:(1)此题求椭圆方程采用的是待定系数法;(2)直线与曲线的综合问题,经常要借用根与系数的关系,来解决弦长、弦中点、弦斜率问题.典型例题四例4椭圆192522=+y x 上不同三点()11y x A ,,⎪⎭⎫⎝⎛594,B ,()22y x C ,与焦点()04,F 的距离成等差数列.(1)求证821=+x x ;(2)若线段AC 的垂直平分线与x 轴的交点为T ,求直线BT 的斜率k . 证明:(1)由椭圆方程知5=a ,3=b ,4=c . 由圆锥曲线的统一定义知:ac x ca AF =-12, ∴ 11545x ex a AF -=-=.同理 2545x CF -=.∵ BF CF AF 2=+,且59=BF , ∴ 51854554521=⎪⎭⎫ ⎝⎛-+⎪⎭⎫ ⎝⎛-x x ,即 821=+x x .(2)因为线段AC 的中点为⎪⎭⎫⎝⎛+2421y y ,,所以它的垂直平分线方程为()42212121---=+-x y y x x y y y . 又∵点T 在x 轴上,设其坐标为()00,x ,代入上式,得 ()212221024x x y y x --=-又∵点()11y x A ,,()22y x B ,都在椭圆上,∴ ()212125259x y -=()222225259x y -= ∴ ()()21212221259x x x x y y -+-=-.将此式代入①,并利用821=+x x 的结论得 253640-=-x ∴ 4540590=--=x k BT.典型例题五例5 已知椭圆13422=+yx ,1F 、2F 为两焦点,问能否在椭圆上找一点M ,使M 到左准线l 的距离MN 是1MF 与2MF 的等比中项?若存在,则求出点M 的坐标;若不存在,请说明理由.解:假设M 存在,设()11y x M ,,由已知条件得2=a ,3=b ,∴1=c ,21=e . ∵左准线l 的方程是4-=x , ∴14x MN +=. 又由焦半径公式知:111212x ex a MF -=-=, 112212x ex a MF +=+=.∵212MF MF MN ⋅=,∴()⎪⎭⎫ ⎝⎛+⎪⎭⎫ ⎝⎛-=+11212122124x x x .整理得048325121=++x x .解之得41-=x 或5121-=x . ① 另一方面221≤≤-x . ②则①与②矛盾,所以满足条件的点M 不存在. 说明:(1)利用焦半径公式解常可简化解题过程.(2)本例是存在性问题,解决存在性问题,一般用分析法,即假设存在,根据已知条件进行推理和运算.进而根据推理得到的结果,再作判断.(3)本例也可设()θθsin 3cos 2,M 存在,推出矛盾结论(读者自己完成).典型例题六例6 已知椭圆1222=+y x ,求过点⎪⎭⎫⎝⎛2121,P 且被P 平分的弦所在的直线方程.分析一:已知一点求直线,关键是求斜率,故设斜率为k ,利用条件求k . 解法一:设所求直线的斜率为k ,则直线方程为⎪⎭⎫ ⎝⎛-=-2121x k y .代入椭圆方程,并整理得()()0232122212222=+-+--+k k x k kx k .由韦达定理得22212122k kk x x +-=+.∵P 是弦中点,∴121=+x x .故得21-=k .所以所求直线方程为0342=-+y x .分析二:设弦两端坐标为()11y x ,、()22y x ,,列关于1x 、2x 、1y 、2y 的方程组,从而求斜率:2121x x y y --. 解法二:设过⎪⎭⎫⎝⎛2121,P 的直线与椭圆交于()11y x A ,、()22y x B ,,则由题意得⎪⎪⎪⎩⎪⎪⎪⎨⎧=+=+=+=+④1.③1②12①12212122222121y y x x y x y x ,,, ①-②得0222212221=-+-y y x x . ⑤ 将③、④代入⑤得212121-=--x x y y ,即直线的斜率为21-. 所求直线方程为0342=-+y x .说明:(1)有关弦中点的问题,主要有三种类型:过定点且被定点平分的弦;平行弦的中点轨迹;过定点的弦中点轨迹.(2)解法二是“点差法”,解决有关弦中点问题的题较方便,要点是巧代斜率.(3)有关弦及弦中点问题常用的方法是:“韦达定理应用”及“点差法”.有关二次曲线问题也适用.典型例题七例7 求适合条件的椭圆的标准方程.