第三章 晶体缺陷

合集下载

晶体缺陷

晶体缺陷

(1 2)
2ClCl CaCl2 KCl Cai 2VK
(1 3)

KCl
表示KCl作为溶剂。 以上三种写法均符合缺陷反应规则。
实际上(1-1)比较合理。
(2) MgO溶解到Al2O3晶格中
2 MgO 2 Mg V Al O 2OO Al2O3
(1-4)
3 MgO 2 Mg Al Mgi 3OO Al2O3
(1-5)
(1-5〕较不合理。因为Mg2+进入间隙位置不易发生。
练习
写出下列缺陷反应式:
(1) MgCl2固溶在LiCl晶体中(产生正离子空位,生成置换型SS)
(2) SrO固溶在Li2O晶体中(产生正离子空位,生成置换型SS)
有些情况下,价电子并不一定属于某个特定位置的原子,在 光、电、热的作用下可以在晶体中运动,原固定位置称次自 由电子(符号e/ )。同样可以出现缺少电子,而出现电子空 穴(符号h. ),它也不属于某个特定的原子位置。
(6)带电缺陷 不同价离子之间取代如Ca2+取代Na+——Ca · Na Ca2+取代Zr4+——Ca”Zr
Schottky空位的产生
2 杂质缺陷
概念——杂质原子进入晶体而产生的缺陷。原子进入 晶体的数量一般小于0.1%。 种类——间隙杂质 置换杂质 特点——杂质缺陷的浓度与温度无关, 只决定于溶解度。 存在的原因——本身存在
有目的加入(改善晶体的某种性能)
3 非化学计量结构缺陷(电荷缺陷) 存在于非化学计量化合物中的结构缺陷,化合物化学 组成与周围环境气氛有关;不同种类的离子或原子数之比 不能用简单整数表示。如: ;
占据在原来基体原子平衡位置上的异类原 子称为置换原子。 由于原子大小的区别也会造成晶格畸变, 置换原子在一定温度下也有一个平衡浓度值, 一般称之为固溶度或溶解度,通常它比间隙原 子的固溶度要大的多。

第3章晶体缺陷

第3章晶体缺陷

• An interstitial defect is formed when an extra atom is inserted into the crystal structure at a normally unoccupied position. • Interstitial atoms, although much smaller than the atoms located at the lattice points, are still larger than the interstitial sites that they occupy, consequently, the surrounding crystal region is compressed and distorted.
பைடு நூலகம்
• • • • • • • • • •
离开平衡位置的原子有三个去处: 离开平衡位置的原子有三个去处: (1)形成Schottky空位(vacancy) (1)形成 形成Schottky空位 vacancy) 空位( (2)形成Frankely缺陷 (2)形成 形成Frankely缺陷 (3)跑到其它空位上使空位消失或移位。 (3)跑到其它空位上使空位消失或移位 跑到其它空位上使空位消失或移位。 点缺陷的类型: 点缺陷的类型: (1)空位 间隙原子(异类)( )(interstital (2)间隙原子(异类)(interstital atom) 自间隙原子(同类) self(3)自间隙原子(同类) (self- interstital atom ) 外来杂质原子: (4)外来杂质原子: 置换原子( atom) (5)置换原子(substitutional atom) :
Crystal Defects

ch3.2 晶体缺陷--线缺陷(位错)(06级)

ch3.2 晶体缺陷--线缺陷(位错)(06级)

