高考数学专题《函数的概念及其表示》习题含答案解析
高考数学专题复习-2.1函数及其表示-高考真题练习(附答案)

专题二函数的概念与基本初等函数2.1函数及其表示考点一函数的概念及表示1.(2015湖北文,7,5分)设x∈R,定义符号函数sgnx=1,>0,0,=0,-1,<0.则()A.|x|=x|sgnx|B.|x|=xsgn|x|C.|x|=|x|sgnxD.|x|=xsgnx答案D 由已知可知xsgnx=s >0,0,=0,-s <0,而|x|=s >0,0,=0,-s <0,所以|x|=xsgnx,故选D.2.(2014江西理,3,5分)已知函数f(x)=5|x|,g(x)=ax 2-x(a∈R).若f[g(1)]=1,则a=()A.1B.2C.3D.-1答案A 由已知条件可知:f[g(1)]=f(a-1)=5|a-1|=1,∴|a-1|=0,得a=1.故选A.评析本题主要考查函数的解析式,正确理解函数的定义是解题关键.3.(2015重庆文,3,5分)函数f(x)=log 2(x 2+2x-3)的定义域是()A.[-3,1]B.(-3,1)C.(-∞,-3]∪[1,+∞)D.(-∞,-3)∪(1,+∞)答案D 由x 2+2x-3>0,解得x<-3或x>1,故选D.4.(2015湖北文,6,5分)函数f(x)=4−|U +lg 2-5x+6t3的定义域为()A.(2,3)B.(2,4]C.(2,3)∪(3,4]D.(-1,3)∪(3,6]答案C 要使函数f(x)有意义,0,0,>0,解之得2<x<3或3<x≤4,故选C.5.(2014山东理,3,5分)函数()A. B.(2,+∞)C. D.答案C 要使函数f(x)有意义,需使(log 2x)2-1>0,即(log 2x)2>1,∴log 2x>1或log 2x<-1.解之得x>2或0<x<12.故f(x)的定义域为0,6.(2016课标Ⅱ文,10,5分)下列函数中,其定义域和值域分别与函数y=10lgx的定义域和值域相同的是()A.y=xB.y=lgxC.y=2x答案D函数y=10lgx的定义域、值域均为(0,+∞),而y=x,y=2x的定义域均为R,排除A,C;y=lgx的值域为R,排除B,故选D.易错警示利用对数恒等式将函数y=10lgx变为y=x,将其值域认为是R是失分的主要原因.评析本题考查函数的定义域和值域,熟练掌握基本初等函数的图象和性质是解题的关键.7.(2022北京,4,4分)已知函数f(x)=11+2,则对任意实数x,有()A.f(-x)+f(x)=0B.f(-x)-f(x)=0C.f(-x)+f(x)=1D.f(-x)-f(x)=13答案C∵f(x)=11+2,∴f(-x)=11+2−=22+1,∴f(x)+f(-x)=11+2+22+1=1.故选C.一题多解:若对任意实数x,使得选项中式子成立,则可任取x值,代入验证,进行排除.当x=0时,f(0)+f(0)=12+12=1,f(0)-f(0)=0,故A,D选项错误.当x=1时,f(-1)-f(1)=11+2−1−11+21≠0,故B选项错误.根据排除法可知选C.8.(2022北京,11,5分)函数f(x)=1+1−的定义域是.答案(-∞,0)∪(0,1]解析由题意得≠0,1−≥0,解得x≤1且x≠0,所以函数f(x)的定义域为(-∞,0)∪(0,1].9.(2016江苏,5,5分)函数y=3−2t2的定义域是.答案[-3,1]解析若函数有意义,则3-2x-x2≥0,即x2+2x-3≤0,解得-3≤x≤1.考点二分段函数1.(2019天津理,8,5分)已知a∈R.设函数f(x)=2-2ax+2a,x≤1,tEns>1.若关于x的不等式f(x)≥0在R上恒成立,则a的取值范围为()A.[0,1]B.[0,2]C.[0,e]D.[1,e]答案C本题主要考查分段函数及不等式恒成立问题,考查学生推理论证能力及运算求解能力,将恒成立问题转化为求最值问题,考查了学生化归与转化思想及分类讨论思想.(1)当x≤1时,f(x)=x 2-2ax+2a=(x-a)2+2a-a 2,①若a>1,则f(x)在(-∞,1]上是减函数,所以f(x)≥f(1)=1>0恒成立;②若a≤1,则f(x)≥f(a)=2a-a 2,要使f(x)≥0在(-∞,1]上恒成立,只需2a-a 2≥0,得0≤a≤2,∴0≤a≤1,综合①②可知,a≥0时,f(x)≥0在(-∞,1]上恒成立.(2)当x>1时,lnx>0,f(x)=x-alnx≥0恒成立,即a≤ln 恒成立.