(1)长轴长是短轴长的2倍,且过点()62-,; (2)在x 轴上的一个焦点与短轴两端点的联机互相垂直,且焦距为6.分析:当方程有两种形式时,应分别求解,如(1)题中由12222=+b y a x 求出1482=a ,372=b ,在得方程13714822=+y x 后,不能依此写出另一方程13714822=+x y .解:(1)设椭圆的标准方程为12222=+b y a x 或12222=+bx a y .由已知b a 2=. ①又过点()62-,,因此有 ()1622222=-+b a 或()1262222=+-ba . ② 由①、②,得1482=a ,372=b 或522=a ,132=b .故所求的方程为13714822=+y x 或1135222=+x y .(2)设方程为12222=+b y a x .由已知,3=c ,3==c b ,所以182=a .故所求方程为191822=+y x . 说明:根据条件求椭圆的标准方程的思路是“选标准,定参数”.关键在于焦点的位置是否确定,若不能确定,应设方程12222=+b y a x 或12222=+bx a y .典型例题八例8 椭圆1121622=+y x 的右焦点为F ,过点()31,A ,点M 在椭圆上,当MF AM 2+为最小值时,求点M 的坐标.分析:本题的关键是求出离心率21=e ,把MF 2转化为M 到右准线的距离,从而得最小值.一般地,求MF eAM 1+均可用此法. 解:由已知:4=a ,2=c .所以21=e ,右准线8=x l :.过A 作l AQ ⊥,垂足为Q ,交椭圆于M ,故MF MQ 2=.显然MF AM 2+的最小值为AQ ,即M 为所求点,因此3=M y ,且M 在椭圆上.故32=M x .所以()332,M .说明:本题关键在于未知式MF AM 2+中的“2”的处理.事实上,如图,21=e ,即MF 是M 到右准线的距离的一半,即图中的MQ ,问题转化为求椭圆上一点M ,使M 到A 的距离与到右准线距离之和取最小值.典型例题九 例9 求椭圆1322=+y x 上的点到直线06=+-y x 的距离的最小值.分析:先写出椭圆的参数方程,由点到直线的距离建立三角函数关系式,求出距离的最小值.解:椭圆的参数方程为⎩⎨⎧==.sin cos 3θθy x ,设椭圆上的点的坐标为()θθsin cos 3,,则点到直线的距离为263sin 226sin cos 3+⎪⎭⎫⎝⎛-=+-=θπθθd . 当13sin -=⎪⎭⎫⎝⎛-θπ时,22=最小值d .说明:当直接设点的坐标不易解决问题时,可建立曲线的参数方程.典型例题十 例10设椭圆的中心是坐标原点,长轴在x 轴上,离心率23=e ,已知点⎪⎭⎫ ⎝⎛230,P 到这个椭圆上的点的最远距离是7,求这个椭圆的方程,并求椭圆上的点P 的距离等于7的点的坐标.分析:本题考查椭圆的性质、距离公式、最大值以及分析问题的能力,在求d 的最大值时,要注意讨论b 的取值范围.此题可以用椭圆的标准方程,也可用椭圆的参数方程,要善于应用不等式、平面几何、三角等知识解决一些综合性问题,从而加强等价转换、形数结合的思想,提高逻辑推理能力.解法一:设所求椭圆的直角坐标方程是12222=+b y a x ,其中0>>b a 待定.由222222221ab a b a ac e -=-==可得 2143112=-=-=e a b ,即b a 2=. 设椭圆上的点()y x ,到点P 的距离是d ,则4931232222222+-+⎪⎪⎭⎫ ⎝⎛-=⎪⎭⎫ ⎝⎛-+=y y b y a y x d 34213493342222++⎪⎭⎫ ⎝⎛+-=+--=b y y y b其中b y b ≤≤-. 如果21<b ,则当b y -=时,2d (从而d )有最大值. 由题设得()22237⎪⎭⎫ ⎝⎛+=b ,由此得21237>-=b ,与21<b 矛盾.因此必有21≥b 成立,于是当21-=y 时,2d (从而d )有最大值. 由题设得()34722+=b,可得1=b ,2=a .∴所求椭圆方程是11422=+y x . 由21-=y 及求得的椭圆方程可得,椭圆上的点⎪⎭⎫ ⎝⎛--213,,点⎪⎭⎫ ⎝⎛-213,到点⎪⎭⎫⎝⎛230,P 的距离是7.解法二:根据题设条件,可取椭圆的参数方程是⎩⎨⎧==θθsin cos b y a x ,其中0>>b a ,待定,πθ20≤≤,θ为参数.