塑胶模具模流分析经典案例

合集下载

Moldflow的模流分析入门实例要点

Moldflow的模流分析入门实例要点
实训三网格处理
3.1网格划分与处理应用实例
本节如图3-1所示按摩器为例,演示网格处理方法。一般情况下,自动划分网格模型多少会存在缺陷,这些缺陷往往是网格质量低下的主要原因,因此要对网格模型进行修补处理,提高网格质量。
图3-1自动划分网格
(1)网格处理。根据网格统计信息,如图2-10所示,如何提高匹配率,最佳的处理方法是修改网格边长,网格平均边长越小,网格精度越高,匹配度也越高。本例中网格数为9334个,匹配度为72.3%。因此可以通过缩短网格的平均长度来提高匹配率。
图1-23选择查找
图1-24浇口位置设定完毕
(12)工艺参数设定。本例采用默认的工艺参数,双击方案任务视窗中的 图标,系统弹出“成型参数设置向导“对话框,如图1-25所示。采用默认值,单击“下一步”按钮,进入“成型参数向导”对话框的第二页,选中“分离翘曲原因”复选框。单击“完成”按钮,结束工艺过程参数的定义,如图1-26所示。
图2-8选择重新划分的区域图2-9网格重新划分
(5)网格状态统计。网格检验与修补的目的是为了检验出模型中存在的不合理网格,将其修改成合理网格,便于MOLDFLOW顺利求解。选择“网格”,“网格统计”命令,系统弹出“网格统计”对话框,如图2-10所示。
图2-10“网格统计”对话框
“网格统计”对话框显示模型的纵横比范围为1.19000~479.272000,匹配率达到72.5,重叠单元。
图1-9“生成网格”定义信息图1-10网格日志
划分完毕后,可以看见如图1-11所示的脸盆网格模型,此时在管理视窗新增加了三角形单元层和节点层,如图1-12所示。
图1-11网格模型图1-12层管理视窗
(5)网格检验与修补。网格检验与修补的目的是为了检验出模型中存在的不合理网格,将其修改成合理网格,便于MOLDFLOW顺利求解。选择“网格”,“网格统计”命令,系统弹出“网格统计”对话框,如图1-13所示。

Moldflow的模流分析入门实例[精品文档]

Moldflow的模流分析入门实例[精品文档]

基于MOLDFLOW的模流分析技术上机实训教程主编:姓名:年级:专业:南京理工大学泰州科技学院实训一基于Moldflow的模流分析入门实例1.1Moldflow应用实例下面以脸盆塑料件作为分析对象,分析最佳浇口位置以及缺陷的预测。

脸盆三维模型如图1-1所示,充填分析结果如图1-2所示。

图1-1 脸盆造型图1-2 充填分析结果(1)格式转存。

将在三维设计软件如PRO/E,UG,SOLIDWORKS中设计的脸盆保存为STL格式,注意设置好弦高。

(2)新建工程。

启动MPI,选择“文件”,“新建项目”命令,如图1-3所示。

在“工程名称”文本框中输入“lianpen”,指定创建位置的文件路径,单击“确定”按钮创建一新工程。

此时在工程管理视窗中显示了“lianpen”的工程,如图1-4所示。

图1-3 “创建新工程”对话框图1-4 工程管理视图(3)导入模型。

选择“文件”,“输入”命令,或者单击工具栏上的“输入模型”图标,进入模型导入对话框。

选择STL文件进行导入。

选择文件“lianpen.stl”。

单击“打开”按钮,系统弹出如图1-5所示的“导入”对话框,此时要求用户预先旋转网格划分类型(Fusion)即表面模型,尺寸单位默认为毫米。

图1-5 导入选项单击“确定”按钮,脸盆模型被导入,如图1-6所示,工程管理视图出现“lp1_study”工程,如图1-7所示,方案任务视窗中列出了默认的分析任务和初始位置,如图1-8所示。

图1-6 脸盆模型图1-7 工程管理视窗图1-8 方案任务视窗(4)网格划分。

网格划分是模型前处理中的一个重要环节,网格质量好坏直接影响程序是否能够正常执行和分析结果的精度。

双击方案任务图标,或者选择“网格”,“生成网格”命令,工程管理视图中的“工具”页面显示“生成网格”定义信息,如图1-9所示。

单击“立即划分网格”按钮,系统将自动对模型进行网格划分和匹配。

网格划分信息可以在模型显示区域下方“网格日志”中查看,如图1-10所示。

模流分析实际应用案例(1-5)

