2006年北京市初二数学竞赛试题
2006年全国初中数学联赛试题及答案(修正版)

GFE ABCD P2006年全国初中数学联赛试卷1、在高速公路上,从3千米处开始,每隔4千米经过一个限速标志牌;并且从10千米处开始,每隔9千米经过一个速度监控仪. 刚好在19千米处第一次同时经过这两种设施,那么第二次同时经过这两种设施的千米数是( )(A) 36 (B) 37 (C) 55 (D) 902、已知m =1+2,n =1-2,且(7m 2-14m +a ) (3n 2-6n -7)=8,则a 的值等于( )(A) -5 (B) 5 (C) -9 (D) 93、Rt △ABC 的三个顶点A ,B ,C 均在抛物线y =x 2上,并且斜边AB 平行于x 轴. 若斜边上的高为h ,则( )(A) h <1 (B) h =1 (C) 1<h <2 (D) h >24、一个正方形纸片,用剪刀沿一条不过任何顶点的直线将其剪成两部分;拿出其中一部分,再沿一条不过任何顶点的直线将其剪成两部分;又从得到的三部分中拿出其中之一,还是沿一条不过任何顶点的直线将其剪成两部分……如此下去,最后得到了34个六十二边形和一些多边形,则至少要剪的刀数是( )(A) 2004 (B) 2005 (C) 2006 (D) 20075、如图,正方形ABCD 内接于⊙O ,点P 在劣弧AB 上,连结DP ,交AC 于点Q ,若QP =QO ,则QCQA的值为( )(A) 23-1 (B) 23 (C) 3+2 (D) 3+2二、填空题6、已知a ,b ,c 为整数,且a +b =2006,c -a =2005. 若a <b ,则a +b +c 的最大值为___________.7、如图,面积为a b -c 的正方形DEFG 内接于面积为1的正三角形ABC ,其中a ,b ,c 是整数,且b 不能被任何质数的平方整除,则 a -c b的值等于________.8、正五边形广场ABCDE 的周长为2000米. 甲、乙两分分别从A ,C 两点同时出发,沿A →B →C →D →E →A →…方向绕广场行走,甲的速度为50米/分,乙的速度为46米/分,那么出发后经过________分钟,甲、乙两人第一次开始行走在同一条边上.9、已知0<a <1,且满足[a +1 30]+[a +230]……+[a + 29 30]=18 ([x ]表示不超过x 的最大整数),则[10a ]的值等于__________.10、小明家电话号码原为六位数,第一次升位是在首位号码和第二位号码之间加上数字8,成为一个七位数的电话号码;第二次升位是在首位号码前加上数字2,成为一个八位数的电话号码. 小明发现,他家两次升位后的电话号码的八位数恰是原来电话号码的六位数的81倍,则小明家原来的电话号码是_________.三、解答题 11、已知x =b a,a 、b 为互质的正整数,且a ≤8,2-1<x <3-1.(1)试写出一个满足条件x ; (2)求所有满足条件的x .12、设a ,b ,c 为互不相等的实数,且满足关系式:⎪⎩⎪⎨⎧--=++=+54141622222a a bc a a c b 求a 的取值范围.13、如图,点P为⊙O外一点,过点P作⊙O的两条切线,切点分别为A,B. 过点A做PB的平行线,交⊙O于点C. 连结PC,交⊙O于点E;连结AE,延长AE交PB于点K. 求证:PE •AC=CE •KB14、有2006个都不等于119的正整数a1,a2,…,a2006排列成一行数,其中任意连续若干项之和都不等于119,求a1+a2+…+a2006的最小值.参考答案(1)解:因为4和9的最小公倍数为36,19+36=55,所以第二次同时经过这两种设施的千米数是在55千米处. 故选C .(2)解:由已知可得m 2-2m =1,n 2-2n =1.又(7m 2-14m +a )(3n 2-6n -7)=8, 所以 (7+a )(3-7)=8,解得a =-9 故选C .(3)解:设点A 的坐标为(a ,a 2),点C 的坐标为(c ,c 2)(|c|<|a|),则点B 的坐标为 (-a ,a 2),由勾股定理,得AC 2=(c -a ) 2+(c 2-a 2) 2,BC 2=(c +a ) 2+(c 2-a 2) 2, AC 2+BC 2=AB 2, 所以 (a 2-c 2) 2=a 2-c 2 .由于a 2>c 2,所以a 2-c 2=1,故斜边AB 上高h =a 2-c 2=1 故选B .(4)解:根据题意,用剪刀沿不过顶点的直线剪成两部分时,每剪开一次,使得各部分的内角和增加360°.于是,剪过k 次后,可得(k +1)个多边形,这些多边形的内角和为(k +1)³360°. 因为这(k +1)个多边形中有34个六十二边形,它们的内角和为34³(62-2)³180°=34³60³180°,其余多边形有(k +1)-34=k -33(个),而这些多边形的内角和不少于(k -33)³180°.所以(k +1)³360°≥34³60³180°+(k -33)³180°,解得k ≥2005.当我们按如下方式剪2005刀时,可以得到符合条件的结论.先从正方形上剪下1个三角形,得到1个三角形和1个五边形;再在五边形上剪下1个三角形,得到2个三角形和1个六边形……如此下去,剪了58刀后,得到58个三角形和1个六十二边形.再取33个三角形,在每个三角形上剪一刀,又可得到33个三角形和33个四边形,对这33个四边形,按上述正方形的剪法,再各剪58刀,便34个六十二边形和33³58个三角形.于是共剪了 58+33+33³58=2005(刀). 故选B .(5)解:如图,设⊙O 的半径为r ,QO =m ,则QP =m ,QC =r +m ,QA =r -m . 在⊙O 中,根据相交弦定理,得QA ²QC =QP ²QD 即 (r -m )(r +m )=m ²QD ,所以 QD =r 2-m 2m .连结DO ,由勾股定理,得QD 2=DO 2+QO 2, 即 ( r 2-m 2 m )2=r 2+m 2 ,解得m =33r所以,QC QA =r +mr -m =3+13-1=3+2 故选D .(第7题图)ABCD GFE (6)解:由a +b =2006,c -a =2005,得a +b +c =a +4011.因为a +b =2006,a <b ,a 为整数,所以a 的最大值为1002.于是,a +b +c 的最大值为5013.(7)解:设正方形DEFG 的边长为x ,正三角形ABC 的边长为m ,则m 2=43, 由△ADG ∽△ABC ,可得x m=32 m -x3 2m ,解得x =(23-3)m于是 :x 2=(23-3)m 2=283-48, 由题意,a =28,b =3, c =48,,所以 a -c b=-20 3.(8)解:设甲走完x 条边时,甲、乙两人第一次开始行走在同一条边上,此时甲走了400x 米,乙走了46³400x 50=368x 米.于是368(x -1)+800-400(x -1)>400,所以,12.5≤x <13.5. 故x =13,此时 t = 400³1350=104.(9)解:因为0<a + 1 30 <a +230<……<a +29 30<2,所以[a +130],[a +230],…,[a + 29 30]等于0或1.由题设知,其中有18个等于1,所以 [a +1 30]+[a +230]……+[a +11 30]=0,[a +12 30]+[a +13 30]……+[a +29 30]=1,所以 0<a + 11 30<1 ,1≤a +12 30<2.故18≤30a <19,于是6≤10a < 19 3,所以 [10a ]=6.(10)解:设原来电话号码的六位数为abcdef ,则经过两次升位后电话号码的八位数为 2a 8bcdef .根据题意,有81³abcdef =2a 8bcdef .记x =b ³104+c ³103+d ³102+e ³10+f ,于是81³a ³105+81x =208³105+a ³106+x 解得x =1250³(208-71a ) .因为0≤x <105,所以0≤1250³(208-71a )<105,故128 71<a ≤208 71.因为a 为整数,所以a =2.于是x =1250³(208-71³2)=82500.所以,小明家原来的电话号码为282500.(11)解:(1)x=12满足条件.(2)因为x=ba,a,b为互质的正整数,且a≤8,所以2-1<ba<3-1,即(2-1)a<b<(3-1)a.当a=1时,(2-1)³1<b<(3-1)³1,这样的正整数b不存在.当a=2时,(2-1)³2<b<(3-1)³2,故b=1,此时x=12.当a=3时,(2-1)³3<b<(3-1)³3,故b=2,此时x=23.当a=4时,(2-1)³4<b<(3-1)³4,与a互质的正整数b不存在.当a=5时,(2-1)³5<b<(3-1)³5,故b=3,此时x=35.当a=6时,(2-1)³6<b<(3-1)³6,与a互质的正整数b不存在.当a=7时,(2-1)³7<b<(3-1)³7,故b=3,4,5此时x=37,47,57.当a=8时,(2-1)³8<b<(3-1)³8,故b=5,此时x=5 8 .所以,满足条件的所有分数为12,23,35,37,47,57,58.(12)解:由①-2³②得(b-c) 2=24(a+1)>0,所以a>-1.当a>-1时,b2+c2=2a2+16a+14=2(a+1)(a+7)>0.又当a=b时,由①,②得c2=a2+16a+14,③ac=a2-4a-5④将④两边平方,结合③得a2 ( a2+16a+14)=(a2-4a-5) 2化简得24a3+8a2-40a-25=0,故(6a+5)(4a2-2a-5)=0,解得a=-56,或a=1±214.所以,a的取值范围为a>-1且a≠-56,a≠1±214.(13)证明:因为AC ∥PB ,所以∠KPE =∠ACE .又P A 是⊙O 所以∠KAP =∠ACE ,故∠KPE =∠KAP ,于是△KPE ∽△KAP , 所以KP KA =KE KP,即 KP 2=KE ²KA . 由切割线定理得 KB 2=KE ²KA 所以KP =KB .因为AC ∥PB ,△KPE ∽△ACE ,于是PE CE =KP AC 故 PE CE =KB AC, 即 PE ²AC =CE ²KB(14)解:设10个学生为S 1,S 2,…,S 10 ,n 个课外小组G 1,G 2,…,G n .首先,每个学生至少参加两个课外小组.否则,若有一个学生只参加一个课外小组,设这个学生为S 1,由于每两个学生至少在某一个小组内出现过,所以其它9个学生都与他在同一组出现,于是这一组就有10个人了,矛盾.若有一学生恰好参加两个课外小组,不妨设S 1恰好参加G 1,G 2,由题设,对于这两组,至少有两个学生,他们没有参加这两组,于是他们与S 1没有同过组,矛盾.所以,每一个学生至少参加三个课外小组.于是n 个课外小组G 1,G 2,…,G n 的人数之和不小于3³10=30.另一方面,每一课外小组的人数不超过5,所以n 个课外小组G 1,G 2,…,G n 的人数不超过5n , 故5n ≥30,所以n ≥6.下面构造一个例子说明n =6是可以的.G 1={S 1,S 2,S 3,S 4,S 5},G 2={S 1,S 2,S 6,S 7,S 8},G 3={S 1,S 3,S 6,S 9,S 10}, G 4={S 2,S 4,S 7,S 9,S 10},G 5={S 3,S 5,S 7,S 8,S 9},G 6={S 4,S 5,S 6,S 8,S 10}.容易验证,这样的6个课外小组满足题设条件.所以,n 的最小值为6.。
2006年北京市中学生数学竞赛_高一_

方程 ∀ 的整数解的组数为 ( ). ( A) 0 ( B) 1 ( C) 2 ( D) 2 006 二、 填空题 ( 每小题 7 分, 共 35 分 ) 1. 若| a | = 1, | b | = 2, c = a + b, 且 c # a , 则向量 a 与 b 的夹角为 度. 2. 设 f ( x ) 是定义 在 R 上的奇 函数, 且 y = f ( x ) 的图像关于直线 x = f ( 1) + f ( 2) + 3. 在 ∃ ABC 中, 已知 a+ b sin B a = sin B - sin A , 1 对称. 则 2 + f ( 2 006) = .
图3
= 1! ! ( 2- 1) + 2! ! ( 3- 1) + = ( 2! - 1! ) + ( 3! - 2! ) + = 60! - 1. 所以 , 所求余数是 2 005. 5. A.