由22222221⎪⎭⎫⎝⎛-=-==a b a b a a c e 可得 2143112=-=-=e a b ,即b a 2=. 设椭圆上的点()y x ,到点⎪⎭⎫⎝⎛230,P 的距离为d ,则22222223sin cos 23⎪⎭⎫ ⎝⎛-+=⎪⎭⎫ ⎝⎛-+=θθb a y x d49sin 3sin 34222+--=θθb b b 3421sin 3222++⎪⎭⎫ ⎝⎛+-=b b b θ如果121>b ,即21<b ,则当1sin -=θ时,2d (从而d )有最大值.由题设得()22237⎪⎭⎫ ⎝⎛+=b ,由此得21237>-=b ,与21<b 矛盾,因此必有121≤b成立. 于是当b21sin -=θ时2d (从而d )有最大值. 由题设知()34722+=b,∴1=b ,2=a .∴所求椭圆的参数方程是⎩⎨⎧==θθsin cos 2y x .由21sin -=θ,23cos ±=θ,可得椭圆上的是⎪⎭⎫ ⎝⎛--213,,⎪⎭⎫ ⎝⎛-213,.典型例题十一例11 设x ,R ∈y ,x y x 63222=+,求x y x 222++的最大值和最小值.分析:本题的关键是利用形数结合,观察方程x y x 63222=+与椭圆方程的结构一致.设m x y x =++222,显然它表示一个圆,由此可以画出图形,考虑椭圆及圆的位置关系求得最值.解:由x y x 63222=+,得123492322=+⎪⎪⎪⎪⎭⎫ ⎝⎛-y x 可见它表示一个椭圆,其中心在⎪⎭⎫⎝⎛023,点,焦点在x 轴上,且过(0,0)点和(3,0)点.设m x y x =++222,则 ()1122+=++m y x它表示一个圆,其圆心为(-1,0)半径为()11->+m m .在同一坐标系中作出椭圆及圆,如图所示.观察图形可知,当圆过(0,0)点时,半径最小,即11=+m ,此时0=m ;当圆过(3,0)点时,半径最大,即41=+m ,∴15=m .∴x y x 222++的最小值为0,最大值为15.典型例题十二例12 已知椭圆()012222>>=+b a by a x C :,A 、B 是其长轴的两个端点.(1)过一个焦点F 作垂直于长轴的弦P P ',求证:不论a 、b 如何变化,120≠∠APB .(2)如果椭圆上存在一个点Q ,使 120=∠A Q B ,求C 的离心率e 的取值范围.分析:本题从已知条件出发,两问都应从APB ∠和AQB ∠的正切值出发做出估计,因此要从点的坐标、斜率入手.本题的第(2)问中,其关键是根据什么去列出离心率e 满足的不等式,只能是椭圆的固有性质:a x ≤,b y ≤,根据120=∠AQB 得到32222-=-+a y x ay ,将22222y ba a x -=代入,消去x ,用a 、b 、c 表示y ,以便利用b y ≤列出不等式.这里要求思路清楚,计算准确,一气呵成.解:(1)设()0,c F ,()0,a A -,()0,a B . ⎪⎪⎭⎫⎝⎛⇒⎩⎨⎧=+=a b c P b a y a x b c x 2222222, 于是()a c a b k AP+=2,()a c ab k BP -=2.∵APB ∠是AP 到BP 的角.∴()()()2222242221tan ca a c ab ac a b a c a b APB -=-++--=∠ ∵22c a > ∴2tan -<∠APB故3tan -≠∠APB ∴ 120≠∠APB . (2)设()y x Q ,,则a x y k QA +=,ax y k QB -=. 由于对称性,不妨设0>y ,于是AQB ∠是QA 到QB 的角.∴22222221tan a y x ay a x y a x ya x y AQB -+=-++--=∠∵ 120=∠AQB , ∴32222-=-+ay x ay整理得()023222=+-+ay a y x∵22222y ba a x -=∴0213222=+⎪⎪⎭⎫ ⎝⎛-ay y b a∵0≠y , ∴2232c ab y = ∵b y ≤, ∴b c ab ≤2232 232c ab ≤,()222234c c a a ≤-∴04444224≥-+a c a c ,044324≥-+e e ∴232≥e 或22-≤e (舍),∴136<≤e .典型例题十三例13 已知椭圆19822=++y k x 的离心率21=e ,求k 的值. 分析:分两种情况进行讨论.