1985国家高程基准和西安80坐标系

合集下载

我国四大常用坐标系及高程坐标系

我国四大常用坐标系及高程坐标系

我国四大常用坐标系及高程坐标系1、北京54坐标系(BJZ54)北京54坐标系为参心大地坐标系,大地上的一点可用经度L54、纬度M54和大地高H54定位,它是以克拉索夫斯基椭球为基础,经局部平差后产生的坐标系。

新中国成立以后,我国大地测量进入了全面发展时期,再全国范围内开展了正规的,全面的大地测量和测图工作,迫切需要建立一个参心大地坐标系。

由于当时的“一边倒”政治趋向,故我国采用了前苏联的克拉索夫斯基椭球参数,并与前苏联1942年坐标系进行联测,通过计算建立了我国大地坐标系,定名为1954年北京坐标系。

因此,1954年北京坐标系可以认为是前苏联1942年坐标系的延伸。

它的原点不在北京而是在前苏联的普尔科沃。

北京54坐标系,属三心坐标系,长轴6378245m,短轴6356863,扁率1/;2、西安80坐标系1978年4月在西安召开全国天文大地网平差会议,确定重新定位,建立我国新的坐标系。

为此有了1980年国家大地坐标系。

1980年国家大地坐标系采用地球椭球基本参数为1975年国际大地测量与地球物理联合会第十六届大会推荐的数据,即IAG75地球椭球体。

该坐标系的大地原点设在我国中部的陕西省泾阳县永乐镇,位于西安市西北方向约60公里,故称1980年西安坐标系,又简称西安大地原点。

基准面采用青岛大港验潮站1952-1979年确定的黄海平均海水面(即1985国家高程基准)。

西安80坐标系,属三心坐标系,长轴6378140m3、WGS-84坐标系WGS-84坐标系(WorldGeodeticSystem)是一种国际上采用的地心坐标系。

坐标原点为地球质心,其地心空间直角坐标系的Z轴指向国际时间局(BIH)定义的协议地极(CTP)方向,X轴指向的协议子午面和CTP赤道的交点,Y轴与Z轴、X轴垂直构成右手坐标系,称为1984年世界大地坐标系。

这是一个国际协议地球参考系统(ITRS),是目前国际上统一采用的大地坐标系。

我国四大常用坐标系及高程坐标系

我国四大常用坐标系及高程坐标系

For personal use only in study and research; not forcommercial useFor personal use only in study and research; not forcommercial use我国四大常用坐标系及高程坐标系1、北京54坐标系(BJZ54)北京54坐标系为参心大地坐标系,大地上的一点可用经度L54、纬度M54和大地高H54定位,它是以克拉索夫斯基椭球为基础,经局部平差后产生的坐标系。

新中国成立以后,我国大地测量进入了全面发展时期,再全国范围内开展了正规的,全面的大地测量和测图工作,迫切需要建立一个参心大地坐标系。

由于当时的“一边倒”政治趋向,故我国采用了前苏联的克拉索夫斯基椭球参数,并与前苏联1942年坐标系进行联测,通过计算建立了我国大地坐标系,定名为1954年北京坐标系。

因此,1954年北京坐标系可以认为是前苏联1942年坐标系的延伸。

它的原点不在北京而是在前苏联的普尔科沃。

北京54坐标系,属三心坐标系,长轴6378245m,短轴6356863,扁率1/298.3;2、西安80坐标系1978年4月在西安召开全国天文大地网平差会议,确定重新定位,建立我国新的坐标系。

为此有了1980年国家大地坐标系。

1980年国家大地坐标系采用地球椭球基本参数为1975年国际大地测量与地球物理联合会第十六届大会推荐的数据,即IAG75地球椭球体。

该坐标系的大地原点设在我国中部的陕西省泾阳县永乐镇,位于西安市西北方向约60公里,故称1980年西安坐标系,又简称西安大地原点。

基准面采用青岛大港验潮站1952-1979年确定的黄海平均海水面(即1985国家高程基准)。

西安80坐标系,属三心坐标系,长轴6378140m,短轴6356755,扁率1/298.257221013、WGS-84坐标系WGS-84坐标系(WorldGeodeticSystem)是一种国际上采用的地心坐标系。

我国四大常用坐标系及高程坐标系

我国四大常用坐标系及高程坐标系

我国四大常用坐标系及高程坐标系1、北京54坐标系(BJZ54)北京54坐标系为参心大地坐标系,大地上的一点可用经度L54、纬度M54和大地高H54定位,它是以克拉索夫斯基椭球为基础,经局部平差后产生的坐标系。