第三章 晶体缺陷 ③ 滑移面必须是同时包含有位错线和滑移矢量的平面。位 错线与滑移矢量互相垂直,它们构成平面只有一个。 ④ 晶体中存在刃位错后,位错周围的点阵发生弹性畸变,既 有正应变,也有负应变。点阵畸变相对于多余半原子面是左右对 称的,其程度随距位错线距离增大而减小。就正刃型位错而言, 上方受压,下方受拉。 ⑤ 在位错线周围的畸变区每个原子具有较大的平均能量。 畸变区是一个狭长的管道。
第三章 晶体缺陷 (3) 柏氏矢量的唯一性。即一根位错线具有唯一的柏氏矢 量。它与柏氏回路的大小和回路在位错线上的位臵无关,位 错在晶体中运动或改变方向时,其柏氏矢量不变。 (4) 位错的连续性:可以形成位错环、连接于其他位错、终 止于晶界或露头于表面,但不能中断于晶体内. (5) 可用柏氏矢量判断位错类型 刃型位错: ξe⊥be,右手法则判断正负 螺型位错: ξs∥bs,二者同向右旋,反向左旋 (6) 柏氏矢量表示晶体滑移方向和大小.位错运动导致晶 体滑移时,滑移量大小|b|,滑移方向为柏氏矢量的方向。 (7) 刃型位错滑移面为ξ与柏氏矢量所构成的平面,只有一 个;螺型位错滑移面不定,多个。 (8) 柏氏矢量可以定义为:位错为柏氏矢量不为0的晶体缺 陷。
第三章 晶体缺陷 (3) 混合位错的滑移过程 沿位错线各点的法线方向在滑移面上扩展,滑动方向垂 直于位错线方向。但滑动方向与柏氏矢量有夹角。(hhwc1)
第三章 晶体缺陷
2. 位错的攀移
• 位错的攀移(climbing of disloction) :在垂直于滑移面方 向上运动 • 攀移的实质:刃位错多余半原子面的扩大和缩小,它是通过 物质迁移即原子或空位的扩散来实现的。 • 刃位错的攀移过程:正攀移,向上运动;负攀移, 向下运动 • 注意:只有刃型位错才能发生攀移;滑移不涉及原子扩散, 而攀移必须借助原子扩散;外加应力对攀移起促进作用,压 (拉)促进正(负)攀移;高温影响位错的攀移 • 攀移运动外力需要做功,即攀移有阻力。粗略地分析,攀移 阻力约为Gb/5。 • 螺型位错不止一个滑移面,它只能以滑移的方式运动,它是 没有攀移运动的。 • 攀移为非守恒(或非保守)运动,而滑移为守恒(或保守) 运动。

第三章晶体缺陷

第三章晶体缺陷
形成缺陷时,基质晶体中的原子数会发生变化,外加杂质进入 基质晶体时,系统原子数增加,晶体尺寸增大;基质中原子逃逸 到周围介质中时,晶体尺寸减小。

(2)质量平衡: 与化学反应方程式相同,缺陷反应方程式两边的质量应该相等。需 要注意的是缺陷符号的右下标表示缺陷所在的位置,对质量平衡无 影响。 (3)电中性: 电中性要求缺陷反应方程式两边的有效电荷数必须相等。 2. 缺陷反应实例 1)杂质(组成)缺陷反应方程式──杂质在基质中的溶解过程 杂质进入基质晶体时,一般遵循杂质的正负离子分别进入基质的 正负离子位置的原则,这样基质晶体的晶格畸变小,缺陷容易形成。 在不等价替换时,会产生间隙质点或空位。
浓度超过平衡浓度。
在晶体中,位于点阵结点上的原子并非静止的,而是以其平衡位置为中 心作热振动。原子的振动能是按几率分布,有起伏涨落的。当某一原子具有足 够大的振动能而使振幅增大到一定限度时,就可能克服周围原子对它的制约作 用,跳离其原来的位置,使点阵中形成空结点,称为空位。 离开平衡位置的原子有三个去处: 一是迁移到晶体表面或内表面的正常结点位置上,而使晶体内部留下空位,称 为肖脱基(Schottky)空位; 二是挤人点阵的间隙位置,而在晶体中同时形成数目相等的空位和间隙原子, 则称为弗兰克尔(Frenkel)缺陷; 三是跑到其他空位中,使空位消失或使空位移位。
6.缔合中心 电性相反的缺陷距离接近到一定程度时,在库仑力作用下会缔合成一组 或一群,产生一个缔合中心, VM和VX发生缔合,记为(VMVX)。
(二) 缺陷反应表示法
对于杂质缺陷而言,缺陷反应方程式的一般式:
1.写缺陷反应方程式应遵循的原则 与一般的化学反应相类似,书写缺陷反应方程式时,应该遵循 下列基本原则: (1)位置关系 (2)质量平衡 (3)电中性