+ 59! ! ( 60- 1)
+ ( 60! - 59! )
假设存在整数 x 、 y 满足方程 ∀ . 若 7| ( 2x + 9y ) , 由方程 ∀ 知 7| ( 4x - y ) , 此时 , 方程 ∀ 左边能被 7 2 006 整除 , 但方程 ∀ 右边只能被 7777 整除 . 所以 , 7 ( 2 x + 9 y ) , 7 ( 4x - y ) . 对 a % Z, 7| [ ( a - 3) ( a - 2) ( a - 1) a ( a + 1) ( a+ 2) ( a + 3) ] 7| ( a7 - a ) = a ( a 6 - 1) . 所以 , 7| [ ( 2 x + 9 y ) 6 - 1] , 7| [ ( 4x - y ) 6 - 1] . 从而 , 7| { ( 2 x + 9 y ) 2 [ ( 2 x + 9 y ) 6 ! 334 - 1] } , 7| { ( 4x - y ) 2 [ ( 4x - y ) 6 ! 334 - 1] } . 由式 ∀ 知 7| [ ( 2x + 9 y ) 2 + ( 4 x - y ) 2 ] 7| ( x 2 + 2y 2 ) . 易知 , 任意完全平方数被 7 除余数为 0, 1, 2, 4. 经检验 , 只有当 7| x , 7| y 时 , 7| ( x 2 + 2 y 2 ) . 但此 时 , 7| ( 2x + 9 y ) , 7| ( 4x - y ) , 矛盾 . 所以 , 不存在整数 x 、 y 满足方程 ∀ . 二、 1. 120 ∗. 由c# a c+ a = 0 ( a+ b)+ a= 0 = 1 . 2
2006年全国初中数学竞赛试题(含答案)

选择题1.C具体方法:19+4*9=552.C具体方法:不明3.B具体方法:因为平行,且左右对称,所以原点到三角形斜边与y轴的交点就是高h,所以有y=x, 又因为题目有y=x的平方,解方程组有x=1,x=o(舍去),所以斜边是2,h=1。
4.B具体方法:把4边形剪成62边形,要剪58次,而且剪出来的都是3角形,3角形要剪成62边形要59次,所以总共要剪58+59*33=20055.D具体方法:不明,不过可自己画一幅精确的图去量出来(迫不得已啊……)6. 5013具体方法:把已知的两式相加得b+c=4011,因此只需讨论a的最大值,因为a<b ,所以容易知道a=1002所以最大值为1002+4011=50137.—20/3具体方法:因为正三角形面积为1,可求出3边的值,根据正三角形底边的正方形的边与底边的比值可以求出正方形的一边,接着求出正方形面积为28×根号3—48,因此可求出a=28,b=3,c=48,接着把它们分别代入就求得了8.104具体方法:先求出他们相隔400米时的时间,因为在这之前,他们不可能走在同一条线上,接着当他们相隔400时再向前拐弯,就一定是走在同一条线上,所以求出当他们相隔400米时,甲刚好走了12.5圈所以甲走了13圈时,就跟乙走在同一条线上,所以可求出时间为13×(400÷50)=104 9.6具体方法:根据题意得(1—11/30)<a<(1—12/30),求得0.6 <a<0.633……,所以[10a]=610.282500具体方法:比较抽象麻烦,就不具体说明了,方法是用像根号的那个除法,就是小学2年级学的那种做除法的那种方法,一个个推出a,b,c,d,e,f.三` 11 (1)1/2 2/3 3/5 5/7 4/7 3/7 5/8。
2006全国初中数学联赛试题及答案全

2006年全国初中数学联合竞赛试题第一试一、选择题:(本题满分42分,每小题7分)1.已知四边形ABCD 为任意凸四边形,E 、F 、G 、H 分别是边AB 、BC 、CD 、DA 的中点用S 、p 分别表示四边形ABCD 的面积和周长;S1、p1,分别表示四边形EFGH 的面积和周长.设111,p p k S S k ==.则下面关于1k k 、的说法中,正确的是( )A .1k k 、均为常值.B .k 为常值,1k 不为常值. C.k 不为常值,1k 为常值. D.1k k 、均不为常值.2.已知m 为实数,且ααcos sin 、是关于x 的方程0132=+-mx x 的两根.则4sin α+α4cos 的值为( ) A.92. B.31 . C.97 . D.1.3.关于x 的方程a x x =-|1|2仅有两个不同的实根.则实数a 的取值范围是( )A.a >0.B.a≥4.C.2<a <4.D.0<a <4. 4.设.,02,0222a bc c ab a b >=+->则实数c b a 、、的大小关系是 ( )A.a c b >> .B.b a c >> .C.c b a >> .D.c a b >> .5.b a 、为有理数,且满足等式324163++⨯=+b a ,则b a +的值为 ( )A.2.B.4.C.6.D.8.6.将满足条件“至少出现一个数字0且是4的倍数的正整数”从小到大排成一列数:20,40,60,80,100,104,….则这列数中的第158个数为 ( )A .2000.B .2004.C .2008.D .2012.二、填空题:(本题满分28分,每小题7分)7.函数2008||20062+-=x x y 的图像与x 轴交点的横坐标之和等于 . 8.在等腰ABC Rt ∆中,AC =BC =1,M 是BC 的中点,CE ⊥AM 于点E ,交AB 于点F ,则S △MBF = .9.使16)8(422+-++x x 取最小值的实数x 的值为 .10.在平面直角坐标系中,正方形OABC 的顶点坐标分别为O(0,0)、A(100,0)、B(100,100)、C(0,100).若正方形0ABC 内部(边界及顶点除外)一格点P 满足PO C PAB PBC PO A S S S S ∆∆∆∆⋅=⋅.就称格点P 为“好点”.则正方形OABC 内部好点的个数为 .注:所谓格点,是指在平面直角坐标系中横、纵坐标均为整数的点.第二试(A )一、(本题满分20分)已知关于x 的一元二次方程0)994()32(222=++++++b a x b a x 无相异两实根.则满足条件的有序正整数组)(b a ,有多少组?二、(本题满分25分)如图,D 为等腰△ABC 底边BC 的中点,E 、F 分别为AC 及其延长线上的点.已知∠EDF =90°.ED =DF =1,AD =5.求线段BC 的长.三、(本题满分25分)如图,在平行四边形ABCD 中,∠A 的平分线分别与BC 、DC 的延长线交于点E 、F ,点O 、O1分别为△CEF 、△ABE 的外心.求证: (1)O 、E 、O1三点共线;(2).21ABC OBD ∠=∠ .第二试(B )一、(本题满分20分)题目与(A )卷第一题相同.二、(本题满分25分)题目与(A )卷第二题相同.三、(本题满分25分)如图,在平行四边形ABCD 中,∠A 的平分线分别与BC 、DC 的延长线交于点E 、F ,点O 、O1分别为△CEF 、△ABE 的外心.(1)求证:O 、E 、01三点共线;(2)若,70o ABC =∠求OBD ∠的度数.第二试(C )一、(本题满分20分)题目与(A )卷第二题相同.二、(本题满分25分)题目与(B )卷第三题相同.三、(本题满分25分)设p 为正整数,且2≥p .在平面直角坐标系中,点),0(p A 和点)0,(p B 的连线段通过1-p 个格点,),1,1(1 -p C )1,1(,).,(1---p C i p i C p i .证明: (1)若p 为质数,则在原点O(0,0)与点),(i p i C i-的连线段)1,,2,1(.-=p i OC i 上除端点外无其他格点;(2)若在原点O(0,0)与点),(i p i C i -的连线段)1,,2,1(-=p i OC i 上除端点外无其他格点,则p 为质数. 2007年全国初中数学联合竞赛试题第一试一、选择题:(本题满分42分,每小题7分)1. 已知z y x ,,满足x z z y x +=-=532,则zy y x 25+-的值为( ) A .1. B .31. C .31-. D .21. 2.当x 分别取值20071,20061,20051,…,21,1,2,…,2005,2006,2007时,计算代数式2211xx +-的值,将所得的结果相加,其和等于( ) A .-1. B .1. C .0. D .2007.3. 设c b a ,,是△ABC 的三边长,二次函数2)2(2b a cx x ba y ----=在1=x 时取最小值b 58-,则△ABC 是( ) A .等腰三角形. B .锐角三角形. C .钝角三角形. D )直角三角形.4. 已知锐角△ABC 的顶点A 到垂心H 的距离等于它的外接圆的半径,则∠A 的度数是( )A .30°.B .45°.C .60°.D .75°.5.设K 是△ABC 内任意一点,△KAB 、△KBC 、△KCA 的重心分别为D 、E 、F ,则ABC DEF S S △△:的值为( )A .91.B .92.C .94.D .32. 6.袋中装有5个红球、6个黑球、7个白球,从袋中摸出15个球,摸出的球中恰好有3个红球的概率是( )A .101.B .51.C .103.D .52. 二、填空题:(本题满分28分,每小题7分)1. 设121-=x ,a 是x 的小数部分,b 是x -的小数部分,则=++ab b a 333___ . 2. 对于一切不小于2的自然数n ,关于x 的一元二次方程22(2)20x n x n -+-=的两个根记作n n b a ,(2≥n ),则)2)(2(122--b a )2)(2(133--+b a +)2)(2(120072007--+b a = . 3. 已知直角梯形ABCD 的四条边长分别为6,10,2====AD CD BC AB ,过B 、D 两点作圆,与BA 的延长线交于点E ,与CB 的延长线交于点F ,则BF BE -的值为 .4. 若64100+a 和64201+a 均为四位数,且均为完全平方数,则整数a 的值是 .第二试(A )一、(本题满分20分)设n m ,为正整数,且2≠m ,如果对一切实数t ,二次函数mt x mt x y 3)3(2--+=的图象与x 轴的两个交点间的距离不小于2t n +,求n m ,的值.二、(本题满分25分)如图,四边形ABCD 是梯形,点E 是上底边AD 上一点,CE 的延长线与BA 的延长线交于点F ,过点E 作BA 的平行线交CD 的延长线于点M ,BM 与AD 交于点N .证明:∠AFN =∠DME .三、 (本题满分25分)已知a 是正整数,如果关于x 的方程056)38()17(23=--+++x a x a x 的根都是整数,求a 的值及方程的整数根.第二试(B )一、(本题满分20分)设n m ,为正整数,且2≠m ,二次函数mt x mt x y 3)3(2--+=的图象与x 轴的两个交点间的距离为1d ,二次函数nt x n t x y 2)2(2+-+-=的图象与x 轴的两个交点间的距离为2d .如果21d d ≥对一切实数t 恒成立,求n m ,的值.二、(本题满分25分)题目与(A )卷第二题相同.三、(本题满分25分)设a 是正整数,二次函数a x a x y -+++=38)17(2,反比例函数xy 56=,如果两个函数的图象的交点都是整点(横坐标和纵坐标都是整数的点),求a 的值. A B C D EF M N P第二试(C )一、(本题满分20分)题目与(B )卷第一题相同.二、(本题满分25分)题目与(A )卷第二题相同.三、(本题满分25分)设a 是正整数,如果二次函数a x a x y 710)232(22-+++=和反比例函数x a y 311-=的图象有公共整点(横坐标和纵坐标都是整数的点),求a 的值和对应的公共整点. 2008年全国初中数学联合竞赛试题 第一试 一、选择题:(本题满分42分,每小题7分)1.设213a a +=,213b b +=,且a b ≠,则代数式2211a b+的值为( ) A. 5. B.7. C .9. D.11.2.如图,设AD ,BE ,CF 为三角形ABC 的三条高,若6AB =,5BC =,3EF =,则线段BE 的长为( )A.185.B.4.C.215.D.245. 3.从分别写有数字1,2,3,4,5的5张卡片中任意取出两张,把第一张卡片上的数字作为十位数字,第二张卡片上的数字作为个位数字,组成一个两位数,则所组成的数是3的倍数的概率是( )A.15.B.310.C.25.D.12. 4.在△ABC 中,12ABC ∠=︒,132ACB ∠=︒,BM 和CN 分别是这两个角的外角平分线,且点,M N 分别在直线AC 和直线AB 上,则( )A.BM CN >.B.BM CN =.C.BM CN <.D.BM 和CN 的大小关系不确定.5.现有价格相同的5种不同商品,从今天开始每天分别降价10%或20%,若干天后,这5种商品的价格互不相同,设最高价格和最低价格的比值为r ,则r 的最小值为( )A.39()8.B.49()8.C.59()8.D.98. 6. 已知实数,x y 满足22(2008)(2008)2008x x y y ----=,则223233x y x y -+-2007-的值为( )A.2008-.B.2008.C.1-.D.1.二、填空题:(本题满分28分,每小题7分)1.设51a -=,则5432322a a a a a a a +---+=-.2.如图,正方形ABCD 的边长为1,,M N 为BD 所在直线上的两点,且5AM =,135MAN ∠=︒,则四边形AMCN 的面积为3.已知二次函数2y x ax b =++的图象与x 轴的两个交点的横坐标分别为m ,n ,且1m n +≤.设满足上述要求的b 的最大值和最小值分别为p ,q ,则p q +=4.依次将正整数1,2,3,…的平方数排成一串:149162536496481100121144…,排在第1个位置的数字是1,排在第5个位置的数字是6,排在第10个位置的数字是4,排在第2008个位置的数字是 .