解:当椭圆的焦点在x 轴上时,82+=k a ,92=b ,得12-=k c .由21=e ,得4=k .当椭圆的焦点在y 轴上时,92=a ,82+=k b ,得k c -=12.由21=e ,得4191=-k ,即45-=k . ∴满足条件的4=k 或45-=k .说明:本题易出现漏解.排除错误的办法是:因为8+k 与9的大小关系不定,所以椭圆的焦点可能在x 轴上,也可能在y 轴上.故必须进行讨论.典型例题十四例14 已知椭圆142222=+by b x 上一点P 到右焦点2F 的距离为b )1(>b ,求P 到左准线的距离.分析:利用椭圆的两个定义,或利用第二定义和椭圆两准线的距离求解.解法一:由142222=+by b x ,得b a 2=,b c 3=,23=e .由椭圆定义,b a PF PF 4221==+,得b b b PF b PF 34421=-=-=. 由椭圆第二定义,e d PF =11,1d 为P 到左准线的距离,∴b ePF d 3211==,即P 到左准线的距离为b 32. 解法二:∵e d PF =22,2d 为P 到右准线的距离,23==a c e , ∴b ePF d 33222==.又椭圆两准线的距离为b c a 33822=⋅. ∴P 到左准线的距离为b b b 32332338=-. 说明:运用椭圆的第二定义时,要注意焦点和准线的同侧性.否则就会产生误解.椭圆有两个定义,是从不同的角度反映椭圆的特征,解题时要灵活选择,运用自如.一般地,如遇到动点到两个定点的问题,用椭圆第一定义;如果遇到动点到定直线的距离问题,则用椭圆的第二定义.典型例题十五例15 设椭圆⎩⎨⎧==.sin 32,cos 4ααy x (α为参数)上一点P 与x 轴正向所成角3π=∠POx ,求P 点坐标.分析:利用参数α与POx ∠之间的关系求解.解:设)sin 32,cos 4(ααP ,由P 与x 轴正向所成角为3π, ∴ααπcos 4sin 323tan=,即2tan =α.而0sin >α,0cos >α,由此得到55cos =α,552sin =α, ∴P 点坐标为)5154,554(.典型例题十六例16 设),(00y x P 是离心率为e 的椭圆12222=+by a x )0(>>b a 上的一点,P 到左焦点1F 和右焦点2F 的距离分别为1r 和2r ,求证:01ex a r +=,02ex a r -=. 分析:本题考查椭圆的两个定义,利用椭圆第二定义,可将椭圆上点到焦点的距离转化为点到相应准线距离.解:P 点到椭圆的左准线c a x l 2-=:的距离,ca x PQ 20+=,由椭圆第二定义,e PQPF =1,∴01ex a PQ e r +==,由椭圆第一定义,0122ex a r a r -=-=.说明:本题求证的是椭圆的焦半径公式,在解决与椭圆的焦半径(或焦点弦)的有关问题时,有着广泛的应用.请写出椭圆焦点在y 轴上的焦半径公式.典型例题十七例17 已知椭圆15922=+y x 内有一点)1,1(A ,1F 、2F 分别是椭圆的左、右焦点,点P 是椭圆上一点.(1) 求1PF PA +的最大值、最小值及对应的点P 坐标;(2) 求223PF PA +的最小值及对应的点P 的坐标. 分析:本题考查椭圆中的最值问题,通常探求变量的最值有两种方法:一是目标函数当,即代数方法.二是数形结合,即几何方法.本题若按先建立目标函数,再求最值,则不易解决;若抓住椭圆的定义,转化目标,运用数形结合,就能简捷求解.解:(1)如上图,62=a ,)0,2(2F ,22=AF ,设P 是椭圆上任一点,由6221==+a PF PF ,22AF PF PA -≥,∴26222211-=-=-+≥+AF a AF PF PF PF PA ,等号仅当22AF PF PA -=时成立,此时P 、A 、2F 共线.由22AF PF PA +≤,∴26222211+=+=++≤+AF a AF PF PF PF PA ,等号仅当22AF PF PA +=时成立,此时P 、A 、2F 共线.建立A 、2F 的直线方程02=-+y x ,解方程组⎩⎨⎧=+=-+4595,0222y x y x 得两交点 )2141575,2141579(1+-P 、)2141575,2141579(2-+P . 综上所述,P 点与1P 重合时,1PF PA +取最小值26-,P 点与2P 重合时,2PF PA +取最大值26+.