新中国成立以后,我国大地测量进入了全面发展时期,再全国范围内开展了正规的,全面的大地测量和测图工作,迫切需要建立一个参心大地坐标系。

由于当时的“一边倒”政治趋向,故我国采用了前苏联的克拉索夫斯基椭球参数,并与前苏联1942年坐标系进行联测,通过计算建立了我国大地坐标系,定名为1954年北京坐标系。

因此,1954年北京坐标系可以认为是前苏联1942年坐标系的延伸。

它的原点不在北京而是在前苏联的普尔科沃。

北京54坐标系,属三心坐标系,长轴6378245m,短轴6356863,扁率1/298.3;2、西安80坐标系1978年4月在西安召开全国天文大地网平差会议,确定重新定位,建立我国新的坐标系。

为此有了1980年国家大地坐标系。

1980年国家大地坐标系采用地球椭球基本参数为1975年国际大地测量与地球物理联合会第十六届大会推荐的数据,即IAG75地球椭球体。

该坐标系的大地原点设在我国中部的陕西省泾阳县永乐镇,位于西安市西北方向约60公里,故称1980年西安坐标系,又简称西安大地原点。

基准面采用青岛大港验潮站1952-1979年确定的黄海平均海水面(即1985国家高程基准)。

西安80坐标系,属三心坐标系,长轴6378140m3、WGS-84坐标系WGS-84坐标系(WorldGeodeticSystem)是一种国际上采用的地心坐标系。

坐标原点为地球质心,其地心空间直角坐标系的Z轴指向国际时间局(BIH)1984.0定义的协议地极(CTP)方向,X轴指向BIH1984.0的协议子午面和CTP赤道的交点,Y轴与Z轴、X轴垂直构成右手坐标系,称为1984年世界大地坐标系。

这是一个国际协议地球参考系统(ITRS),是目前国际上统一采用的大地坐标系。

关于56黄海高程-、85国家高程-、吴淞高程之间的关系

关于56黄海高程-、85国家高程-、吴淞高程之间的关系

关于56黄海高程、85国家高程、吴淞高程之间的关系54北京坐标系54北京坐标系即54国家坐标系,采用克拉索夫斯基椭球参数。

西安坐标系80西安坐标系即80国家坐标系,采用国际地理联合会(IGU)第十六届大会推荐的椭球参数,大地坐标原点在陕西省泾和县永乐镇的大地坐标系。

我国常用高程系统大全:(1) 波罗的海高程波罗的海高程十0.374米=1956年黄海高程中国新疆境内尚有部分水文站一直还在使用“波罗的海高程”。

(2) 黄海高程系以青岛验潮站1950—1956年验潮资料算得的平均海面为零的高程系统。

原点设在青岛市观象山。

该原点以“1956年黄海高程系”计算的高程为72.289米。

1985国家高程72.289-0.029=72.26(3) 1985国家高程基准85国家高程基准是指以青岛水准原点和青岛验潮站1952年到1979年的验潮数据确定的黄海平均海水面所定义的高程基准,其水准点起算高程为72.260米。

由于计算这个基面所依据的青岛验潮站的资料系列(1950年~1956年)较短等原因,中国测绘主管部门决定重新计算黄海平均海面,以青岛验潮站1952年~1979年的潮汐观测资料为计算依据,并用精密水准测量接测位于青岛的中华人民共和国水准原点,得出1985年国家高程基准高程和1956年黄海高程的关系为:1985年国家高程基准高程=1956年黄海高程-0.029m。

1985年国家高程基准已于1987年5月开始启用,1956年黄海高程系同时废止。

(5) 广州高程及珠江高程广州高程=1985国家高程系+4.26(米)广州高程=黄海高程系+4.41(米)广州高程=珠江高程基准+5.00(米)(6)大连零点日本入侵中国东北期间,在大连港码头仓库区内设立验潮站,并以多年验潮资料求得的平均海面为零起算,称为“大连零点”。

该高程系的基点设在辽宁省大连市的大连港原一号码头东转角处,该基点在大连零点高程系中的高程为3.765米。

CGJ02、BD09、西安80、北京54、CGCS2000常用坐标系详解

CGJ02、BD09、西安80、北京54、CGCS2000常用坐标系详解

CGJ02、BD09、西安80、北京54、CGCS2000常用坐标系详解一、万能地图下载器中的常用坐标系水经注万能地图下载器中的常用的坐标系主要包括WGS84经纬度投影、WGS84 Web 墨卡托投影、WGS84 UTM 投影、北京54高斯投影、西安80高斯投影、CGCS2000高斯投影、GCJ02经纬度投影、GCJ02 Web 墨卡托投影、BD09 经纬度投影和BD09 Web 墨卡托投影等。