第二试(A )一、(本题满分20分) 已知221a b +=,对于满足条件01x ≤≤的一切实数x ,不等式(1)(1)()0a x x ax bx b x bx ------≥ 恒成立.当乘积ab取最小值时,求,a b 的值.二、(本题满分25分) 如图,圆O 与圆D 相交于,A B 两点,BC 为圆D 的切线,点C 在圆O 上,且AB BC =.(1)证明:点O 在圆D 的圆周上.(2)设△ABC 的面积为S ,求圆D 的的半径r 的最小值.三、(本题满分25分)设a 为质数,b 为正整数,且29(2)509(4511)a b a b +=+,求a ,b 的值.第二试(B )一、(本题满分20分)已知221a b +=,对于满足条件1,0x y xy +=≥的一切实数对(,)x y ,不等式220ay xy bx -+≥恒成立.当乘积ab 取最小值时,求,a b 的值.二、(本题满分25分)题目与(A )卷第二题相同.三、(本题满分25分)题目与(A )卷第三题相同. 第二试(C )一、(本题满分20分)题目与(B )卷第一题相同.二、(本题满分25分)题目与(A )卷第二题相同.三、(本题满分25分)设a 为质数,,b c 为正整数,且满足29(22)509(41022511)2a b c a b c b c ⎧+-=+-⎨-=⎩ ,求()a b c +的值. 2009年全国初中数学联合竞赛试题第一试一、选择题:(本题满分42分,每小题7分)1.设1a =,则32312612a a a +--=( )A.24.B. 25.C. 10. D. 12.2.在△ABC 中,最大角∠A 是最小角∠C 的两倍,且AB =7,AC =8,则BC =( )A.103.用[]x 表示不大于x 的最大整数,则方程22[]30x x --=的解的个数为( )A.1.B. 2.C. 3.D. 4.4.设正方形ABCD 的中心为点O ,在以五个点A 、B 、C 、D 、O 为顶点所构成的所有三角形中任意取出两个,它们的面积相等的概率为( ) A.314. B. 37. C. 12. D. 47. 5.如图,在矩形ABCD 中,AB =3,BC =2,以BC 为直径在矩形内作半圆,自点A 作半圆的切线AE ,则sin ∠CBE =( )23. C. 13. 6.设n 是大于1909的正整数,使得19092009n n--为完全平方数的n 的个数是( ) A.3. B. 4. C. 5. D. 6.二、填空题(本题满分28分,每小题7分)1.已知t 是实数,若,a b 是关于x 的一元二次方程2210x x t -+-=的两个非负实根,则22(1)(1)a b --的最小值是____________.2. 设D 是△ABC 的边AB 上的一点,作DE//BC 交AC 于点E ,作DF//AC 交BC 于点F ,已知△ADE 、△DBF 的面积分别为m 和n ,则四边形DECF 的面积为______.3.如果实数,a b 满足条件221a b +=,22|12|21a b a b a -+++=-,则a b +=_ ____. 4.已知,a b是正整数,且满足是整数,则这样的有序数对(,)a b 共有_____对. 第二试(A )一、(本题满分20分)已知二次函数2(0)y x bx c c =++<的图象与x 轴的交点分别为A 、DCB ,与y 轴的交点为C.设△ABC 的外接圆的圆心为点P.(1)证明:⊙P 与y 轴的另一个交点为定点.(2)如果AB 恰好为⊙P 的直径且2ABC S △=,求b 和c 的值.二、(本题满分25分)设CD 是直角三角形ABC 的斜边AD 上的高,1I 、2I 分别是△ADC 、△BDC 的内心,AC =3,BC =4,求1I 2I .三、(本题满分25分)已知,,a b c 为正数,满足如下两个条件:32a b c ++=14b c a c a b a b c bc ca ab +-+-+-++=.第二试(B )一、(本题满分20分)题目与(A )卷第一题相同.二、(本题满分25分) 已知△ABC 中,∠ACB =90°,AB 边上的高线CH 与△ABC 的两条内角平分线 AM 、BN 分别交于P 、Q 两点.PM 、QN 的中点分别为E 、F.求证:EF ∥AB.三、(本题满分25分)题目与(A )卷第三题相同. 第二试(C )一、(本题满分20分)题目与(A )卷第一题相同.二、(本题满分25分)题目与(B )卷第二题相同.三、(本题满分25分)已知,,a b c 为正数,满足如下两个条件:32a b c ++=14b c a c a b a b c bc ca ab +-+-+-++=.2010年全国初中数学联合竞赛试题第一试一、选择题:(本题满分42分,每小题7分)1. 若,,a b c 均为整数且满足1010()()1a b a c -+-=,则||||||a b b c c a -+-+-=( )A .1.B .2.C .3.D .4.2.若实数,,a b c满足等式3||6b =,9||6b c =,则c 可能取的最大值为( )A .0.B .1.C .2.D .3.N A B3.若b a ,是两个正数,且,0111=+-+-ab b a 则( ) A .103a b <+≤. B .113a b <+≤. C .413a b <+≤. D .423a b <+≤. 4.若方程2310x x --=的两根也是方程420x ax bxc +++=的根,则2a b c +-的值为 ( )A .-13.B .-9.C .6.D . 0.5.在△ABC 中,已知︒=∠60CAB ,D ,E 分别是边AB ,AC 上的点,且︒=∠60AED ,CE DB ED =+,CDE CDB ∠=∠2,则=∠DCB ( )A .15°.B .20°.C .25°.D .30°.6.对于自然数n ,将其各位数字之和记为n a ,如2009200911a =+++=,201020103a =+++=,12320092010a a a a a +++++=( )A .28062.B .28065.C .28067.D .28068.二、填空题:(本题满分28分,每小题7分)1.已知实数,x y 满足方程组3319,1,x y x y ⎧+=⎨+=⎩则22x y += .2.二次函数c bx x y ++=2的图象与x 轴正方向交于A ,B 两点,与y 轴正方向交于点C .已知AC AB 3=,︒=∠30CAO ,则c = .3.在等腰直角△ABC 中,AB =BC =5,P 是△ABC 内一点,且PAPC =5,则PB =_____.4.将若干个红、黑两种颜色的球摆成一行,要求两种颜色的球都要出现,且任意中间夹有5个或10个球的两个球必为同一种颜色的球.按这种要求摆放,最多可以摆放______个球.第二试(A )一、(本题满分20分)设整数,,a b c (a b c ≥≥)为三角形的三边长,满足22213a b c ab ac bc ++---=,求符合条件且周长不超过30的三角形的个数.二、(本题满分25分)已知等腰三角形△ABC 中,AB =AC ,∠C 的平分线与AB 边交于点P ,M 为△ABC 的内切圆⊙I 与BC 边的切点,作MD//AC ,交⊙I 于点D.证明:PD 是⊙I 的切线.三、(本题满分25分)已知二次函数2y x bx c =+-的图象经过两点P (1,)a ,Q (2,10)a . N(1)如果,,a b c 都是整数,且8c b a <<,求,,a b c 的值.(2)设二次函数2y x bx c =+-的图象与x 轴的交点为A 、B ,与y 轴的交点为C.如果关于x 的方程20x bx c +-=的两个根都是整数,求△ABC 的面积.第二试(B )一、(本题满分20分)设整数,,a b c 为三角形的三边长,满足22213a b c ab ac bc ++---=,求符合条件且周长不超过30的三角形的个数(全等的三角形只计算1次).二、(本题满分25分)题目与(A )卷第二题相同.三、(本题满分25分)题目与(A )卷第三题相同.第二试(C )一、(本题满分20分)题目与(B )卷第一题相同.二、(本题满分25分)题目与(A )卷第二题相同.三、(本题满分25分)设p 是大于2的质数,k 为正整数.若函数4)1(2-+++=p k px x y 的图象与x 轴的两个交点的横坐标至少有一个为整数,求k 的值.2012年全国初中数学联合竞赛试题第一试一、选择题:(本题满分42分,每小题7分)1.已知,,,那么的大小关系是()A. B. C. D.2.方程的整数解的组数为()A.3. B.4. C.5. D.6.3.已知正方形ABCD的边长为1,E为BC边的延长线上一点,CE=1,连接AE,与CD交于点F,连接BF并延长与线段DE交于点G,则BG的长为()A. B. C. D.4.已知实数满足,则的最小值为()A.. B.0. C.1. D..5.若方程的两个不相等的实数根满足,则实数的所有可能的值之和为()A.0. B.. C.. D..6.由1,2,3,4这四个数字组成四位数(数字可重复使用),要求满足.这样的四位数共有()A.36个. B.40个. C.44个. D.48个.二、填空题:(本题满分28分,每小题7分)1.已知互不相等的实数满足,则.2.使得是完全平方数的整数的个数为.3.在△ABC中,已知AB=AC,∠A=40°,P为AB上一点,∠ACP=20°,则=.4.已知实数满足,,,则=.第二试(A)一、(本题满分20分)已知直角三角形的边长均为整数,周长为30,求它的外接圆的面积.二、(本题满分25分)如图,PA为⊙O的切线,PBC为⊙O的割线,AD⊥OP于点D.证明:.三、(本题满分25分)已知抛物线的顶点为P,与轴的正半轴交于A、B()两点,与轴交于点C,PA是△ABC的外接圆的切线.设M,若AM//BC,求抛物线的解析式.第二试(B)一、(本题满分20分)已知直角三角形的边长均为整数,周长为60,求它的外接圆的面积.二、(本题满分25分)如图,PA为⊙O的切线,PBC为⊙O的割线,AD⊥OP于点D,△ADC的外接圆与BC的另一个交点为E.证明:∠BAE=∠ACB.三、(本题满分25分)题目与(A)卷第三题相同.第二试(C)一、(本题满分20分)题目与(B)卷第一题相同.二、(本题满分25分)题目与(B)卷第二题相同.三、(本题满分25分)已知抛物线的顶点为P ,与轴的正半轴交于A 、B()两点,与轴交于点C ,PA 是△ABC 的外接圆的切线.将抛物线向左平移个单位,得到的新抛物线与原抛物线交于点Q ,且∠QBO =∠OBC.求抛物线的解析式.2011年四川初中数学联赛初赛试题一、选择题:(本题满分42分,每小题7分) 1.如果a ,b ,c 是三个任意的数,那么2b a +,2c b +,2ac +这三个数一定( ) A.都是整数. B.都不是整数. C.至多有两个整数. D.至少有一个整数. 2.关于x 的方程m x x =+-1||22恰好有3个不同的实数根,则实数m 的值等于( ) A.1-. B.0. C.1. D.2.3.ABC ∆中,BAC ∠的平分线交BC 于D ,若BD AB BC +=,︒=∠30C ,则B ∠的度数等于( )A. 45.B. 60.C. 75.D. 90.4.在1,2,3,…,100这100个数之间添上(99个)“+”号或“-”号,使算式的代数和为4150,则“-”号至少可添的个数是( )A.4.B.5.C.6.D.7.5.点P 是矩形ABCD 内部的一点,满足6=PA ,8=PB ,10=PC ,则PD 等于( ) A.25. B.35. C.26. D.28.6.设正数a 、b 、c 、x 、y 、z 满足c by ax =+,a cx bz =+,b az cy =+,则以a 、b 、c 为边长的三角形一定是( )A.锐角三角形.B.直角三角形.C.钝角三角形.D.形状不等确定. 二、填空题:(本题满分28分,每小题7分) 1.已知131+=a ,131-=b ,则baa b +的值为 . 2.如图,矩形ABCD 中,8=AB ,6=AD ,将BDC ∆沿BD 对折为BDE ∆,再将点B 对折与点A 重合,则折痕MN 的长度为 .3.若方程0132=+-x x 的两根也是方程024=+-q px x 的根,则()11q p +的个位数字是 .4.在正方形ABCD 中,P 、Q 分别是BC 、CD 上的点,满足︒=∠20BAP ,︒=∠45PAQ ,则AQP ∠的度数为 .三、(本题满分20分)已知抛物线()02a c bx ax y ++=与直线()412k x k y --=.无论k 取任何实数,此抛物线与直线都只有一个公共点,求抛物线的解析式.DM CBNE A四、(本题满分25分)如图,ABC ∆与ADE ∆都是等腰直角三角形,其中 90=∠=∠DAE BAC ,点M 是线段BE 的中点,求证:DC AM ⊥.五、(本题满分25分)已知a 为实数,若关于x 的方程0143||214442=-+-+a x x x x 有实数解,求实数a 的取值范围.2011年四川初中数学联赛决赛试题一、选择题:(本题满分42分,每小题7分)1.一个凸多边形的每一个内角都等于150°,则这个凸多边形所有对角线的条数总共有( ) A .42条. B .54条. C .66条. D .78条.2.如图,矩形ABCD 的对角线相交于O ,AE 平分∠BAD 交BC 于E .若∠CAE=15°,则∠BOE =( ) A .30°. B .45°. C .60°. D .75°. 3.设方程()()0x a x b x ---=的两根是c ,d ,则方程()()0x c x d x --+=的根分别是( )A .a ,b.B .-a ,-b.C .c ,d.D .-c ,-d. 4.若不等式2133x x a -+-≤有解,则实数a 的最小值是( )A .1.B .2.C .4.D .6.5.