模流分析实际应用案例(1-5)
2
Professional CAE for Injection Molding
软件运用案例1:EK门面的问题点分析及解决
3
Professional CAE for Injection Molding
电脑试模效果
• 在开模之前有效的利用软件快速进行设计分析,可做多个不同的设计
方式,进行设计评估;
1. 塑胶充填溫度设定为240 C,結果高溫 o 区达到240 C,为流动主要流动路径,产 生剪切升溫所造成 2. 另外靠近浇口附件的Rib因与主平面流 动竞争的关系,出現流动迟滯,故溫度较 低。
o
平均溫度
14
Professional CAE for Injection Molding
流动波前 結合线分析
29
Professional CAE for Injection Molding
软件运用案例2
原始设计 冷卻系統-周期平均塑件表面溫度
塑件前面的周期平均温度;塑件的前面定义作面向视点的面,也就是观察者眼睛可以看到的 面,周期平均是将会随时间变化的变量对时间作积分取平均值。
产品母模有积热的現象,公母模溫相差过大將导致产品因收縮不一产生熱变形
20
Professional CAE for Injection Molding
7
Professional CAE for Injection Molding
利用不同范围的流动速率,可看塑胶在模穴中各时间的充填情况,可预測夹水线及包封位置 ,且可判断是否会有短射現象发生,提供排气孔位置的参考。
8
Professional CAE for Injection Molding
利用不同范围的流动速率,可看塑胶在模穴中各时间的充填情况,可预測夹水线及包封位置 ,且可判断是否会有短射現象发生,提供排气孔位置的参考。

塑料模具课程设计(带模流分析)

塑料模具课程设计(带模流分析)

景德镇陶瓷大学专业课程设计题目:铅笔盒注塑模设计学号:姓名:院(系):专业:完成日期:指导教师:前言 (3)第一章塑料制件的工艺性分析 (4)1.1制件原料的工艺性 (4)1.2塑料制件的结构工艺性 (5)第二章初步选择注射机 (6)2.1制品ABS的注塑成型参数 (6)2.2计算制件的体积和质量 (6)2.3选择注射机 (7)2.4确定型腔数量 (8)2.5确定分型面 (8)2.6型腔的布局 (9)第三章浇注系统设计 (10)3.1主流道的设计 (11)3.2分流道的设计 (12)3.3浇口的设计 (13)3.4冷料穴的设计 (13)第四章冷却系统设计 (13)4.1冷却系统的设计准则 (13)4.2冷却系统参数的计算 (14)4.2.1冷却介质 (14)4.2.2冷却水体积流量的计算 (14)4.2.3冷却管道直径 (15)4.2.4冷却回路所需的总表面积 (15)第五章铅笔盒模流分析模拟 (17)5.1网格分析 (17)5.1.1模型的导入 (17)5.2.1 网格划分 (17)5.2最佳浇口位置分析 (19)5.3成型窗口分析 (20)5.3.1区域分析 (21)5.3.2制件质量分析 (21)5.3.3注射压力分析 (22)5.3.4最低流动前沿温度分析 (22)5.3.5最大剪切应力分析 (23)5.3.6最大冷却时间分析 (23)5.4充填分析 (24)5.4.1充填时间分析 (24)5.4.2气穴位置分析 (24)5.4.3熔接痕 (25)5.4.4流动前沿处的温度 (26)5.4.5充填分析过程信息 (27)第六章成型零件设计 (29)6.1成型零件的结构设计 (29)6.2成型零件工作部分尺寸的计算 (30)6.2.1型腔径向尺寸 (30)6.2.2型芯径向尺寸 (30)6.2.3型腔深度尺寸 (31)6.2.4型芯高度尺寸 (31)6.3模具型腔侧壁和底板厚度的计算 (32)6.3.1模具型腔壁厚度的计算 (32)6.3.2模具型腔底板厚度计算 (32)6.4合模导向机构设计 (33)6.5推出机构的设计 (34)6.5.1脱模力的计算 (34)6.5.2 推出机构的设计 (35)6.6 模架专用零件选取 (35)6.6.1 定模座板 (35)6.6.2 定模板 (35)6.6.3动模板 (35)6.6.4垫块 (35)6.6.4动模座板 (36)6.6.5推板 (36)6.6.6推杆固定板 (36)6.7 注射机模具安装尺寸的校核 (36)6.7.2定位环尺寸校核 (36)6.7.3模具厚度校核 (36)6.7.4开模行程的校核 (37)6.7.5注射机与模具安装尺寸的校核 (37)6.7.6最大注射量校核 (37)6.7.7注射压力校核 (37)6.7.8塑件在分型面上的投影面积校核 (38)6.7.9锁模力的校核 (38)6.7.10顶出装置的校核 (39)第七章模具的工作过程 (39)7.1模具合模与锁紧 (39)7.2模具成型过程 (39)7.3 模具开模过程 (40)7.4模具复位过程 (42)结论 (43)参考文献 (44)前言现今我国模具工业呈现新的发展特点与趋势,结构调整等方面取得了不少成绩,信息社会经济全球化不断发展进程,模具行业发展趋势主要是模具产品向着更大型、更精密、更复杂及更经济快速方面发展。