材料科学基础第三章晶体缺陷

材料科学基础第三章晶体缺陷

够的能量而跳入空位,并占据这个平衡位置,这时在这个原 子的原来位置上,就形成一个空位。这一过程可以看作是空 位向邻近结点的迁移。
在运动过程中,当间隙原子与一个空位相遇时,它将落入
这个空位,而使两者都消失,这一过程称为复合,或湮没。
(a)原来位置;
(b)中间位置;
(c)迁移后位置
图 空位从位置A迁移到B
2 Ar a 3 N A 8.57 (3.294108 )3 6.0231023 x 1 2 Ar 2 92.91 7.1766103 106 7.1766103 7176 .6(个) 所以, 106 个Nb中有7176 .6个空位。
a NA
作业:
二.本章重点及难点 1、点缺陷的形成与平衡浓度 2、位错类型的判断及其特征、伯氏矢量的特征和物理意义 3、位错源、位错的增殖(F-R源、双交滑移机制等)和运动、 交割
4、关于位错的应力场可作为一般了解
5、晶界的特性(大、小角度晶界)、孪晶界、相界的类型
维纳斯“无臂” 之美更深入人心
处处留心皆学问
2.点缺陷的形成(本征缺陷的形成)
点缺陷形成最重要的环节是原子的振动 原子的热振动
(以一定的频率和振幅作振动)
原子被束缚在它的平衡位置上,但原子却在做着挣脱
束缚的努力
点缺陷形成的驱动力:温度、离子轰击、冷加工
在外界驱动力作用下,哪个原子能够挣脱束缚,脱离
平衡位置是不确定的,宏观上说这是一种几率分布
刃型位错的特点:
1).刃型位错有一个额外的半原子面。其实正、负之分只具 相对意义而无本质的区别。 2).刃型位错线可理解为晶体中已滑移区与未滑移区的边界 线。它不一定是直线,也可以是折线或曲线,但它必与滑移 方向相垂直,也垂直于滑移矢量。

上海交通大学 材料科学基础第三章 晶体缺陷ppt课件

上海交通大学 材料科学基础第三章 晶体缺陷ppt课件
ppt课件 23
混合位错
混合位错:滑移矢量既不平行业不垂直于位错线, 而是与位 错线相交成任意角度。 一般混合位错为曲线形式, 故每一点的滑移矢量 式相同的, 但其与位错线的交角却不同。 ppt课件
24
各种位错的柏氏矢量
ppt课件
25
柏氏矢量的物理意义
1。反映位错周围点阵畸变的总积累(包括强度 和取向) 2。 该矢量的方向表示位错运动导致晶体滑移 的方向, 而该矢量的模表示畸变的程度称为位 错的强度。 (strength of dislocation)
ppt课件
G tm 0.1G 2
13
t m 0.01 0.1G
计算中的假设
• 1。完整晶体,没有缺陷 • 2。整体滑动 • 3。正弦曲线(0.01-0.1G)
问题出在假设1和2上!应是局部滑移!
日常生活和大自然的启示=〉
ppt课件 14
有缺陷晶体的局部滑动
小宝移大毯!
毛毛虫的蠕动
面缺陷 (plane defect) 在一个方向上尺寸很小
ppt课件 二维缺陷 (two-dimensional defect) 3
课程安排
点缺陷 课 程 安 排 (第1周)
位错几何 (第1、2周)
位错力学
(第2周)
位错运动、实际晶体中的位错(第3、4周) 表面与界面 (第4、5周) 课堂讨论 (第5周)
Ee e W
Ees
m e
R
r
x z dr t dx
0 r r
b
R
b
0
Gx Gb 2 R zdr x dx ln 2 1 4 1 r0
Gb R ln 4 r0
e e s e