其中,WGS84、WGS84 Web 墨卡托、GCJ02和BD09是近年来GIS系统(尤其是WebGIS)中的常用坐标系,而西安80、北京54和CGCS2000坐标是测绘中常用的坐标系。

本软件除了支持常用的坐标系外,还支持其它各种地理坐标系和投影坐标系,当在坐标投影转换时,选择“更多”可以选择其它坐标系。

对于不同的功能,本软件所支持的常用坐标系略有不同,本文将会对矢量导入导出、影像导出大图、影像导出瓦片和高程导出所支持的坐标系分别作出说明。

二、矢量导入导出坐标系矢量导入主要包括导入下载范围和导入矢量数据叠加,这两中导入方式均支持WGS84经纬度投影、WGS84 Web 墨卡托投影、WGS84 UTM 投影、北京54高斯投影、西安80高斯投影、CGCS2000高斯投影、GCJ02经纬度投影、GCJ02 Web 墨卡托投影、BD09 经纬度投影和BD09 Web 墨卡托投影等。

下图为导入沿线路径时,可选择的坐标投影。

下图为导入矢量数据时,可选择的坐标投影。

与导入数据相同,在将矢量数据导出时也可以进行WGS84经纬度投影、WGS84 Web 墨卡托投影、WGS84 UTM 投影、北京54高斯投影、西安80高斯投影、CGCS2000高斯投影、GCJ02经纬度投影、GCJ02 Web 墨卡托投影、BD09 经纬度投影和BD09 Web 墨卡托投影等投影转换。

三、影像导出大图坐标系在下载卫星影像并导出大图时,可支持导出WGS84经纬度投影、WGS84 Web 墨卡托投影、北京54高斯投影、西安80高斯投影、CGCS2000高斯投影、GCJ02 Web 墨卡托投影和BD09 Web 墨卡托投影等,不支持导出GCJ02经纬度投影和BD09经纬度投影。

四大常用坐标系及高程坐标系

四大常用坐标系及高程坐标系

四大常用坐标系及高程坐标系Document number:NOCG-YUNOO-BUYTT-UU986-1986UT我国四大常用坐标系及高程坐标系1、北京54坐标系(BJZ54)北京54坐标系为参心大地坐标系,大地上的一点可用经度L54、纬度M54和大地高H54定位,它是以克拉索夫斯基椭球为基础,经局部平差后产生的坐标系。

新中国成立以后,我国大地测量进入了全面发展时期,再全国范围内开展了正规的,全面的大地测量和测图工作,迫切需要建立一个参心大地坐标系。

由于当时的“一边倒”政治趋向,故我国采用了前苏联的克拉索夫斯基椭球参数,并与前苏联1942年坐标系进行联测,通过计算建立了我国大地坐标系,定名为1954年北京坐标系。

因此,1954年北京坐标系可以认为是前苏联1942年坐标系的延伸。

它的原点不在北京而是在前苏联的普尔科沃。

北京54坐标系,属三心坐标系,长轴6378245m,短轴6356863,扁率1/;2、西安80坐标系1978年4月在西安召开全国天文大地网平差会议,确定重新定位,建立我国新的坐标系。

为此有了1980年国家大地坐标系。

1980年国家大地坐标系采用地球椭球基本参数为1975年国际大地测量与地球物理联合会第十六届大会推荐的数据,即IAG75地球椭球体。

该坐标系的大地原点设在我国中部的陕西省泾阳县永乐镇,位于西安市西北方向约60公里,故称1980年西安坐标系,又简称西安大地原点。

基准面采用青岛大港验潮站1952-1979年确定的黄海平均海水面(即1985国家高程基准)。

西安80坐标系,属三心坐标系,长轴6378140m,短轴6356755,扁率1/298.3、WGS-84坐标系WGS-84坐标系(WorldGeodeticSystem)是一种国际上采用的地心坐标系。

坐标原点为地球质心,其地心空间直角坐标系的Z轴指向国际时间局(BIH)定义的协议地极(CTP)方向,X轴指向的协议子午面和CTP赤道的交点,Y轴与Z轴、X轴垂直构成右手坐标系,称为1984年世界大地坐标系。

我国四大常用坐标系及高程坐标系

我国四大常用坐标系及高程坐标系

我国四大常用坐标系及高程坐标系1、北京54坐标系(BJZ54)北京54坐标系为参心大地坐标系,大地上的一点可用经度L54、纬度M54和大地高H54定位,它是以克拉索夫斯基椭球为基础,经局部平差后产生的坐标系。