若一个三角形的任意两条边都不相等,则称它为“不规则三角形”.用一个正方体上的任意三个顶点构成的所有三角形中,“不规则三角形”的个数是( ) A .18 B .24 C .30 D .36.6.不定方程2225x y -=的正整数解(x ,y )的组数是( ) A .0组. B .2组. C .4组. D .无穷多组. 二、填空题:(本大题满分28分,每小题7分)1.二次函数22y x ax =-+的图象关于直线x=1对称,则y 的最小值是__________. 2.已知1a ,则20122011201022a a a +-的值为_____________.3.已知△ABC 中,AB,BC =6,CAM 是BC 的中点,过点B 作AM 延长线的垂线,垂足为D ,则线段BD 的长度是_______________.4.一次棋赛,有n 个女选手和9n 个男选手参赛,每位选手都与其余10n -1个选手各对局一次.计分方式为:胜者得2分,负者得0分,平局各得1分.比赛结束后统计发现,所有男选手的得分总和是所有女选手得分总和的4倍.则n 的所有可能值是__________. 三、(本题满分20分)已知x 1,x 2是关于x 的一元二次方程22(31)210x a x a +-+-=的两个实数根,使得1212(3)(3)80x x x x --=-成立.求实数a 的所有可能值.DM CBEAO EDCBA四、(本题满分25分)抛物线2y ax bx c =++的图象与x 轴有两个交点M (x 1,0),N (x 2,0),且经过点A (0,1),其中0<x 1<x 2.过点A 的直线l 与x 轴交于点C ,与抛物线交于点B (异于点A ),满足△CAN 是等腰直角三角形, 且S △BMN =52S △AMN .求该抛物线的解析式. 五、(本题满分25分)如图,AD 、AH 分别是△ABC (其中AB>AC)的角平分线、高线,M 是AD 的中点.△MDH 的外接圆交CM 于E .求证:∠AEB =90°.2012年四川初中数学联赛初赛试题一、选择题:(本题满分42分,每小题7分) 1.已知关于x 的方程3x+a=0的根比关于x 的方程5x -a=0的根大2,那么a 的值为( )A .415-. B.415. C.41-. D.45. 2.设a a 312=+,b b 312=+且a ≠b ,则代数式2211ba +的值为( )A.5.B.7.C.9.D.11.3.如图,直线AB ,CD 相交于点O ,∠AOD=30°,半径为1cm 的⊙P 的圆心在射线OA 上,且与点O 得距离为8cm.如果⊙P 以1cm/秒的速度沿由A 到B 的方向移动,那么⊙P 与直线CD 相切所需的时间为( )秒A.6.B.8.C.10.D.6或10. 4.已知7=a,70=b,则9.4等于( )A.10b a +. B.10a b -. C.a b . D.10ab.5.已知0221≠+=+b ab a ,则b a 为( )A.-1.B.1.C.2.D.4.6.如图所示,在梯形ABCD 中,AB ∥CD,AC 交BD 于O,MON ∥AB,且MON 分别交AD 、BC 于M 、N ,则CDMNAB MN +等于( A.1. B. 2. C.3. D.4.二、 填空题:(本题满分28分,每小题7分) 1.有一列数,按1,2,3,4,3,2,1,2,3,4,3,2,1,2,…的规律排列,那么从左往右数,第2012个位置上的数是 .EHMDCBA2.若函数y=kx与函数y=2x的图象交于A、C两点,AB垂直x轴于B,则△ABC的面积为 .3.如图,在平面上将△ABC绕点B旋转到△A′BC′的位置时,AA′∥BC,∠ABC=70°,则∠CBC′= .4.如图,大圆O的直径AB=12cm,分别以OA,OB为直径作圆1O和圆2O,并在圆O与圆1O和圆2O的空隙间作两个等圆圆3O和圆4O,这些圆相互内切或外切,则四边形1423OO O O的面积为 cm2.三、(本题满分20分)如图,一次函数y=-2x+8的图象与两坐标轴分别交于P、Q两点,在线段PQ上有一点A,过A点分别作两坐标轴的垂线,垂足分别为B、C.(1)若矩形ABOC的面积为4,求A点坐标;(2)若点A在线段PQ上移动,求矩形ABOC面积的最大值.四、(本题满分25分)如图,在△ABC中,D为AC边上一点,且AD=DC+CB,过D作AC的垂线交△ABC的外接圆于M,过M作AB的垂线MN,交圆于N,求证:MN为△ABC外接圆的直径.五、(本题满分25分)已知方程组⎪⎩⎪⎨⎧=+=++=++azxyazxyzxyzyx2的所有各组解(x,y,z)都是由正实数组成的,其中a是参数.试求a的取值范围.一、2012年四川初中数学联赛决赛试题一、选择题:(每小题7分,共42分)1.若-3<x<-1,则化简2|1|x-+得( )A.1-x. B.-3+x. C.3-x. D.3+x.2.若抛物线y=x2-4x+m的顶点在x轴上,则m的值是( )A.0. B.1. C.2. D.4.3.菱形ABCD的边长为1,面积为79,则AC+BD的值是( )A.43. B.169. C.83. D.329.4.在凸四边形ABCD中,AB=2AD,BC=1,∠ABC=∠BCD=60°,∠ADC=90°,则AB的长度是( )A.. B..C.2. D.3.5.一个活动小组,如果有5个13岁的成员退出,或者有5个17岁的人员加入(两种情况不同时发生),其成员的平均年龄都增加1岁,则这个活动小组原有成员的人数是( ) A .10. B .12. C .14. D .16.6.一个正整数,如果它顺着数和倒着数都是一样的,则称这个数为“回文数”.比如:1、11、121都是回文数,而110则不是回文数,将所有“回文数”从小到大排成一列:1、2、…、9、11、22、…,则第2012个“回文数”是( )A .1011101.B .1013101.C .1021201.D .1030301. 二、填空题:(每小题7分,共28分)1.设1x 、2x 是方程x2-2x -m =0的两根,且122x x +=0,则m 的值是_____. 2.在△ABC 中,∠ACB =45°,D 是AB 边上异于A 、B 两点的任意一点,△ABC 、△ADC 和△BDC 的外接圆圆心分别为O 、1O 、2O ,则∠12O OO 的度数等于____.3.已知a ,b 为正实数,m 为正整数,且满足14,48,a b ab m +≤⎧⎨≥+⎩则m 的值是_____.4.在一次球类比赛中有8个队参赛,每两队要进行一场比赛,胜一场得2分,平一场得1分,负一场得0分.一个队要确保进入前四名(即积分至少要超过其他四个队),则他的积分最少是______.三、(本题满分20分)已知抛物线2y x =与直线(2)(21)y k x k =+--.(1)求证:无论k 为什么实数,该抛物线与直线恒有两个不同的交点;(2)设该抛物线与直线的两个不同的交点分别为A(1x ,1y ),B(2x ,2y ),若1x ,2x 均为整数,求实数k 的值.四、(本题满分25分)如图,已知⊙A 与⊙B 相交于C 、D 两点,延长AC 交⊙B 于E ,延长BC 交⊙A 于F .求证:C 是△DEF 的内心.五、(本题满分25分)将10,11,12,…,98,99这90个正整数写在黑板上,擦去其中的n 个数,可使黑板上剩下的所有数的乘积的个位数是1,求n 的最小值.二、 2013年四川初中数学联赛初赛试题一、选择题:(本题满分42分,每小题7分)1.已知10x ,则2x ,x ,1x的大小关系是( )A .21x xx B .21x x x C .21x x x D .21x x x2.如图,正方形ABCD ,点P 是对角线AC 上一点,连接BP , 过P 作PQ ⊥BP ,PQ 交CD 于Q ,若AP =CQ =2,则正方形ABCD 的面积为A .642B .16C .1282D .323.若实数a ,b 满足2220ba b ,则a 的取值范围是( ) A . a ≤-1 B :a ≥-1 C :a ≤1 D :a ≥14.如图,在四边形ABCD 中,∠B=135°,∠C=120°,,BC=33,CD=6,则AD 边的长为()A .B .C .D .5.方程1137x y 的正整数解(,)x y 的组数是( ) A .0B .1C .3D .5 6.已知实数,,x y z 满足1x y z y z z x x y ,则222x y z y z z x x y 的值是( ) A .1 B .0 C .1D .2二、填空题:(本题满分28分,每小题7分)1.x 是正整数,○x 表示x 的正约数个数,则③×④÷⑥等于 . 2.草原上的一片青草,到处长得一样密一样快,70头牛在24天内可以吃完这片青草,30头牛在60天内可以吃完这片青草,则20头牛吃完这片青草需要的天数是 . 3.如图,在平行四边形ABCD 中,M 、N 分别是BC 、DC 的中点,AM=4,AN=3,且角MAN=60°,则AB 的长是 .4、小明将1,2,3,…,n 这n 个数输入电脑求其平均值,当他认为输完时,电脑上只显示输入(1)n 个数,且平均值为30.75,假设这(1)n 个数输入无误,则漏输入的一个数是 . 三、(本题满分20分) 解方程2|21|20x x .四、(本题满分25分)如图,圆内接四边形ABCD 中,CB CD ,求证:CA 2-CB 2=AB ×AD ; 五、(本题满分25分) 已知二次函数2yaxbx c 和一次函数ybx ,其中a 、b 、c 满足a b c ,0a b c .(a 、b 、c ∈R ).(1)求证:两函数的图象有两个不同的交点A 、B ;(2)过(1)中的两点A 、B 分别作x 轴的垂线,垂足为A 1、B 1.求线段A1B 1的长的取值范围.2006年全国初中数学联合竞赛试题答案第一试一、选择题(本题满分42分,每小题7分)1.B 2.C 3.D 4.A 5. B 6.C二、填空题(本题满分28分,每小题7分)7.0 8.1129.8310.197第二试(A)一、(本题满分20分)解:由题可得二、(本题满分25分)三、(本题满分25分)解:第二试(B)一、(本题满分20分)题目与(A)卷第一题相同二、(本题满分20分)题目与(A)卷第二题相同三、(本题满分25分)解:第二试(C)一、(本题满分20分)题目与(A)卷第二题相同二、(本题满分20分)题目与(B)卷第三题相同三、(本题满分25分)解:2007年全国初中数学联合竞赛试题答案第一试一、选择题:(本题满分42分,每小题7分)1.B2.C3.D4.C5.A6.B(解析:1.由x z z y x +=-=532得x z x y 23,3==,所以31333525=+-=+-x x x x z y y x ,故选B. 注:本题也可用特殊值法来判断.2. 因为=+-++-222211)1(1)1(1n n n n 011112222=+-++-n n n n ,即当x 分别取值n 1,n n (为正整数)时,计算所得的代数式的值之和为0;而当1=x 时,0111122=+-.因此,当x 分别取值20071,20061,20051,…,21,1,2,…,2005,2006,2007时,计算所得各代数式的值之和为0.故选C.3. 由题意可得⎪⎪⎩⎪⎪⎨⎧-=----=---,5822,1)2(2b b a c b a b a c 即⎪⎩⎪⎨⎧==+,53,2b c a c b 所以b c 53=,b a 54=,因此222b c a =+,所以△ABC 是直角三角形. 故选D.4. 锐角△ABC 的垂心在三角形内部,如图,设△ABC 的外心为O ,D 为BC 的中点,BO 的延长线交⊙O 于点E ,连CE 、AE ,则CE //AH ,AE //CH ,则OD CE AH OB 2===,所以∠OBD =30°,∠BOD =60°,所以∠A =∠BOD =60°.故选C.5. A.分别延长KD 、KE 、KF ,与△ABC 的三边AB 、BC 、CA 交于点M 、N 、P ,由于D 、E 、F 分别为△KAB 、△KBC 、△KCA 的重心,易知M 、N 、P 分别为AB 、BC 、CA 的中点,所以ABC MNP S S △△41=.易证△DEF ∽△MNP ,且相似比为3:2,所以MNP DEF S S △△2)32(=ABC S △4194⋅=ABC S △91=.所以:DEF S △19ABC S =△.故选A. 6.设摸出的15个球中有x 个红球、y 个黑球、z 个白球,则z y x ,,都是正整数,且7,6,5≤≤≤z y x ,15=++z y x .因为13≤+z y ,所以x 可取值2,3,4,5.当2=x 时,只有一种可能,即7,6==z y ;当3=x 时,12=+z y ,有2种可能,7,5==z y 或6,6==z y ;当4=x 时,11=+z y ,有3种可能,7,4==z y 或6,5==z y 或5,6==z y ;当5=x 时,10=+z y ,有4种可能,7,3==z y 或6,4==z y 或5,5==z y 或4,6==z y .因此,共有1+2+3+4=10种可能的摸球结果,其中摸出的球中恰好有3个红球的结果有2种,所以所求的概率为51102=.故选B.) 二、填空题:(本题满分28分,每小题7分) 1.1 2. 10034016- 3.4 4.7 (解析:1.∵12121+=-=x ,而3122<+<,∴122-=-=x a . 又∵12--=-x ,而2123-<--<-,∴22)3(-=---=x b .∴1=+b a ,∴=++ab b a 333=++-+ab b ab a b a 3))((221)(3222=+=++-b a ab b ab a . 2.