《材料科学基础》 第03章 晶体缺陷


第三节 位错的基本概念
三、位错的运动
刃位错的攀移运动:刃型位错在垂直于滑移面方向上的运动。 刃位错发生攀移运动时相当于半原子面的伸长或缩短,通常把 半原子面缩短称为正攀移,反之为负攀移。 滑移时不涉及单个原子迁移,即扩散。刃型位错发生正攀 移将有原子多余,大部分是由于晶体中空位运动到位错线上的 结果,从而会造成空位的消失;而负攀移则需要外来原子,无 外来原子将在晶体中产生新的空位。空位的迁移速度随温度的 升高而加快,因此刃型位错的攀移一般发生在温度较高时;另 外,温度的变化将引起晶体的平衡空位浓度的变化,这种空位 的变化往往和刃位错的攀移相关。切应力对刃位错的攀移是无 效的,正应力的存在有助于攀移(压应力有助正攀移,拉应力 有助负攀移),但对攀移的总体作用甚小。
第一节 材料的实际晶体结构
二、晶体中的缺陷概论
晶体缺陷按范围分类:
1. 点缺陷 在三维空间各方向上尺寸都很小,在原 子尺寸大小的晶体缺陷。
2. 线缺陷 在三维空间的一个方向上的尺寸很大(晶 粒数量级),另外两个方向上的尺寸很小(原子尺 寸大小)的晶体缺陷。其具体形式就是晶体中的 位错Dislocation 。
说明:这是一个并不十分准确的定义方法。柏氏矢量的方向与位错线方向的定义有关,应该首 先定义位错线的方向,再依据位错线的方向来定柏氏回路的方向,再确定柏氏矢量的方 向。在专门的位错理论中还会纠正。
第三节 位错的基本概念
二、柏氏矢量
柏氏矢量与位错类型的关系:
刃型位错 柏氏矢量与位错线相互垂直。(依方向关系可 分正刃和负刃型位错) 螺型位错 柏氏矢量与位错线相互平行。(依方向关系可 分左螺和右螺型位错) 混合位错 柏氏矢量与位错线的夹角非0或90度。
过饱和空位 晶体中含点缺陷的数目明显超过平衡 值。如高温下停留平衡时晶体中存在一平衡空位, 快速冷却到一较低的温度,晶体中的空位来不及移 出晶体,就会造成晶体中的空位浓度超过这时的平 衡值。过饱和空位的存在是一非平衡状态,有恢复 到平衡态的热力学趋势,在动力学上要到达平衡态 还要一时间过程。

第三章-晶体结构缺陷

第三章晶体结构缺陷【例3-1】写出MgO形成肖特基缺陷的反应方程式。

【解】MgO形成肖特基缺陷时,表面的Mg2+和O2-离子迁到表面新位置上,在晶体内部留下空位,用方程式表示为:该方程式中的表面位置与新表面位置无本质区别,故可以从方程两边消掉,以零O(naught)代表无缺陷状态,则肖特基缺陷方程式可简化为:【例3-2】写出AgBr形成弗伦克尔缺陷的反应方程式。

【解】AgBr中半径小的Ag+离子进入晶格间隙,在其格点上留下空位,方程式为:【提示】一般规律:当晶体中剩余空隙比较小,如NaCl型结构,容易形成肖特基缺陷;当晶体中剩余空隙比较大时,如萤石CaF2型结构等,容易产生弗伦克尔缺陷。

【例3-3】写出NaF加入YF3中的缺陷反应方程式。

【解】首先以正离子为基准,Na+离子占据Y3+位置,该位置带有2个单位负电荷,同时,引入的1个F -离子位于基质晶体中F-离子的位置上。

按照位置关系,基质YF3中正负离子格点数之比为1/3,现在只引入了1个F-离子,所以还有2个F-离子位置空着。

反应方程式为:可以验证该方程式符合上述3个原则。

再以负离子为基准,假设引入3个F-离子位于基质中的F-离子位置上,与此同时,引入了3个Na+离子。

根据基质晶体中的位置关系,只能有1个Na+离子占据Y3+离子位置,其余2个Na+位于晶格间隙,方程式为:此方程亦满足上述3个原则。

当然,也可以写出其他形式的缺陷反应方程式,但上述2个方程所代表的缺陷是最可能出现的。

【例3-4】写出CaCl2加入KCl中的缺陷反应方程式。

【解】以正离子为基准,缺陷反应方程式为:以负离子为基准,则缺陷反应方程式为:这也是2个典型的缺陷反应方程式,与后边将要介绍的固溶体类型相对应。

【提示】通过上述2个实例,可以得出2条基本规律:(1)低价正离子占据高价正离子位置时,该位置带有负电荷。

为了保持电中性,会产生负离子空位或间隙正离子。

(2)高价正离子占据低价正离子位置时,该位置带有正电荷。

晶体结构缺陷

离子晶体中基本点缺陷类型
4)溶质原子:LM表达L溶质处于M位置,SX表达S溶质处 于X位置。 例:Ca取代了MgO晶格中旳Mg写作CaMg, Ca若填隙在MgO晶格中写作Cai。
5)自由电子及电子空穴:自由电子用符号e′表达。电子空 穴用符号h·表达。它们都不属于某一种特定旳原子全部, 也不固定在某个特定旳原子位置。
VO••
3OO
1 2
O2
例2:CaCl2溶解在KCl中:
产生K空位 ,合 理
CaCl2 KCl CaK• VK' 2ClCl
CaCl2 KCl CaK• Cli' ClCl
Cl-进入填隙位, 不合理
CaCl2 KCl Cai•• 2VK' 2ClCl
Ca进入填 隙位,不合