新中国成立以后,我国大地测量进入了全面发展时期,再全国范围内开展了正规的,全面的大地测量和测图工作,迫切需要建立一个参心大地坐标系。

由于当时的“一边倒”政治趋向,故我国采用了前苏联的克拉索夫斯基椭球参数,并与前苏联1942年坐标系进行联测,通过计算建立了我国大地坐标系,定名为1954年北京坐标系。

因此,1954年北京坐标系可以认为是前苏联1942年坐标系的延伸。

它的原点不在北京而是在前苏联的普尔科沃。

北京54坐标系,属三心坐标系,长轴6378245m,短轴6356863,扁率1/298.3;2、西安80坐标系1978年4月在西安召开全国天文大地网平差会议,确定重新定位,建立我国新的坐标系。

为此有了1980年国家大地坐标系。

1980年国家大地坐标系采用地球椭球基本参数为1975年国际大地测量与地球物理联合会第十六届大会推荐的数据,即IAG75地球椭球体。

该坐标系的大地原点设在我国中部的陕西省泾阳县永乐镇,位于西安市西北方向约60公里,故称1980年西安坐标系,又简称西安大地原点。

基准面采用青岛大港验潮站1952-1979年确定的黄海平均海水面(即1985国家高程基准)。

西安80坐标系,属三心坐标系,长轴6378140m3、WGS-84坐标系WGS-84坐标系(WorldGeodeticSystem)是一种国际上采用的地心坐标系。

坐标原点为地球质心,其地心空间直角坐标系的Z轴指向国际时间局(BIH)1984.0定义的协议地极(CTP)方向,X轴指向BIH1984.0的协议子午面和CTP 赤道的交点,Y轴与Z轴、X轴垂直构成右手坐标系,称为1984年世界大地坐标系。

这是一个国际协议地球参考系统(ITRS),是目前国际上统一采用的大地坐标系。

中国使用的测量坐标系

中国使用的测量坐标系

中国使用的测量坐标系
我国使用的测量坐标系有以下四种:
1、北京54坐标系
2、西安80坐标系:该坐标系的大地原点设在我国中部的陕西省泾阳县永乐镇,位于西安市西北方向约60公里。

3、2000国家大地坐标系:简称为CGCS2000,英文全称为China Geodetic Coordinate System 2000。

Z轴指向BIH1984.0定义的协议极地方向(BIH国际时间局),X轴指向BIH1984.0定义的零子午面与协议赤道的交点,Y轴按右手坐标系确定。

该坐标系的大地坐标和美国WGS84坐标系的大地坐标基本一致,可直接采用,只是平面坐标需要用系数调整。

4、1985国家高程标准:我国于1956年规定以黄海(青岛)的多年平均海平面作为统一基面,叫"1956年黄海高程系统",为中国第一个国家高程系统。

黄海高程是1956年9月4日,国务院批准试行《中华人民共和国大地测量法式(草案)》,首次建立国家高程基准,称“1956年黄海高程系”,简称“黄海基面”。

系以青岛验潮站1950—1956年验潮资料算得的平均海面为零的高程系统。

原点设在青岛市观象山。

该原点以“1956年黄海高程系”计算的高程为72.289米。

后经复查,发现该高程系验潮资料过短,准确性较差,改用青岛验潮站1950-1979年的观测资料重新推算,并命名为“1985国家高程基准”。

国家水准点设于青岛市观象山,其高程为72.260米,作为我国高程测量的依据。

它的高程是以“1985国家高程基准”所定的平均海水面为零点测算而得,“1956年黄海高程系”已废止。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

在我国的地理测量领域,1985年国家高程基准和西安80坐标系是两
个非常重要的概念。

这两个概念不仅在地图制图、工程测量等领域有
着广泛的应用,而且对于国家的基础设施建设和国土资源管理也具有
重要意义。

本文将对1985年国家高程基准和西安80坐标系进行详细介绍,以便读者对这两个概念有一个清晰的了解。

1. 背景介绍
1985年国家高程基准是我国规定的唯一高程基准。

1985年国家高程
基准的确定,是为了逐步实现高程基准的统一。

1985年国家高程基准的制定,对于保证工程建设、地理信息系统建设、资源环境监测、国
土资源管理等领域中的高程测量数据的质量和一致性,对于推动我国
地球物理、天文地球测量、大地测量和测量科学技术的进步,提高地
球物理领域的专业技术水平和地理信息科学的应用水平,都至关重要。