模流分析报告解读范例

模流分析报告解读范例

DESIGN SOLUTIONS
该产品Z向变形最主要原因,是纤维取向。可通过优化浇 口位置和产品结构,来降低变形。
29
分析结果列示
充填模式 波前温度 (℃) 最大注射压力 (MPa) 最大锁模力 (T) 最大剪切速率 (1/s) 最大剪切应力 (MPa) 熔接纹 & 困气 体积收缩 (%Volume) 成型周期 (s) 变形X/Y/Z (mm)
DESIGN SOLUTIONS
26
Deflection, all effects: Y Component
该产品Y向均匀收缩。请在模具设计时,设置合理的收缩率。
DESIGN SOLUTIONS
27
Deflection, all effects: Z Component
3.4mm 4.9mm 3.6mm
7
成型工艺参数
料温 (℃)
成型机参数:
海天
1000T
螺杆直径: 100mm
最大行程: 48cm
最大注射压力:211Mpa
最大注射速率:700cm^3/s
280
模温 (℃)
85
冷却水路进水口温度 (℃) 70
充填时间 (S)
2.8
V/P切换 (mm螺杆位置) 15
保压时间 (S)
5
3
2
保压压力 (MPa)
该产品X向最大变形量:2.6mm。请确认是否符合装配要求。
25
Deflection, X, Different Cooling、Shrinkage、Orientation & Corner Effects
该产品X向变形最主要原因,是收缩不均匀和纤维取向。 可通过优化浇口位置和产品结构,来降低X向变形。

模流分析

模流分析

模具厂所接的订单的和一般公司还有所不同,我们所接的模具订单各种各样,工程师的经验有时毕竟有限,所以借助MOLDFLOW软件的分析功能,对我们设计模具帮助很大。

案例一,CLIP设计:此产品为一固定U盘的回行夹。

如下图所示,标示处变形量要求较严格,以往生产出来的产品此处变形常常偏大,我们的工程师考虑先在模具设计时设定一方向的预变形,与产品变形相互抵消,保证产品符合要求的。

问题是此预变形量多大,方向如何,设计前并不知道,如果预变形做的太大,将来产品可能就会反向变形。

借助MOLDFLOW软件的FLOW COOL WARP 模块,我们先分析出产品可能的变形量,在此基础上,给模具设计一合理的预变形量,从而一次试模成功,获得了合格的产品。

案例二,memorex-bottom-top 设计:[/ALIGN]此套模具为2+2 模穴,设计为自然平衡流道,如果不经过分析,模具设计者很难想到要在标示处加强排气,只能等试模时才能发现问题,必然会提高整个产品上市周期。