例3:MgO溶解到Al2O3晶格内形成有限置换型固溶体:
荷。为了保持电中性,会产生阴离子空位或间隙阳离子; 2、高价阳离子占据低价阳离子位置时,该位置带有正电
荷,为了保持电中性,会产生阳离子空位或间隙阴离子。
举例:
例1:TiO2在还原气氛下失去部分氧,生成TiO2-x旳反应能 够写为:
2TiO2
2TiT' i
VO••
3OO
1 2
O2
2Ti
4OO
2TiT' i
克罗格-明克符号系统
1、 缺陷符号旳表达措施 (以MX离子晶体为例) 1)空位:VM和VX分别表达M原子空位和X原子空位,V表达缺陷种类,
下标M、X表达原子空位所在位置。
VM〞=VM +2eˊ VX‥ = VX +2 h·
2)填隙原子:Mi和Xi分别表达M及X原子 处于晶格间隙位置 3)错放位置:MX表达M原子被错放在X位置上, 这种缺陷较少。

材料科学基础第三章 晶体缺陷


贵州师范大学
化学与材料科学学院
SCHOOL OF CHEMISTRY AND MATERIAL SCIENCE OF GUIZHOU NORMAL UNIVERSITY
贵州师范大学
化学与材料科学学院
二、点缺陷的产生 1. 平衡点缺陷及其浓度 虽然点缺陷的存在使晶体的内能增高,但 同时也使熵增加,从而使晶体的能量下降。因 此,点缺陷是晶体中热力学平衡的缺陷。 等温等容条件下,点缺陷使晶体的亥姆霍 A U T S 兹自由能变化为:
SCHOOL OF CHEMISTRY AND MATERIAL SCIENCE OF GUIZHOU NORMAL UNIVERSITY
贵州师范大学
化学与材料科学学院
三、点缺陷与材料行为 1. 点缺陷的运动 1)空位的运动
2)间隙原子的运动 3)空位片的形成
SCHOOL OF CHEMISTRY AND MATERIAL SCIENCE OF GUIZHOU NORMAL UNIVERSITY
贵州师范大学
化学与材料科学学院
第三章 晶体缺陷
CRYSTAL DEFECTS
点缺陷 位错的基本概念 位错的弹性性质 作用在位错线上的力 实际晶体结构中的位错 晶体中的界面
SCHOOL OF CHEMISTRY AND MATERIAL SCIENCE OF GUIZHOU NORMAL UNIVERSITY
贵州师范大学
化学与材料科学学院
一、点缺陷的类型
点缺陷的类型: (a) Schottky 空位; (b) Frenkel 缺陷; (c) 异类间隙原子; (d) 小置换原子; (e) 大置换原子
SCHOOL OF CHEMISTRY AND MATERIAL SCIENCE OF GUIZHOU NORMAL UNIVERSITY
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
31
螺型位错的应力场
连续介质模型:
中空圆柱(不考虑位错 中心区) 圆柱坐标:方便(利用 其轴对称特性!)
直角坐标
τ= τ= yz zy
位移:uz, 其余分量为零 应变:gqz=b/2pr=gzq, 其余分量为零
Gb x 2 , 2 2π x + y Gb y τ zx = τ xz = − 2 , 2 2π x + y σ= σ= σ= σ= σ= 0。 xx yy zz xy yx
T = [σ ] • n
T