(2)如下图,设P 是椭圆上任一点,作PQ 垂直椭圆右准线,Q 为垂足,由3=a ,2=c ,∴32=e .由椭圆第二定义知322==e PQ PF ,∴223PF PQ =,∴PQ PA PF PA +=+223,要使其和最小需有A 、P 、Q 共线,即求A 到右准线距离.右准线方程为29=x .∴A 到右准线距离为27.此时P 点纵坐标与A 点纵坐标相同为1,代入椭圆得满足条件的点P 坐标)1,556(. 说明:求21PF ePA +的最小值,就是用第二定义转化后,过A 向相应准线作垂线段.巧用焦点半径2PF 与点准距PQ 互化是解决有关问题的重要手段.典型例题十八例18 (1)写出椭圆14922=+y x 的参数方程; (2)求椭圆内接矩形的最大面积.分析:本题考查椭圆的参数方程及其应用.为简化运算和减少未知数的个数,常用椭圆的参数方程表示曲线上一点坐标,所求问题便化归为三角问题.解:(1) ⎩⎨⎧==θθsin 2cos 3y x )(R ∈θ.(2)设椭圆内接矩形面积为S ,由对称性知,矩形的邻边分别平行于x 轴和y轴,设)sin 2,cos 3(θθ为矩形在第一象限的顶点,)20(π<θ<,则122sin 12sin 2cos 34≤=⨯⨯=θθθS 故椭圆内接矩形的最大面积为12.说明:通过椭圆参数方程,转化为三角函数的最值问题,一般地,与圆锥曲线有关的最值问题,用参数方程形式较简便.典型例题十九 例19 已知1F ,2F 是椭圆的两个焦点,P 是椭圆上一点,且︒=∠6021PF F .(1)求椭圆离心率的取值范围;(2)求证21F PF ∆的面积与椭圆短轴长有关. 分析:不失一般性,可以设椭圆方程为12222=+b y a x (0>>b a ),),(11y x P (01>y ). 思路一:根据题设容易想到两条直线的夹角公式,即3160tan 1212=+-=︒PF PF PF PF K K K K ,设),(11y x P ,)0,(1c F -,)0,(2c F ,化简可得03233212121=--+c cy y x .又1221221=+by a x ,两方程联立消去21x 得0323412212=-+b cy b y c ,由],0(1b y ∈,可以确定离心率的取值范围;解出1y 可以求出21F PF ∆的面积,但这一过程很繁.思路二:利用焦半径公式11ex a PF +=,12ex a PF -=,在21F PF ∆中运用余弦定理,求1x ,再利用],[1a a x -∈,可以确定离心率e 的取值范围,将1x 代入椭圆方程中求1y ,便可求出21F PF ∆的面积.思路三:利用正弦定理、余弦定理,结合a PF PF 221=+求解.解:(法1)设椭圆方程为12222=+by a x (0>>b a ),),(11y x P ,)0,(1c F -,)0,(2c F ,0>c ,则11ex a PF +=,12ex a PF -=. 在21F PF ∆中,由余弦定理得))((24)()(2160cos 1122121ex a ex a c ex a ex a -+--++==︒, 解得2222134ea c x -=. (1)∵],0(221a x ∈,∴2222340a ea c <-≤,即0422≥-a c . ∴21≥=a c e . 故椭圆离心率的取范围是)1,21[∈e .(2)将2222134ea c x -=代入12222=+b y a x 得 24213c b y =,即cb y 321=.∴22213332212121b cb c y F F S F PF =⋅⋅=⋅=∆. 即21F PF ∆的面积只与椭圆的短轴长有关.(法2)设m PF =1,n PF =2,α=∠12FPF ,β=∠21F PF , 则︒=+120βα.(1)在21F PF ∆中,由正弦定理得︒==60sin 2sin sin cn m βα. ∴︒=++60sin 2sin sin cn m βα∵a n m 2=+, ∴︒=+60sin 2sin sin 2ca βα,∴2cos 2sin 260sin sin sin 60sin βαβαβα-+︒=+︒==a c e 212cos21≥-=βα.当且仅当βα=时等号成立.故椭圆离心率的取值范围是)1,21[∈e .