西安80坐标系是我国测绘界在1980年进行测量基准点计算平差和综合整体大地测量调查后确定的一个大地坐标系。

它是在1980年我国南北大地基础测量成果的基础上,由国家测绘局研究制定的山西省太原
市偏正子午线为中央子午线的椭球面笛卡尔坐标系。

西安80坐标系被广泛应用于地理信息系统、全球定位系统、导航定位等领域。

2. 1985年国家高程基准的特点
1985年国家高程基准具有以下特点:
(1)高程基准标高采用广义正高。

(2)高程基准起算点采用测量学国际通用的高程起算点。

(3)高程基准点由国家测绘局认可的测绘单位实施。

3. 西安80坐标系的特点
西安80坐标系的特点主要包括:
(1)中央子午线经度:110度,相对于格林尼治子午线,东移73度7分,即东经110度。

(2)大地基准面:克拉索夫斯基椭球体。

(3)K0、K2有效位数: K0、K2检核记录不用特意列,必要现场计算核对。

(4)投影类型:高斯-克吕格投影。

4. 1985年国家高程基准和西安80坐标系的关系
1985年国家高程基准和西安80坐标系是地理信息系统中两个非常重要的概念,它们之间存在着密切的联系。

在地理信息系统中,经常需要同时使用1985年国家高程基准和西安80坐标系进行测量和定位。

了解1985年国家高程基准和西安80坐标系的基本原理和特点,对于合理、准确地利用地理信息系统具有重要意义。

在实际的地理信息系统应用中,需要根据具体的需求选择合适的高程基准和坐标系,以确保测量和定位的准确性和稳定性。

5. 结语
1985年国家高程基准和西安80坐标系是我国地理测量领域中的两个
重要概念,它们在地图制图、工程测量、资源管理等领域具有广泛的
应用。

了解1985年国家高程基准和西安80坐标系的基本原理和特点,对于合理、准确地利用地理信息系统具有重要意义,同时也有助于提
高地理信息科学的应用水平。

相信通过本文的介绍,读者对1985年国家高程基准和西安80坐标系有了更清晰的认识,并能够在实际的应用中加以灵活运用。

国家高程基准和西安80坐标系在我国地理测量领域中具有重要意义,不仅在地图制图、工程测量等领域有广泛的应用,
而且对于国家的基础设施建设和国土资源管理也具有重要意义。

下面
将从国家高程基准和西安80坐标系的实际应用、技术转变以及未来发展趋势等方面进行扩写。

1985年国家高程基准和西安80坐标系在实际应用中发挥着重要作用。

在工程测量领域,1985年国家高程基准的确定保证了工程建设中高程测量数据的质量和一致性,为基础设施建设提供了可靠的测量基准。

西安80坐标系则广泛应用于地理信息系统、全球定位系统、导航定位等领域,为各类地理数据的采集、处理和展示提供了重要的坐标基准。

这两个概念的应用也深刻影响着资源环境监测、国土资源管理等领域,为我国的城乡规划和资源管理提供了重要支持。

随着科技的不断发展和测量技术的进步,国家高程基准和西安80坐标系也在不断进行技术转变和更新。

在过去的几十年里,随着测量技术
的发展和数据处理能力的提升,国家高程基准和西安80坐标系也相继进行了多次修订和更新,以适应不断变化的测量需求和科技发展潮流。

特别是随着卫星定位技术的普及和应用,高程基准和坐标系的精度和
稳定性得到了进一步提升,为地理信息系统的应用提供了更加可靠的
支撑。

未来发展方面,国家高程基准和西安80坐标系将继续发挥重要作用。

随着数字化技术和人工智能的快速发展,地理信息系统将在城市规划、交通建设、环境保护等领域发挥越来越重要的作用。

对于国家高程基
准和西安80坐标系的需求也将不断增加,特别是在高精度测绘、智慧城市建设、精准农业等领域。

未来,国家高程基准和西安80坐标系将继续进行更新和升级,以适应新的应用需求和技术趋势。

国家高程基准和西安80坐标系作为我国地理测量领域中的两大重要概念,对于国家的基础设施建设、资源管理和科学研究都具有重要意义。

随着科技的不断发展和应用需求的不断提升,国家高程基准和西安80坐标系也将不断进行技术更新和升级,以适应新的测量需求和科技发
展潮流,为地理信息系统的应用提供更加可靠的支撑。

希望通过本文
的介绍,读者对于国家高程基准和西安80坐标系有了更清晰的认识,并能够在实际的应用中加以灵活运用。

相关文档
最新文档