由根与系数的关系得2+=+n b a n n ,22n n a b n ⋅=-,所以 =--)2)(2(n n b a (2-n n b a 4)++n n b a 222(2)42(1)n n n n =--++=-+, 则11111()(2)(2)2(1)21n n a b n n n n =-=----++, )2)(2(122--b a )2)(2(133--+b a +)2)(2(120072007--+b a =11111111111003()()()()22334200720082220084016⎡⎤--+-++-=--=-⎢⎥⎣⎦. 3.延长CD 交⊙O 于点G ,设DG BE ,的中点分别为点N M ,,则易知DN AM =.因为10==CD BC ,由割线定理,易证DG BF =,所以42)(2)(2==-=-=-=-AB AM BM DN BM DG BE BF BE .4.设264100m a =+,264201n a =+,则100,32<≤n m ,两式相减得))((10122m n m n m n a -+=-=,因为101是质数,且101101<-<-m n ,所以101=+m n ,故1012-=-=n m n a .代入264201n a =+,整理得020*******=+-n n ,解得59=n ,或343=n (舍去).所以171012=-=n a .)第二试 (A )一、(本题满分20分)解:因为一元二次方程03)3(2=--+mt x mt x 的两根分别为mt 和3-,所以二次函数mt x mt x y 3)3(2--+=的图象与x 轴的两个交点间的距离为3mt + (5分) 由题意,32mt t n +≥+,即22(3)(2)mt t n +≥+,即222(4)(64)90m t m n t n -+-+-≥(10分) 由题意知,042≠-m ,且上式对一切实数t 恒成立,所以⎪⎩⎪⎨⎧≤----=∆>-,0)9)(4(4)46(,042222n m n m m (15分) 22,4(6)0,m mn >⎧⇒⇒⎨-≤⎩⎩⎨⎧=>,6,2m n m 所以⎩⎨⎧==,2,3n m 或⎩⎨⎧==.1,6n m (20分) 二、(本题满分25分) 证明:设MN 与EF 交于点P ,∵NE //BC , ∴△PNE ∽△PBC ,∴PCPE PB PN =, ∴PC PN PE PB ⋅=⋅.(5分)又∵ME //BF ,∴△PME ∽△PBF ,∴PF PE PB PM =, ∴PF PM PE PB ⋅=⋅.(10分)∴PF PM PC PN ⋅=⋅,故PFPC PN PM =(15分) 又∠FPN =∠MPE ,∴△PNF ∽△PMC ,∴∠PNF =∠PMC ,∴NF//MC(20分)∴∠ANF =∠EDM.又∵ME//BF ,∴∠FAN =∠MED. A B C D E FM N P∴∠ANF +∠FAN =∠EDM +∠MED ,∴∠AFN=∠DME.(25分)三、(本题满分25分)解:观察易知,方程有一个整数根11=x ,将方程的左边分解因式,得[]056)18()1(2=+++-x a x x (5分)因为a 是正整数,所以关于x 的方程056)18(2=+++x a x (1) 的判别式0224)18(2>-+=∆a ,它一定有两个不同的实数根.而原方程的根都是整数,所以方程(1)的根都是整数,因此它的判别式224)18(2-+=∆a 应该是一个完全平方数.(10分)设22224)18(k a =-+(其中k 为非负整数),则224)18(22=-+k a ,即 224)18)(18(=-+++k a k a .(15分)显然k a ++18与k a -+18的奇偶性相同,且1818≥++k a ,而8284562112224⨯=⨯=⨯=,所以⎩⎨⎧=-+=++,218,11218k a k a 或⎩⎨⎧=-+=++,418,5618k a k a 或⎩⎨⎧=-+=++,818,2818k a k a 解得⎩⎨⎧==,55,39k a 或⎩⎨⎧==,26,12k a 或⎩⎨⎧==,10,0k a 而a 是正整数,所以只可能⎩⎨⎧==,55,39k a ⎩⎨⎧==.26,12k a (20分) 当39=a 时,方程(1)即056572=++x x ,它的两根分别为1-和56-.此时原方程的三个根为1,1-和56-.当12=a 时,方程(1)即056302=++x x ,它的两根分别为2-和28-.此时原方程的三个根为1,2-和28-.(25分) 第二试 (B )一、(本题满分20分)解:因为一元二次方程03)3(2=--+mt x mt x 的两根分别为mt 和3-,所以31+=mt d ;一元二次方程02)2(2=+-+-nt x n t x 的两根分别为t 2和n -,所以n t d +=22.(5分)所以,21d d ≥22)2()3(23n t mt n t mt +≥+⇔+≥+⇔09)46()4(222≥-+-+-⇔n t n m t m (1)(10分)由题意知,042≠-m ,且(1)式对一切实数t 恒成立,所以⎪⎩⎪⎨⎧≤----=∆>-,0)9)(4(4)46(,042222n m n m m (15分) 22,4(6)0,m mn >⎧⇒⇒⎨-≤⎩⎩⎨⎧=>,6,2m n m 所以⎩⎨⎧==,2,3n m ⎩⎨⎧==.1,6n m (20分) 二、(本题满分25分)题目与(A )卷第二题相同.三、(本题满分25分) 解:联立方程组⎪⎩⎪⎨⎧=-+++=,56,38)17(2x y a x a x y 消去y 得a x a x -+++38)17(2x56=,即056)38()17(23=--+++x a x a x ,分解因式得[]056)18()1(2=+++-x a x x (1)(5分)显然11=x 是方程(1)的一个根,(1,56)是两个函数的图象的一个交点.因为a 是正整数,所以关于x 的方程056)18(2=+++x a x (2)的判别式0224)18(2>-+=∆a ,它一定有两个不同的实数根.(10分)而两个函数的图象的交点都是整点,所以方程(2)的根都是整数,因此它的判别式224)18(2-+=∆a 应该是一个完全平方数.设22224)18(k a =-+(其中k 为非负整数),则224)18(22=-+k a ,即 224)18)(18(=-+++k a k a .(15分)显然k a ++18与k a -+18的奇偶性相同,且1818≥++k a ,而8284562112224⨯=⨯=⨯=,所以⎩⎨⎧=-+=++,218,11218k a k a 或⎩⎨⎧=-+=++,418,5618k a k a 或⎩⎨⎧=-+=++,818,2818k a k a 解得⎩⎨⎧==,55,39k a 或⎩⎨⎧==,26,12k a 或⎩⎨⎧==,10,0k a 而a 是正整数,所以只可能⎩⎨⎧==,55,39k a 或⎩⎨⎧==.26,12k a (20分)当39=a 时,方程(2)即056572=++x x ,它的两根分别为1-和56-,此时两个函数。
2006年北京市中学生数学竞赛_初二_

2006年北京市中学生数学竞赛(初二) 一、选择题(每小题5分,共25分)1.在直角三角形中,斜边的平方恰等于两条直角边乘积的2倍.那么,这个三角形的三边长之比为( ).(A )3∶4∶5(B )1∶1∶1(C )2∶3∶4(D )1∶1∶22.满足不等式 x -2006 + x ≤9999的整数x 共有( )个.(A )9998(B )9999(C )10000(D )100013.从1,2,…,14共14个自然数中取出k 个数,确保其中有两个数,满足一个是另一个的2倍.则k 的最小值是( ).(A )8(B )9(C )10(D )114.一个自然数q ,任意取出2个数字,如果左边的数字比右边的数字大,则称这个数有一个逆序.用NX (q )表示q 的逆序的个数(如NX (3214)=3,NX (12344)=0).则NX (324167895)被4除的余数是( ).(A )0(B )1(C )2(D )35.如图1,P 是函数y =12x(x >0)图像上图1一点,直线y =-x +1分别交x 轴、y 轴于点A 、B ,作P M ⊥x 轴于点M ,交A B 于点E ,作PN ⊥y 轴于点N ,交A B 于点F .则AF ·BE 的值为( ).(A )2(B )2(C )1(D )12二、填空题(每小题7分,共35分)6.若连续的5个自然数每一个都是合数,则称这一组数为“孪生5合数”.那么,在不超过100的自然数中共有孪生5合数组.7.在■A BC 中,A C =BC ,∠AC B =90°,D 、E 是边A B 上的两点,A D =3,BE =4,∠DCE =45°.则■A BC 的面积=.8.某人从住地外出有两种方案:一种是骑自行车去,另一种是乘公共汽车去.公共汽车的速度比自行车的速度快,但要等候(候车时间可看作固定不变的),在任何情况下,他总是选择用时最少的方案.表1表示他到达A 、B 、C 三地采用最佳方案所需时间.表 1目的地目的地离住地距离最佳方案所需时间A 2km 12min B 3km 15.5min C4km18min 为了到达离住地8km 的地方,他最少需要min .9.如图2,在长方形A BC D 中,A B =7,A D 图2=24,P 为边BC 上一个动点,作PE ⊥AC 于点E ,PF ⊥B D 于点F .则PE +PF =.10.有大小一样、张数相同的黑白两种颜色的正方形纸片.小张先用白色纸片拼成中间没有缝隙的长方形,然后用黑色纸片围绕已经拼成的白色长方形继续拼成更大的长方形后,又用白色纸片拼下去.这样重复拼,当小张用黑色纸片拼过5次以后,黑、白纸片正好用完.那么,黑色纸片至少有张.三、(15分)在五角星形A BCDE 中,相交图3线段的交点字母如图3所示.已知A Q =QC ,BR =R D ,CR =RE ,D S =SA .求证:BT =TP =PE .四、(15分)三个互不相同的正整数,如果任何两个的乘积与1的和都恰被第三个数整除,则称这样的三个正整数为“玲珑三数组”.(1)求证:玲珑三数组中的三个正整数两两互质;(2)求出所有的玲珑三数组.五、(10分)如图4,在一个■A BC 内部有图4m 个点,在这些点之间及这些点与A 、B 、C 三点之间联结一些线段,这些线段在三角形内部没有这m 个点以外的公共点,并恰将■A BC 分成的小区域全部都是小三角形.请你证明:(1)分成的小三角形区域的总个数必为奇数;(2)位于■ABC 内部的所联结线段的条数是3的倍数.参考答案一、1.D .设两条直角边为a 、b .则a 2+b 2=2a b a =b .故此直角三角形的三边长之比为1∶1∶2.2.B .当x ≥2006时,有x -2006+x ≤9999,即x ≤2006+99992,亦即x ≤6002;当0≤x <2006时,有2006-x +x ≤9999,显然成立;当x <0时,有2006-x -x ≤9999,即x ≥2006-99992,亦即x ≥-3996.综上,-3996≤x ≤6002.故满足不等式的整数x 共有9999个.3.C .将{1,2,…,14}分成{1,2},{3,6},{4,8},{5,10},{7,14},{9,11,12,13}.若从{1,2,…,14}中取出10个数,则在前5组中至少取出6个数,即在同一组中的两个数被取出,满足题设要求.显然,{1,3,4,5,7,9,11,12,13}不满足要求.故k min =10.4.A .NX (324167895)=NX (32416785)+1=NX (32415)+4=NX (3241)+4=4+4=8.5.C .设P (x ,y ).由FN ∥O A ,得AF A B =ONO B,即A F =2y .同理,BE =2x .故A F ·BE =2xy =1.二、6.10.易知,不超过100的质数为2,3,5,7,11,13,17,19,23,29,31,37,41,43,47,53,59,61,67,71,73,79,83,89,97.孪生5合数共有10组,即24,25,26,27,28;32,33,34,35,36;48,49,50,51,52;54,55,56,57,58;62,63,64,65,66;74,75,76,77,78;84,85,86,87,88;90,91,92,93,94;91,92,93,94,95;92,93,94,95,96.7.36.如图5,将■CEB 顺时针旋转90°,得到图5■CE ′A .联结E ′D .易知A E ′=BE =4,∠E ′A D =90°,故E ′D =A E ′2+A D 2=42+32=5.由∠DCE =45°=∠DCE ′,知■DCE ≌■DCE ′.故DE=E′D=5,A B=12.所以,S■ABC =14A B2=36.8.28.设自行车速度为v0,公共汽车速度为v1,候车时间为t.易知,当距离S<t01v-1v1时,此人骑自行车;当距离S≥t1v0-1v1时,此人乘公共汽车.又15.5-123-2≠18-15.54-3,故此人到A、B、C三地选择的不是同一种方案,即到A地骑自行车,到C 地乘公共汽车.又122≠15.53,故此人到B地不骑自行车,而乘公共汽车.所以,有2v0=12,t+3v1=15.5,t0+4v1=18.解得v0=16,v1=25,t0=8.故此人为了到达离住地8km的地方,最少需要8+825=28(min).9.6.72.设对角线A C、BD的交点为O.联结OP.由AB=7,A D=24,得O B=OC=252.由S■O BC =S■OP B+S■OPC,得1 2×12A B·BC=12OB·PF+12OC·PE,即 PE+PF=AB·BC2O B=7×2425=6.72.10.350.设第1个白色长方形为a×b,则第1个黑色长方形为(a+2)(b+2),第2个白色长方形为(a+4)·(b+4),……,第5个黑色长方形为(a+18)(b+ 18).显然,每个黑色长方形的周长与其内白色长方形的周长(纸片个数)之差为8.由黑、白正方形纸片个数相等有5×8=(a-2)(b-2).解得(a,b)=(3,42),(4,22),(6,12),(7,10).因此,相应的黑色正方形纸片个数为12(a+18)(b+18)=630,440,360,350.