矢量 二阶张量 矢量
n
30
失量与张量的坐标转换
3 3’ P(P’) 2’ 1 1’ 2 2’ 3’ 1 1’ L11 L21 L31 2 L12 L22 L32 3 L13 L23 L33 夹角余弦矩阵
矢量: Pi’ = ΣLij*Pj, j=1,2,3 张量: σIJ’ = ΣΣLIi*LJj*σij; i,j=1,2,3
*过饱和空位:
高温淬火、冷加工、辐照
*点缺陷对性能的影响
1。电阻增大 2。提高机械性能 3。有利于原子扩散 4。体积膨胀,密度减小
8
第二部分 位错概念与位错几何
9
位错举例:刃位错与螺位错
刃位错
螺位错
10
位错概念的提出(一)
材料科学中的有关晶体的核心概念之一; 《材料科学基础》中最难懂的概念。
假说:1934年 证实:上世纪50年代,电镜实验观察
23
混合位错
混合位错:滑移矢量既不平行业不垂直于位错线, 而是与位 错线相交成任意角度。 一般混合位错为曲线形式, 故每一点的滑移矢量 式相同的, 但其与位错线的交角却不同。
24
各种位错的柏氏矢量
25
柏氏矢量的物理意义
1。反映位错周围点阵畸变的总积累(包括强度 和取向) 2。 该矢量的方向表示位错运动导致晶体滑移 的方向, 而该矢量的模表示畸变的程度称为位 错的强度。 (strength of dislocation)
缘起:单晶体理论强度(滑移的临界剪切应力) 与实验值有巨大差距 理论值:τc=10-2~10-1G 11 实验值:τc=10-8~10-4 G
单晶体理论强度的计算(一)
h a/2
x
x (b)
a
x (c)
x (a)
a/2
x τ ≈ τ m sin 2π ⋅ a
(d)
12
单晶体理论强度的计算(二)
* 畸变区是狭长的管道, 故位错可看成是线缺陷。
21
螺型位错的图像
22
螺型位错的特征
特征: 1)无额外半原子面, 原子错排是轴对称的 2)位错线与柏氏矢量平行,且为直线 3)凡是以螺型位错线为晶带轴的晶带由所有 晶面都可以为滑移面。 4)螺型位错线的运动方向与柏氏矢量相垂直 5) 分左螺旋位错 left-handed screw 符合左手 法则 右 right-handed screw 右 6)螺型位错也是包含几个原子宽度的线缺陷
晶体局部滑动的推进=位错运动 运动前方:未滑动区域 运动后方:已滑动区域 边界:位错所在位置,位 错线 两个几何参量(矢量)表 征位错的几何特征:线缺陷 (不考虑位错核心结构)
位错线方向矢量(切矢量) 滑移矢量(柏氏矢量)
19
柏氏矢量的确定 Burgers Vector
柏氏回路将位错正方向与滑移矢量(柏氏矢量)的正 向关联起来!
• 空位形成能:∆Ev
原子-〉晶体表面 =电子能+畸变能
平衡浓度:
C = A exp( −Q f / RT )
热力学稳定的缺陷: 产生与消亡达致平衡
• 空位迁移频率:
ν = ν Zexp (−∆Em / kT)exp (∆Sm / k )
0
∆Em : 空位迁移能
∆Sm: 空位迁移熵
7
点缺陷浓度及对性能的影响
Imperfections (defects) in Crystals 沈耀
材料楼509B
第三章 晶体缺陷
Email: yaoshen2001@ yaoshen@ Tel: 34203763, 13524655390
1
Imperfections (defects) in Crystals
x x τ ≈ τ m sin 2π ⋅ ≈ τ m 2π ⋅ a a x →0
x τ = Gγ = G ⋅ h G a ⋅ τm = a≈h 2π h
G ∝ 0.1G τm ≈ 2π
13
τ m ∝ 0.01 − 0.1G
计算中的假设
• 1。完整晶体,没有缺陷 • 2。整体滑动 • 3。正弦曲线(0.01-0.1G)
32
应力:tqz = tzq = Ggqz = Gb/2pr, 虎克定律;其余分量为零
螺型位错的应力场的特点
• 只有切应力分量,无体积变化 • 应变、应力场为轴对称 • 1/r 规律;r->0, 应力无穷大,不合实际情况, 不适合中心严重畸变区。此规律适用于所 有位错!
33
刃型位错的应力场
连续介质模型: 1。切开,插入半原子面大小的弹性介质 2。中空圆柱,径向平移
r ∫ ∫ ∫ ∫ τ θ dxd=
r 0 r r
R
b
R
b
0
Gx Gb 2 R r dxd= ln 2π (1 −ν ) 4π (1 −ν ) r0
Ees =
m e
Gb R ln 4π r0
e e s e
Gb 2 sin 2 ϕ R Gb 2 cos 2 ϕ R Gb 2 R ln + ln = ln E =E + E = 4π (1 −ν ) r0 4π r0 4πΚ r0
混合位错角度因素:Κ =
1 −ν 螺 K=1 刃 2 1 −ν cos ϕ
K=1- n
36
位错应变能的特点
1)应变能与b2 成正比, 故具有最小b的位错最稳定b, 大的位错有可能分解为b小的位错, 以降低系统能量。 2)应变能随R↑而↑, 故在位错具有长程应力场,其中的 长程应变能起主导作用, 位错中心区能量较小, 可忽略不 计。 3)Es螺/Es刃= 1- ν 常用金属材料ν约为 1/3, 故Es螺/Es刃 =2/3 4)位错的能量还与位错线的形状及长度有关, 两点之间 以直线为最短, 位错总有被拉直的趋势, 产生一线张力。 5)位错的存在→ 体系内能↑, 晶体的熵值↑ 可忽略 因此位错的存在使晶体处于高能的不稳定状态, 可见位 错是热力学不稳定的晶体缺陷。
根 据 几 何 特 征 分 为 三 类 点缺陷 (point defect) 三维空间的各个方向均很小 零维缺陷 (zero-dimensional defect) 线缺陷 (line defect) 在二个方向尺寸均很小 一维缺陷 (one-dimensional defect) 面缺陷 (plane defect) 在一个方向上尺寸很小 二维缺陷 (two-dimensional defect)
刃型位错应力场的特点
同时存正、切应力分量, 正比于Gb 各应变、应力只是(x, y)的函数,平面应变 多余半原子面所在平面为对称平面 Gb 1 滑移面上无正应力、切应力达最大值 2π (1 − γ ) x 上压下拉 Anywhere σ xx > σ yy 特征分界线 x = +-y, τxy, τyy 在其两侧变号, 其上则为零 注意:前述为无限长直位错在无限 35 大均匀各向同性介质中的应力场 • • • • • • •
(1)热运动:强度是温度的函数
能量起伏=〉原子脱离原来的平衡位置而迁移别处
原因:
=〉空位(vacancy)
Schottky 空位,-〉晶体表面 Frenkel 空位,-〉晶体间隙
5
(2)冷加工 (3)辐照
平衡浓度的推导
平衡判据
F:赫姆霍茨自由能
F = U − TS
∂F ∂∆F =0 = ∂n T ∂n T
“It is the defects that makes materials so interesting, just like the human being.”
“Defects are at the heart of materials science.”
第三章 晶体缺陷
2
实际晶体中的缺陷
• 晶体缺陷:晶体中各种偏离理想结构的区域