经过MOLDFLOW 软件的FLOW 模块分析后,我们在模具设计前就已经知道此问题,所以模具设计时特意在此处加强排气,保证一次试模成功。

还有一些案例解决流道平衡的问题,一模多腔的设计,通过控制流道尺寸,保证流动平衡,从而控制产品品质。

避免由于流动不平衡带来过保压现象,导致产品翘曲变形。

同时优化流道尺寸设计还有一个很大的益处就是减小循环周期。

因为很多情况下,产品最后凝固在流道处,如果流道尺寸偏大,必然提高整个循环周期,同时还会产生较多的废料。

电池盖部件是我们运用MOLDFLOW软件的又一成功案例。

此产品是薄壁件,难以填充。

在分析之前,解决它的方法是加大注射压力,提高注射速度,强制成型。

这样一方面机器磨损较大,另外高压高速注射后的产品内部残余应力较大,产品品质仍然无法保证。

采用MOLDFLOW分析后,采用局部加厚的方法,改善了产品的流动,从而使公司可以利用较小的压力和较低的注射速度成型。

Moldflow注塑模具成型过程分析实例_完整经典

Moldflow注塑模具成型过程分析实例_完整经典

Moldflow注塑模具成型过程分析实例_完整经典冷却+流动+翘曲分析实验报告⼀、问题描述⽤Moldflow分析如图1所⽰产品在注塑过程中的冷却(Cool)、流动(Flow)、翘曲(Warp)情况。

图1 分析产品模型其中,相关参数设置如下:材料:Generic PP:Generic Default模具温度:40℃料温:230℃开模时间:5S填充+保压+冷却时间:参数值为30SFilling control: AutomaticVelocity/pressure switch-over: By %volume filled 设置为97%选中Isolate cause of warpage⼆、问题分析按照Moldflow的⼀般分析过程,本产品的分析流程图如图2所⽰。

图2 本产品分析流程图三、解题步骤1.导⼊产品模型点击File→Import,选取待分析的产品模型,点击“打开”。

在弹出的“模型导⼊选项设置”对话框中,⽹格类型选“Fusion”,模型单位设置为“Millimeters”。

单击“OK”完成设置。

此时弹出“项⽬创建”对话框,在“Project”⼀栏设置项⽬名称,本实验取名为“CFW”。

在“Create in”⼀栏选取项⽬保存地址。

单击“OK”完成项⽬创建。

此时,窗⼝中会显⽰出导⼊的模型。

以防分析中修改变动,习惯先对模型进⾏复制。

对着左上⾓“Project”栏内的模型名称,在右击菜单中选择“Duplicate”,完成模型复制。

其后操作都在复制的模型中进⾏。

⼀般在做流动分析时,要求产品锁模⼒⽅向(⼀般也为产品分型⾯的垂直⽅向)与Z轴的正⽅向⼀直。

此时的模型位姿不对(如图3所⽰),需要⽤旋转命令对模型进⾏旋转操作。

执⾏Modeling→Move\Cope→Rotate,在左侧选项栏中,点击“Select”⼀栏的选框,其意思为选取旋转对象,框选产品模型。

“Axis”⼀栏选取X轴。

“Angle”填写90。

moldflow模流分析经典案例

moldflow模流分析经典案例

前挡泥板试模工艺卡(根据模流分析而来)
温度 235 240 230 220 205 190 175
储料 位置mm 170 射退 位置mm 5
压力bar 60 压力% 20
速度% 60 速度% 10
背压% 5
模温 °C 烘料
阀式浇口 G1 G2 G3 G4
定模 45 80度
打开时间点 0 1.2 1.2 1.9 2.8 2.8 2.9 2.5 2.5 2.8
动模 45 2-4小时
持续时间 4 2.8 2.8ቤተ መጻሕፍቲ ባይዱ3.1 2.8 2.7 2.6 1.5 1.5 1.2
压力 速度 位置mm KGF mm/s 60 44 139 60 80 80 60 87 35 60 63 25 0 0 20 冷却时间s
注射
保压 压力 bar 30 0 0
速度% 10 0 0
前风窗盖板
该注塑零件在安装时雨刷安装孔与车身钣金孔位置偏离了3mm, 导致无法装车
X方向翘曲变形量
雨刷安装孔
通过模流分析发现红色方框区域内收,导致雨刷安装孔位置偏移。 于是建议预先将雨刷孔作大3mm,待试模工艺稳定后再根据装配孔 的便宜方向来调整塑件上雨刷安装孔的位置和大小;最终得到解决。
2
前挡泥板
反变形处理
对下图中红色线框区域做反 变形处理
反变形点云和重新建构的表面
做与变形后,最终零件周边轮廓度在公差之内
模流分析变形结果
最大变形5.14mm,用矫形工装也无法使零件恢复正常 形状尺寸。螺钉孔的位置度和底面的平面度也远远超 出公差范围
这些位置变形量很大,远远 超出了设计公差范围。
模流分析得到反变形点云后,重新建 模生成实体
反变形实体
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相关文档
最新文档