故黑色正方形纸片至少有350张.注:此题必须强调“每次只能拼加一层纸片(除第1个白色长方形外)”.图6否则,从最外层依次可取为(黑、白,黑、白,白、黑,白、黑,白、黑,黑、白),最里层的白色长方形为1×2(如图6).因此,黑、白正方形纸片个数之差为8+8-8-8-8+8=0.此时,黑色正方形纸片个数为24×23=276.图7 三、如图7,联结AE、A B、BC、CD、DE、TR、A R,记A R与BE的交点为O.由BR=RD,CR=RE,所以,四边形BCDE是平行四边形.因此,DE BC.由BR=RD,D S=SA,根据三角形中位线定理,得RS∥BA.由AQ=QC,CR=RE,根据三角形中位线定理,得QR∥A E,即BD∥A E.所以,四边形ABRE为平行四边形.于是,A B=ER=RC,AB∥RC.所以,四边形A RC B为平行四边形.因此,BQ=Q R.同理,RS=SE.过点R作MN∥BE,分别交CQ、D S于点M、N.易证BT=M R=2OT.所以,BT=2BO=1BE.同理,PE=NR=2O P.故PE=23O E=13BE.于是,BT+PE=23BE.从而,TP=13BE.因此,BT=TP=PE.四、设三个互不相同的正整数为a、b、c,满足c(ab+1),b(ca+1),a(b c+1).接下来证明:a、b、c必两两互质.如若不然,假设(a,b)>1(ca,b)=d>1,此时,ca+1不能被d整除,即d(ca+1),但d b,于是,b(ca+1),这与已知b(ca+1)矛盾.所以,(a,b)=1.同理,(b,c)=1,(a,c)=1.易知,数s=ab+bc+ca+1可同时被a、b、c 整除.由于已证a、b、c两两互质,因此,abc s.所以,s≥abc.①不失一般性,设1≤a<b<c.若a=1,则c(b+1),b(c+1),可知b、c为两个连续的自然数,有c=b+1.所以,由b(c+1),知b(b+2).从而,b2.但b>a=1,由b=2,得c=3.因此,(1,2,3)为一组解.若2≤a<b<c,当b≥4时,可得c≥5,故abc≥2×4×5=40.但s=ab+=1920abc+1=ab c-ab c20+1≤abc-4020+1 =abc-1<abc,与式①矛盾.因此,b<4.故只能是a=2,b=3.由c(ab+1)=2×3+1=7,知c=7.因此,(2,3,7)为另一组解.所以,所求的玲珑三数组为(1,2,3)和(2,3,7).五、(1)设小三角形的总数为n,这n个小三角形的边中有3条是原三角形的边AB、BC、CA,所以,位于内部的小三角形的边数为3n-3.而且这些边每一条属于两个小三角形,即每一条边被计算了两次.设e为位于■A BC内部的线段的数目,则2e=3n-3=3(n-1).于是,3(n-1)是偶数,n-1是偶数.所以,分成的小三角形的总个数n必为奇数.(2)显然,32e.因为(3,2)=1,所以,3e.因此,位于三角形内部的所联结线段的条数是3的倍数.(李延林 提供)2006年广东省初中数学竞赛初赛 说明:每小题4分,共120分.1.直角坐标平面上将二次函数y=-2(x-1)2-2的图像向左平移1个单位,再向上平移1个单位.则其顶点为( ).(A)(0,0)(B)(1,-2)(C)(0,-1)(D)(-2,1)2.下列计算正确的是( ).(A)(ab4)4=ab8(B)(-3pq)2=-6p2q2(C)x2-12x+14=x-122(D)3(a2)3-6a6=-3a63.如图1,记以Rt■A BC三边为直径的图1半圆面积分别为S1、S2、S3,Rt■A BC面积为S.则它们之间的关系为( ).(A)S=S1(B)S1=S2+S3(C)S=S1+S2(D)S=S1+S2+S34.一辆公共汽车从车站开出,加速行驶一段时间后开始匀速行驶.过了一段时间,汽车到达下一车站.乘客上下车后汽车开始加速,一段时间后又开始匀速行驶.图2中近似。
初中数学重点梳理:旋转

旋转知识定位旋转在初中几何或者竞赛中占据非常大的地位,是解决平面几何中最重要的工具之一,它的有关知识是今后我们学习综合题目重要基础。
本节需要掌握旋转图形变换的特征;学会运用旋转的特征进行图形的求解换。
本节我们通过一些实例的求解,旨在介绍数学竞赛中旋转相关问题的常见题型及其求解方法本讲将通过例题来说明这些方法的运用。
知识梳理1、旋转的定义在平面内,把一个图形绕着某一个点O旋转一个角度的图形变换叫做旋转。
点O叫做旋转中心,转动的角叫做旋转角,如果图形上的点P经过旋转变为点P′,那么这两个点叫做对应点。
注意:①旋转是围绕一点旋转一定的角度的图形变换,因而旋转一定有旋转中心和旋转角,且旋转前后图形能够重合,这时判断旋转的关键.②旋转中心是点而不是线,旋转必须指出旋转方向.③旋转的范围是平面内的旋转,否则有可能旋转成立体图形,因而要注意此点。
2、旋转的基本特点(1)旋转的性质:①对应点到旋转中心的距离相等.②对应点与旋转中心所连线段的夹角等于旋转角.③旋转前、后的图形全等.(2)旋转三要素:①旋转中心;②旋转方向;③旋转角度.注意:三要素中只要任意改变一个,图形就会不一样.3、旋转对称图形如果某一个图形围绕某一点旋转一定的角度(小于360°)后能与原图形重合,那么这个图形就叫做旋转对称图形。
常见的旋转对称图形有:线段,正多边形,平行四边形,圆等.4、中心对称(1)中心对称的定义:把一个图形绕着某个点旋转180°,如果它能够与另一个图形重合,那么就说这两个图形关于这个点对称或中心对称,这个点叫做对称中心,这两个图形中的对应点叫做关于中心的对称点。
(2)中心对称的性质:①关于中心对称的两个图形能够完全重合;②关于中心对称的两个图形,对应点的连线都经过对称中心,并且被对称中心平分.(3)中心对称图形:把一个图形绕某一点旋转180°,如果旋转后的图形能够与原来的图形重合,那么这个图形就叫做中心对称图形,这个点叫做对称中心。
初中数学竞赛专题6:因式分解

专题6:因式分解第1讲 因式分解赛题练习一、选择题1.(第17届希望杯竞赛题)若22222006200620072007m =+⨯+,则m ( ) A .是完全平方数,还是奇数 B .是完全平方数,还是偶数 C .不是完全平方数,但是奇数D .不是完全平方数,但是偶数2.(第17届希望杯竞赛题)There is a two-placed number 10ab a b =+satisfying that ab ba + is a complete square number ,then total number of those like ab is ( ) A .4B .6C .8D .10(英汉词典:two-placed number 两位数;number 数;to satisfy 满足;complete square 完全平方(数);total 总的,总数)3.(2005年全国初中数学竞赛题)若223894613M x xy y x y =-+-++(x ,y 是实数),则M 的值一定是( ) A .正数B .负数C .零D .整数4.(北京市竞赛题)44a +分解因式的结果是( ) A.()()222222a a a a +--+ B.()()222222a a a a +--- C.()()222222a a a a ++--D.()()222222a a a a ++-+5.(2006年希望杯竞赛题)实数320052005m =-,下列各数中不能整除m 的是( ) A.2006B.2005C.2004D.20036.(2005年武汉市竞赛题)若3234x kx -+被31x -除后余3,则k 的值为( ) A.2B.4C.9D.107.(第13届希望杯竞赛题)已知a b c >>,222M a b b c c a =++,222N ab bc ca =++,则M 与N 的大小关系是( ) A.M N <B.M N >C.M N =D.不能确定8.(美国犹他州竞赛题)322136x x x +-+的因式是( ) A.21x - B.2x + C.3x -D.21x +E.21x +9.(2005年全国初中数学竞赛题)若22389M x xy y =-+-4613x y ++(x 、y 是实数),则M 的值一定是( ) A.正数B.负数C.零D.整数10.(武汉市竞赛题)如果328x ax bx +++有两个因式1x +和2x +,则a b +=( ) A.7 B.8C.15D.21二、填空题11.(第7届五羊杯竞赛题)把()()()()16a b c d b c a d c a b d a b c d abcd ++++--+--+--+因式分解为________.12.(第18届五羊杯竞赛题)在实数范围内分解因式:432344x x x x +---=________. 13.(第18届五羊杯竞赛题)分解因式:2226773x xy y x y --+++=________.14.(2004年全国初中数学竞赛题)已知实数a ,b ,x ,y 满足2a b x y +=+=,5ax by +=,则()()2222ab xy ab x y +++=________.15.(2007年全国初中数学联赛题)若10064a +和20164a +均为四位数,且均为完全平方数,则整数a 的值是________.16.(北京市竞赛题)已知222246140x y z x y z ++-+-+=,则2002()x y z --=__________. 17.(2004年广西竞赛题)已知()22210x y x y +--+=,则()999x y +=__________.18.(北京市竞赛题)1~100若存在整数n ,使2x x n +-能分解为两个整系数一次式的乘积,这样的n 有____________个.19.(郑州市竞赛题)分解因式:22423a b a b -+++=_______________________________________. 20.(2004年河南省竞赛题)分解因式:229643x x y y --+-=_______________________________. 21.(第16届希望杯竞赛题)分解因式:()()221ab a b a b +-++=_____________________________. 22.(2004年全国初中数学竞赛题)已知实数a 、b 、x 、y 满足2a b x y +=+=,5ax by +=,则()()2222ab xy ab x y +++=___________________.23.(第15届江苏省竞赛题)已知26x x +-是多项式43221x x ax bx a b +-+++-的因式,则a =___________,b =___________.24.(第18届五羊杯竞赛题)在实数范围内分解因式:432344x x x x +---=___________. 25.(大连市第8届育英杯竞赛题)分解因式:()()112x x y y xy -++-=____________. 三、解答题26.(1991年黄冈初中数学竞赛题)已知a 是自然数,且3221215a a a +-+表示质数,求这个质数.27.(1999年天津市数学竞赛题)当k 为何值时,多项式222352x xy ky x y -++-+能分解成两个一次因式的积?28.(第9届华杯赛总决赛题)计算;()()()()()()()()()()444444444476415642364316439643641164196427643564++++++++++.29.(第10届希望杯竞赛题)272-1能被500与600之间的若干整数整除,请找出三个这样的整数,它们是________.30.(第10届希望杯竞赛题)若233x x x k +-+有一个因式是x +1,求k 的值.31.(第6届希望杯竞赛题)计算:2211100.010.01101001000⎛⎫⎛⎫++++- ⎪ ⎪⎝⎭⎝⎭.32.(第9届五羊杯竞赛题)当n =1,x =2时,求多项式51n n x x ++的两个因式的和.33.(2000年美国犹他州中学数学竞赛题)如果328x ax bx +++有两个因式x +1和x +2,求a +b 的值.34.(第5届美国数学邀请赛试题)计算:()()()()()()()()()()44444444441032422324343244632458324432416324283244032452324++++++++++.35.(第37届美国中学生数学竞赛题)设543269569106910695691N =+⨯+⨯+⨯+⨯+.问:有多少个正整数是N 的因数?36.(第9届莫斯科奥林匹克试题)证明:对任何整数x 和y ,343223453515412x x y x y x y xy y +--++的值都不会等于33.37.(第37届美国中学生数学竞赛题)已知b ,c 是整数,二次三项式2x bx c ++既是42625x x ++的一个因式,也是4234285x x x +++的一个因式,求当x =1时,2x bx c ++的值.38.(祖冲之杯竞赛题)分解因式:32539x x x ++-.39.(北京市竞赛题)证明恒等式:()244422()2a b a b a ab b +++=++.40.(江苏省竞赛题)已知x 、y 为正偶数,且2296x y xy +=,求22x y +的值.41.(希望杯竞赛题)分解因式:()()()2221x y xy x y xy +-+-+-.42.(第12届五羊杯竞赛题)分解因式:()()42424310x x x x +-+++.43(2006年希望杯培训题)计算:32322007220072005200720072008-⨯-+-.44.(太原市竞赛题)已知关于x 、y 的二次式22754324x xy ay x y ++-+-可分解为两个一次因式的乘积,求a 的值.45.(2005年莫斯科市竞赛题)对方程22222004a b a b ++=,求出至少一组整数解.46.(2006年创新杯培训题)已知n 是正整数,且4216100n n -+是质数,求n .47.