σ rr = σ θθ = − D σ zz
0。 τ= τ= τ= τ= xx zx yz zy
sin θ , r = −γ (σ rr + σ θθ ),
34
D=
Gb 2π (1 − γ )
cos θ , r τ= τ= τ= τ= 0。 rz zr zθ θz
τ rθ = τ θ r == D
问题出在假设1和2上!应是局部滑移!
日常生活和大自然的启示=〉
14
有缺陷晶体的局部滑动
小宝移大毯!
毛毛虫的蠕动
存在着某种缺陷---位错(dislocation) 位错的运动(逐步传递)=>晶体的逐步滑移
பைடு நூலகம்15
位错的高分辨图像
16
位错的明场像原理
17
典型的位错明场像照片
18
位错特性: 滑移面上已滑动区域与未滑动区域的边界
*** 1)有一额外原子面, 额外半原子面刃口处的原子列称 *** 2)位错线垂直于滑移矢量,位错线与滑移矢量构成的面
是滑移面, 刃位错的滑移面是唯一的。 3) 半原子面在上,正刃型位错 ┻ ; 在下, 负刃型位错 ┳
*** 4)刃位错的位错线不一定是直线, 可以是折线, 也可以
是曲线, 但位错线必与滑移矢量垂直。 5)刃型位错周围的晶体产生畸变,上压, 下拉, 半原子 面是对称的, 位错线附近畸变大, 远处畸变小。 6)位错周围的畸变区一般只有几个原子宽(一般点阵畸变 程度大于其正常原子间距的1/4的区域宽度, 定义为位错宽度, 约2~5个原子间距。)
相关文档
最新文档