(2)在21F PF ∆中,由余弦定理得:︒-+=60cos 2)2(222mn n m cmn n m -+=22 mn n m 3)(2-+=∵a n m 2=+,∴mn a c 34422-=,即22234)(34b c a mn =-=.∴23360sin 2121b mn S F PF =︒=∆. 即21F PF ∆的面积与椭圆短轴长有关.说明:椭圆上的一点P 与两个焦点1F ,2F 构成的三角形为椭圆的焦点三角形,涉及有关焦点三角形问题,通常运用三角形的边角关系定理.解题中通过变形,使之出现21PF PF +的结构,这样就可以应用椭圆的定义,从而可得到有关a ,c 的关系式,使问题找到解决思路.典型例题二十例20 椭圆12222=+by a x )0(>>b a 与x 轴正向交于点A ,若这个椭圆上总存在点P ,使AP OP ⊥(O 为坐标原点),求其离心率e 的取值范围.分析:∵O 、A 为定点,P 为动点,可以P 点坐标作为参数,把AP OP ⊥,转化为P 点坐标的一个等量关系,再利用坐标的范围建立关于a 、b 、c 的一个不等式,转化为关于e 的不等式.为减少参数,易考虑运用椭圆参数方程.解:设椭圆的参数方程是⎩⎨⎧==θθsin cos b y a x )0(>>b a ,则椭圆上的点)sin ,cos (θθb a P ,)0,(a A , ∵AP OP ⊥,∴1cos sin cos sin -=-⋅aa b a b θθθθ,即0cos cos )(22222=+--b a b a θθ,解得1cos =θ或222cos b a b -=θ,∵1cos 1<<-θ ∴1cos =θ(舍去),11222<-<-b a b ,又222c a b -= ∴2022<<ca ,∴22>e ,又10<<e ,∴122<<e . 说明:若已知椭圆离心率范围)1,22(,求证在椭圆上总存在点P 使AP OP ⊥.如何证明?。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
B.相交
C.相切
D.无法判断
3.已知椭圆xa22+yb22=1 有两个顶点在直线 x+2y=2 上,则此椭圆的焦点坐 标是( )
A.(± 3,0) B.(0,± 3) C.(± 5,0) D.(0,± 5)
4.(2013·大庆高二检测)椭圆 mx2+ny2=1 与直线 y=1-x 交于 M,N 两点,
7.直线 l 交椭圆1x26+1y22=1 于 A、B 两点,AB 的中点为 M(2,1),则 l 的方 程为________.
8.过椭圆x52+y42=1 的右焦点 F 作一条斜率为 2 的直线与椭圆交于 A,B 两 点,O 为坐标原点,则△OAB 的面积为________.
三、解答题 9.如图所示,某隧道设计为双向四车道,车道总宽 22 米,要求通行车辆 限高 4.5 米,隧道的拱线近似地看成半个椭圆形状.若最大拱高 h 为 6 米,与线段 MN 中点所在直线的斜率为 22,则mn 的值是(
)
2 23 A. 2 B. 3
92 23 C. 2 D. 27
5.直线 y=kx+1 与椭圆x52+ym2=1 总有公共点,则 m 的取值范围是(
)
A.m≥1
B.m≥1 或 0<m<1
C.0<m<5 且 m≠1
D.m≥1 且 m≠5
二、填空题 6.已知 F1 为椭圆 C:x22+y2=1 的左焦点,直线 l:y=x-1 与椭圆 C 交于 A、B 两点,那么|F1A|+|F1B|的值为________.
10.已知椭圆 4x2+y2=1 及直线 y=x+m. (1)当直线和椭圆有公共点时,求实数 m 的取值范围; (2)求被椭圆截得的最长弦所在的直线方程.
11.已知△ABC 的顶点 A,B 在椭圆 x2+3y2=4 上,C 在直线 l:y=x+2 上,且 AB∥l.
(1)当 AB 边通过坐标原点 O 时,求 AB 的长及△ABC 的面积; (2)当∠ABC=90°,且斜边 AC 的长最大时,求 AB 所在直线的方程.
椭圆标准方程及性质的应用
一、选择题
1.点 A(a,1)在椭圆x42+y22=1 的内部,则 a 的取值范围是(
)
A.- 2<a< 2
B.a<- 2或 a> 2
C.-2<a<2 D.-1<a<1
2.(2013·潍坊高二检测)直线 y=k(x-2)+1 与椭圆1x26+y92=1 的位置关系是
() A.相离