(2006年全国初中数学竞赛题)计算 (252)(472)(692)(8112)(200420072)(142)(362)(582)(7102)(200320062)⨯+⨯+⨯+⨯+⨯⨯⨯+⨯+⨯+⨯+⨯+⨯⨯⨯+48.计算:(1)(第15届希望杯竞赛题)2220034004200320024008200320042003300520032003200520053005-⨯+⨯-⨯-⨯-⨯+⨯;(2)(第九届华杯赛竞赛题)()()()()()()()()()()444444444476415642364316439643641164196427643564++++++++++49.分解因式: (1)4464a b +; (2)4224x x y y ++; (3)()2222(1)x x x x ++++;(4)(昆明市竞赛题)()()()24c a b c a b ----;(5)(第15届希望杯竞赛题)432234232a a b a b ab b ++++; (6)(重庆市竞赛题)32256x x x +--.50.(重庆市竞赛题)分解因式: (1)224443x x y y --+-; (2)343115x x -+.问题解决例1.分解因式:()()()3332332125x y x y x y -+---=______. 例2.把下列各式分解因式: (1)()()22525312x x x x ++++-; (2)()()()()21236x x x x x +++++; (3)()()()()211x y x y xy xy xy +++++-.例3.阅读理解:观察下列因式分解的过程: (1)244x xy x y -+-原式()()()()()()24444x xy x y x x y x y x y x =-+-=-+-=-+. (2)2222a b c bc --+原式()()()()222222a b c bc a b c a b c a b c =-+-=--=+--+.第(1)题分组后能直接提公因式,第(2)题分组后能直接运用公式.仿照上述分解因式的方法,把下列各式分解因式: (1)2a ab ac bc -+-; (2)22244x y z yz --+.例4.分解因式:326116x x x +++.例5.把下列各式分解因式: (1)261110y y --; (2)22823x xy y --.数学冲浪 知识技能广场1.分解因式:(1)()()22162x x x ---=______; (2)()()4a b a b ab --+=______; (3)276ax ax a -+=______. 2.分解因式:(1)3222a ab a b +-=______;(2)()()21211x x ---+=______; (3)2221a ab b -+-=______; (4)2244x y x --+=______. 3.分解因式:(1)323412x x x +--=______; (2)()()2223238x xx x +-+-=______.4.若()()23x x m x x n ++=-+对x 恒成立,则n =______.5.把多项式22344x y xy x --分解因式的结果是( ). A.()34xy x y x --B.()22x x y --C.()2244x xy y x --D.()2244x xy y x --++6.()()()()()()656565323322134x x x x x x x xx +-+++-+++-与下列哪一个式子相同( ).A.()()653421x x x -+ B.()()653423x x x -+ C.()()653421x x x --+D.()()653423x x x --+7.把多项式22243x y x y ----因式分解之后,正确的结果是( ) A.()()31x y x y ++-- B.()()13x y x y +--+ C.()()31x y x y +--+D.()()13x y x y ++--8.已知212x ax +-能分解成两个整系数的一次因式的乘积,则符合条件的整数a 的个数是( ) A.3个B.4个C.6个D.8个9.先阅读以下材料,然后解答问题.分解因式:()()()()mx nx my ny mx nx my ny x m n y m n +++=+++=+++=()()m n x y ++;也可以()()()()()()mx nx my ny mx my nx ny m x y n x y m n x y +++=+++=+++=++. 以上分解因式的方法称为分组分解法. 请用分组分解法分解因式:3322a b a b ab -+-.10.分解因式:(1)22463a b a b -+-;(2)222944a b bc c -+-; (3)()()()2a c a c b b a +-+-; (4)()()221212x x x x ++++-; (5)()22223122331x x x x -+-+-; (6)()()()213512x x x -+++.思维方法天地11.分解因式:()()()()()12345x x x x x x ++++++=______. 12.分解因式:()()()33322x y x y -----=______.13.已知()()()()1931131713171123x x x x -----可因式分解为()()8ax b x c ++,其中a ,b ,c 均为整数,则a b c ++=______.14.已知1x -得多项式33x x k -+的一个因式,那么k =______;将这个多项式分解因式,得______. 15.44a +分解因式的结果是( ).A.()()222222a a a a +--+B.()()222222a a a a +---C.()()222222aa a a ++-- D.()()222222aa a a ++-+16.实数320052005m =-,下列各数中不能整除m 的是( ) A.2006B.2005C.2004D.200317.已知3a b -=,5b c +=-,则代数式2ac bc a ab -+-的值为( ) A.15-B.2-C.6-D.618.已知a ,b ,c 是ABC ∆的三边长,且满足()222220a b c b a c ++-+=,则此三角形是( ). A.等腰三角形 B.等边三角形 C.直角三角形 D.不能确定19.分解因式:(1)224443x x y y --+-;(2)()()()2221x y xy x y xy +-+-+-; (3)343115x x -+; (4)32539x x x ++-.应用探究乐园20.已知在ABC ∆中,三边长a ,b ,c 满足等式222166100a b c ab bc --++=.求证:2a c b +=.21.下金蛋的鸡法国数学家费马(1601-1665)一生中提出了不少猜想,最著名的是“费马大定理”:关于x ,y ,z 的方程n n n x y z +=(n 为大于2的整数)没有正整数解.直到350年之后,这个猜想才由英国数学家怀尔斯(1953— )于1994年证明.德国数学家希尔伯特(1862-1943)将费马大定理称为“一只会下金蛋的鸡”,因为在攻克它的漫漫征程中,不但引出了许多数学概念和方法,而且促进了一些新的分支的创立和发展.这些远比证明定理本身更重要!不过费马的猜想并不总是正确的.他考察了12215+=,222117+=,3221257+=,422165537+=,发现结果都是素数(也称质数),于是猜想:对任意正整数n ,221n+(即()221n+)都是素数.瑞士数学家欧拉(1707-1783)指出,5221+并不是素数.我国数学家华罗庚(1910—1985)在他的著作《数论导引》中给出一种简明的证法:设72a =,5b =,可算得()524442111ab a a b +=++-,可见5221+必有除1和本身以外的约数______(填较简单的一个,用含a ,b 的式子表示),即5221+能被______整除(填入具体数值),所以不是素数.第2讲 因式分解的应用赛题练习1.(2004年重庆市竞赛题)已知2310x x x +++=,则220041x x x ++++的值为( )A.0B.1C.1-D.20042.(第19届江苏省竞赛题)若432237x x ax x b -+++能被22x x +-整除,则:a b 的值是 ( ) A.2-B.12-C.6D.43.(第14届希望杯竞赛题)若1x y +=-,则43222234585x x y x y x y xy xy y ++++++的值为( ) A.0B.1-C.1D.34.(第17届江苏省竞赛题)a 、b 、c 是正整数,a b >,且27a ab ac bc --+=,则a c -的值为( ) A.1-B.1-或7-C.1D.1或75.(中学生智能通讯赛试题)设()()322320042003200420052003200220012002a -⨯+=⨯--,()()322320052004200520062004200320022003b -⨯+=⨯--,则a 、b 的大小关系是( ) A.a b >B.a b =C.a b <D.不能确定6.(湖北省竞赛题)设a 是正数,且21a a -=,那么224a a-的值为( ) A.3-B.1C.3D.57.(2005年全国初中数学竞赛题)已知2221114834441004A ⎛⎫=⨯+++⎪---⎝⎭,则与A 最接近的正整数是( ) A.18B.20C.24D.258.(2007年全国初中数学竞赛题)方程323652x x x y y ++=-+的整数解(),x y 的个数是( ) A.0B.1C.3D.无穷多9.(第17届希望杯竞赛题)若22222006200620072007m =+⨯+,则m ( ) A.是完全平方数,还是奇数 B.是完全平方数,还是偶数 C.不是完全平方数,但是奇数D.不是完全平方数,但是偶数10.(2002年全国初中数学联赛题)若22m n =+,22()n m m n =+≠,则332m mn n -+的值为( ) A.1B.0C.1-D.2-11.(2003年全国初中数学联赛题)满足等式2003=的正整数对(),x y 的个数是( )A.1B.2C.3D.412.(第14届希望杯竞赛题)已知54410a a b a a b --+--=,且231a b -=,则33a b +的值为___________.13.(全国初中数学竞赛题)已知a 、b 、x 、y 满足2a b x y +=+=,5ax by +=,则()()2222ab xy ab x y +++=___________.14.(第17届希望杯竞赛题)A 、n 都是自然数,且21526A n n =++是一个完全平方数,则n =_____________.15.(四川省竞赛题)对一切大于2的正整数n ,数5354n n n -+的最大公约数是____________. 16.(2001年全国初中数学联赛题)一个正整数,若分别加上100和168,则可得到两个完全平方数,这个正整数为___________.17.(第9届华杯赛试题)a 、b 、c 是正整数,并且满足等式12004abc ab ac bc a b c +++++++=,那么a b c ++的最小值是__________.18.(祖冲之杯竞赛题)整数a 、b 满足6910303ab a b =-+,则a b +=___________.19.(第18届五羊杯竞赛题)若P 是两位的正整数,则以下等式中有可能成立的式子的个数是______________.①22006(34)(59)x Px x x ++=--; ②22006(17)(118)x Px x x ++=--; ③22006(34)(59)x Px x x --=+-; ④22006(17)(118)x Px x x --=+-; ⑤22006(1)(2006)x Px x x +-=-+.20.(2001年全国初中数学联赛题)若214x xy y ++=,228y xy x ++=,则x y +的值为___________. 21.(2005年四川省竞赛题)对于一个正整数n ,如果能找到正整数a 、b ,使得n a b ab =++,则称n 为一个“好数”,例如31111=++⨯,3就是一个“好数”,那么,在1~20这20个正整数中,好数有___________个.22.(2004年北京市竞赛题)已知x 、y 为正整数,且满足22222341x y x y +=+,则22x y +__________. 23.(第10届希望杯竞赛题)7221-能被500与600之间的若干整数整除,请找出3个这样的整数,它们是__________.24.(2008年天津市竞赛题)已知4个实数a 、b 、c 、d ,且a b ≠,c d ≠.若4个关系式:22a ac +=,22b bc +=,24c ac +=,24d ad +=同时成立,则6232a b c d +++的值为___________. 25.(五城市联赛题)若a 是自然数,则4239a a -+是质数还是合数?给出你的证明.26.(全国初中数学联赛题)某校在向“希望工程”捐款活动中,甲班的m 个男生和11个女生的捐款总数与乙班的9个男生和n 个女生的捐款总数相等,都是()911145mn m n +++元,已知每人的捐款数相同,且都是整数,求每人的捐款数.27.(2006年俄罗斯萨温市竞赛题)(1)证明:19992000200120032004200536⨯⨯⨯⨯⨯+是一个完全平方数.(2)证明:数848497n n ++-对于任何自然数n 都能被20整除.28.(江苏省竞赛题)(1)证明:791381279--能被45整除;(2)证明:当n 为自然数时,()221n +形式的数不能表示为两个整数的平方差;(3)计算:44444444441111124681044444111111357944444⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫+++++ ⎪⎪⎪⎪⎪⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫+++++ ⎪⎪⎪⎪⎪⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭29.(2005年太原市竞赛题)二次三项式22x x n --能分解为两个整系数一次因式的乘积. (1)若130n ≤≤,且n 是整数,则这样的n 有多少个? (2)当2005n ≤时,求最大的整数n .30.(重庆市竞赛题)按下面规则扩充新数:已有两数a 、b ,可按规则c ab a b =++扩充一个新数,在a 、b 、c 三个数中任取两数,按规则又可扩充一个新数,…,每扩充一个新数叫做一次操作.现有数1和4. (1)求按上述规则操作三次得到扩充的最大新数; (2)能否通过上述规则扩充得到新数1999,并说明理由.问题解决例1.方程2270xy x y --+=的整数解(x y ≤)为______. 例2.1621-能分解成n 个质因数的乘积,n 的值是( ). A.6 B.5 C.4 D.3例3.计算:(1)2220034004200320024008200320042003300520032003200520053005-⨯+⨯-⨯-⨯-⨯+⨯;(2)()()()()()()()()()()444444444476415642364316439643641164196427643564++++++++++. 例4.设9310382a =+-,证明:a 是37的倍数.例5.已知n 是正整数,且4216100n n -+是质数,求n 的值.例6.(1)实数x ,y 满足221252810x xy y y ++-+=,则22x y -=______.(2)在平面直角坐标系中,满足不等式2222x y x y +≤+的整数点坐标(),x y 的个数为( ). A.10B.9C.7D.5数学冲浪 知识技能广场1.设y ax =,若代数式()()()23x y x y y x y +-++化简的结果为2x ,则a =______.2.如图,有三种卡片,其中边长为a 的正方形卡片1张,边长分别为a ,b 的长方形卡片6张,边长为b 的正方形卡片9张,用这16张卡片拼成一个正方形,则这个正方形的边长为______. 3.如果实数x ,y 满足方程组1,2225,x y x y ⎧-=-⎪⎨⎪+=⎩那么22x y -的值为______.4.已知2m ≥,2n ≥,且m ,n 均为正整数,如果将n m 进行如下方式的“分解”,那么下列三个叙述:(1)在52的“分解”中最大的数是11; (2)在34的“分解”中最小的数是13;(3)若3m 的“分解”中最小的数是23,则m 等于5. 其中正确的是______.5.若实数x ,y ,z 满足()()()240x z x y y z ----=,则下列式子一定成立的是( ) A.0x y z ++= B.20x y z +-= C.20y z x +-=D.20z x y +-=6.边长为a ,b 的矩形的周长为14,面积为10,则22a b ab +的值为( ) A.140B.70C.55D.247.设n 为某一自然数,代入代数式3n n -计算其值时,四个学生算出了下列四个结果,其中正确的结果是( ). A.5814B.5841C.8415D.84518.a ,b ,c 是正整数,a b >,27a ab ac bc --+=,则a c -等于( ) A.1- B.1-或7- C.1 D.1或79.计算:(1)32322004220042002200420042005-⨯-+-; (2)44444444441111124681044444111111357944444⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫+++++ ⎪⎪⎪⎪⎪⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫+++++ ⎪⎪⎪⎪⎪⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭.10.选取二次三项式()20ax bx c a ++≠中的两项,配成完全平方式的过程叫配方. ①选取二次项和一次项配方:()224222x x x -+=--;②选取二次项和常数项配方:(()22424x x x x -+=+,或((32424x x x x -+=-+;③选取一次项和常数项配方:22242x x x -+=-.根据上述材料,解决下面的问题.(1)写出284x x -+的两种不同形式的配方;(2)已知22330x y xy y ++-+=,求y x 的值.思维方法天地11.若两个不等实数m ,n 满足22m m a -=,22n n a -=,225m n +=,则实数a 的值为______. 12.已知a ,b ,x ,y 满足2a b x y +=+=,5ax by +=,则()()2222a b xy ab x y +++=______. 13.整数x ,y 满足方程283xy x y ++=,则x y +=______.14.A ,n 都是自然数,且21526A n n =++是一个完全平方数,则n =______. 15.若22222006200620072007m =+⨯+,则m ( ). A.是完全平方数,还是奇数 B.是完全平方数,还是偶数 C.不是完全平方数,但是奇数D.不是完全平方数,但是偶数16.设n 为某一正整数,代入代数式2n n -计算其值时,四个学生算出了下列四个结果,其中仅有一个是正确的,则这个正确的结果是( ) A.7770B.7775C.7776D.777917.方程222334x xy y ++=的整数解(),x y 的组数为( ). A.3B.4C.5D.618.黑板上写有1,12,…,1100共100个数字,每次操作先从黑板上的数中选取两个数a ,b ,然后删去a ,b ,并在黑板上写上数a b ab ++,则经过99次操作后黑板上剩下的数是( ). A.2012B.101C.100D.9919.已知()()222012a b c b a c +=+=,且a b ≠,求()2c a b +的值.20.计算:()()()()()()()()()()424242424242424242422214416618881010133155177199111111++++++++++++++++++++.应用探究乐园21.当我们看到下面这个数学算式333337133713503724613724++==++时,大概会觉得算题的人错用了运算法则吧,因为我们知道3333a b a bc d c d++≠++,但是,如果你动手计算一下,就会发现上式并没有错,不仅如此,我们还可以写出任意多个这种等式:333331313232++=++,333352525353++=++,333373737474++=++,3333107107103103++=++,…,你能发现以上等式的规律吗?22.按下面规则扩充新数:已有两数a ,b ,可按规则c ab a b =++扩充一个新数,在a ,b ,c 三个数中任取两数,按规则又可扩充一个新数……每扩充一个新数叫做一次操作.现有数1和4. (1)求按上述规则操作三次得到扩充的最大新数; (2)能否通过上述规则扩充得到新数1999,并说明理由.。
初中数学《全等三角形中的角平分线》讲义及练习

板块 考试要求A 级要求B 级要求C 级要求全等三角形的性质及判定 会识别全等三角形掌握全等三角形的概念、判定和性质,会用全等三角形的性质和判定解决简单问题会运用全等三角形的性质和判定解决有关问题全等三角形的性质:对应角相等,对应边相等,对应边上的中线相等,对应边上的高相等,对应角的角平分线相等,面积相等.寻找对应边和对应角,常用到以下方法:(1)全等三角形对应角所对的边是对应边,两个对应角所夹的边是对应边. (2)全等三角形对应边所对的角是对应角,两条对应边所夹的角是对应角. (3)有公共边的,公共边常是对应边. (4)有公共角的,公共角常是对应角. (5)有对顶角的,对顶角常是对应角.(6)两个全等的不等边三角形中一对最长边(或最大角)是对应边(或对应角),一对最短边(或最小角)是对应边(或对应角).要想正确地表示两个三角形全等,找出对应的元素是关键. 全等三角形的判定方法:(1) 边角边定理(SAS ):两边和它们的夹角对应相等的两个三角形全等. (2) 角边角定理(ASA ):两角和它们的夹边对应相等的两个三角形全等. (3) 边边边定理(SSS ):三边对应相等的两个三角形全等.(4) 角角边定理(AAS ):两个角和其中一个角的对边对应相等的两个三角形全等. (5) 斜边、直角边定理(HL ):斜边和一条直角边对应相等的两个直角三角形全等.全等三角形的应用:运用三角形全等可以证明线段相等、角相等、两直线垂直等问题,在证明的过程中,注意有时会添加辅助线.奥数赛点:能通过判定两个三角形全等进而证明两条线段间的位置关系和大小关系.而证明两条线段或两个角的和、差、倍、分相等是几何证明的基础.重、难点知识点睛中考要求第十讲 全等三角形中的角平分线与角平分线相关的问题角平分线的两个性质:⑴角平分线上的点到角的两边的距离相等; ⑵到角的两边距离相等的点在角的平分线上. 它们具有互逆性.角平分线是天然的、涉及对称的模型,一般情况下,有下列三种作辅助线的方式: 1. 由角平分线上的一点向角的两边作垂线,2. 过角平分线上的一点作角平分线的垂线,从而形成等腰三角形, 3. OA OB =,这种对称的图形应用得也较为普遍,AB OPPOB A A B OP【例1】 如图,已知ABC ∆的周长是21,OB ,OC 分别平分ABC ∠和ACB ∠,OD BC ⊥于D ,且3OD =,求ABC ∆的面积.【解析】 ∵O 点为ABC △中角平分线的交点, ∴O 点到三边距离相等.∴ABC OAB OBC OAC S S S S =++△△△△1()331.52AB BC AC =⨯++⨯=【例2】 在ABC ∆中,D 为BC 边上的点,已知BAD CAD ∠=∠,BD CD =,求证:AB AC =.ADOCB重点:本节的重点是全等三角形的概念和性质以及判定,全等三角形的性质是以后证明三角形问题的基础,也是学好全章的关键。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2006年北京市初二数学竞赛试题
一、选择题(每小题5分,共25分)
1、在直角三角形中,斜边的平方恰等于两条直角边乘积的2倍. 那么,这个三角形的三边长之比为( )
(A )5:4:3 (B )1:1:1 (C )4:3:2 (D )2:1:1
2、满足不等式99992006≤+-x x 的整数x 共有( )个.
(A )9998 (B )9999 (C )10000 (D )10001
3、从1,2,……,14共14个自然数中取出k 个数,确保其中有两个数,满足一个是另一个的2倍. 则k 的最小值是( ).
(A )8 (B )9 (C )10 (D )11
4、一个自然数q ,任意取出2个数字,如果左边的数字比右边的数字大,则称这个数有一个逆序. 用NX(q)表示q 的逆序的个数(如NX(3214)=3,NX(12344)=0). 则NX(324167895)被4除的余数是( ).
(A )0 (B )1 (C )2 (D )3
5、如图1,P 是函数)0(21>=x x
y 图象上一点,直线1+-=x y 分别交x 轴、y 轴于点A 、B ,作PM ⊥x 轴于点M ,交AB 于点E ,作
PN ⊥y 轴于点N ,交AB 于点F. 则AF ·BE 的值为( ).
(A )2
(B )2 (C )1 (D )2
1 二、填空题(每小题7分,共35分)
6、若连续的5个自然数每一个都是合数,则称这一组数为“孪生5合数”. 那么,在不超过的100的自然数中共有孪生5合数 组.
7、在△ABC 中,AC =BC ,∠ACB =90°,D 、E 是边AB 上的两点,AD =3,BE =4,∠DCE =45°. 则△ABC 的面积= .
8、某人从住地外出有两种方案;一种是骑自行车去,另一种是乘公共汽车去. 公共汽车的速度比自行车的速度快,但要等候(候车时间可看做是固定不变的),在任何情况下,他总是选择用时最少的方案. 表1表示他到达A 、B 、C 三地采用最佳方案所需时间。
为了到达离住地8km 的地方,他最少需要 min.
9、如图2,在长方形ABCD 中,AB =7,AD =24,P 为边BC
上的一个动点,作PE ⊥AC 于点E ,PF ⊥BD 于点F. 则PE
+PF = .
10、有大小一样、张数相同的黑白两种颜色的正方形纸片. 小张先用白色纸片拼成中间没有
缝隙的长方形,然后用黑色纸片围绕已经拼成的白色长方形继续拼成更大的长方形后,又用白色纸片拼下去. 这样重复拼,当小张用黑色纸片拼过5次以后,黑、白纸片正好用完. 那么,黑色纸片至少有张.
三、(15分)在五角星形ABCDE中,相交线段的交点字母如图3所示. 已
知AQ=QC,BR=RD,CR=RE,DS=SA. 求证:BT=TP=PE.
四、(15分)三个互不相同的正整数,如果任何两个的乘积与1的和都恰被第三个数整除,
则称这样的三个正整数为“玲珑三数组”.
(1)求证:玲珑三数组中的三个正整数两两互质。
(2)求出所有的玲珑三数组。
五、(10分)如图4,在一个△ABC内部有m个点,在这些点之间及这些点与
A、B、C三点之间连接一些线段,这些线段在三角形内部没有这m个点
以外的公共点,并恰将△ABC分成的小区域全部都是小三角形。
请你证明:
(1)分成的小三角形区域的总个数必为奇数;
(2)位于△ABC内部的所连接线段的条数是3的倍数。