令g(x)=ln ,g'(x)=lnt1(lnp 2,令g'(x)=0,得x=e,当x∈(1,e)时,g'(x)<0,g(x)为减函数,当x∈(e,+∞)时,g'(x)>0,g(x)为增函数,∴g(x)min =g(e)=e,∴a≤e.综合(1)(2)可知,a 的取值范围是0≤a≤e,故选C.解后反思求不等式恒成立时的参数取值范围的方法:一是分离参数法,不等式f(x)≥a 在R 上恒成立⇔f(x)min ≥a,f(x)≤a 在R 上恒成立⇔f(x)max ≤a;二是讨论分析法,根据参数取值情况进行分类讨论,从而确定参数的取值范围.2.(2019天津文,8,5分)已知函数≤x ≤1,x >1.若关于x 的方程f(x)=-14x+a(a∈R)恰有两个互异的实数解,则a 的取值范围为()答案D 本题以分段函数和方程的解的个数为背景,考查函数图象的画法及应用.画出函数y=f(x)的图象,如图.方程f(x)=-14x+a 的解的个数,即为函数y=f(x)的图象与直线l:y=-14x+a 的公共点的个数.当直线l 经过点A 时,有2=-14×1+a,a=94;当直线l 经过点B 时,有1=-14×1+a,a=54.由图可知,函数y=f(x)的图象与l 恰有两个交点.另外,当直线l 与曲线y=1,x>1相切时,恰有两个公共点,此时a>0.联立=1,=−14x +a,得1=-14x+a,即14x 2-ax+1=0,由Δ=a 2-4×14×1=0,得a=1(舍去负根).综上故选D.一题多解令g(x)=f(x)+14x=4(0≤x ≤1),>1),当0≤x≤1时,g(x)=2+4为增函数,其值域为0,当x>1时,g(x)=1+4,对g(x)求导得g'(x)=-12+14,令g'(x)=0,得x=2,当x∈(1,2)时,g'(x)<0,g(x)单调递减,当x∈(2,+∞)时,g'(x)>0,g(x)单调递增,∴当x=2时,g(x)min =g(2)=1,函数g(x)的简图如图所示:方程f(x)=-14x+a 恰有两个互异的实数解,即函数y=g(x)的图象与直线y=a 有两个不同的交点,由图可知54≤a≤94或a=1满足条件,故选D.易错警示本题入手时,容易分段研究方程2=-14x+a(0≤x≤1)与1=-14x+a(x>1)的解,陷入相对复杂的运算过程.利用数形结合时,容易在区间的端点处出现误判.3.(2015课标Ⅰ文,10,5分)已知函数f(x)=2t1-2,x ≤1,-log 2(x +1),x >1,且f(a)=-3,则f(6-a)=()A.-74 B.-54 C.-34 D.-14答案A 当a≤1时,f(a)=2a-1-2=-3,即2a-1=-1,不成立,舍去;当a>1时,f(a)=-log 2(a+1)=-3,即log 2(a+1)=3,得a+1=23=8,∴a=7,此时f(6-a)=f(-1)=2-2-2=-74.故选A.评析本题主要考查分段函数,指数与对数的运算,考查分类讨论的思想,属中等难度题.4.(2015陕西文,4,5分)设f(x)=1−sx ≥0,2,x <0,则f(f(-2))=()A.-1B.14C.12D.32答案C ∵f(-2)=2-2=14,∴f(f(-2))=f =12,选C.5.(2015山东文,10,5分)设函数f(x)=3ts x <1,2,x ≥1.若f 则b=()A.1B.78C.34D.12答案D=3×56-b=52-b,当52-b≥1,即b≤32时-b=252-b,即252-b=4=22,得到52-b=2,即b=12;当52-b<1,即b>32时-b=152-3b-b=152-4b,即152-4b=4,得到b=78<32,舍去.综上,b=12,故选D.6.(2014江西文,4,5分)已知函数f(x)=·2,x≥0,2-,x<0(a∈R),若f[f(-1)]=1,则a=() A.14 B.12 C.1 D.2答案A由f[f(-1)]=f(2)=4a=1,得a=14,故选A.7.(2014课标Ⅰ文,15,5分)设函数f(x)=e t1,x<1,13,x≥1,则使得f(x)≤2成立的x的取值范围是.答案(-∞,8]解析f(x)≤2⇒<1,e t1≤2或≥1,13≤2⇒<1,≤ln2+1或≥1,≤8⇒x<1或1≤x≤8⇒x≤8,故填(-∞,8].8.(2022浙江,14,6分)已知函数f(x)=−2+2,≤1,+1−1,>1,则f=;若当x∈[a,b]时,1≤f(x)≤3,则b-a的最大值是.答案3728;3+3解析∵+2=74,∴f==74+47−1=3728.f(x)的大致图象如图.∵当x∈[a,b]时,1≤f(x)≤3,∴由图可得b>1且b+1-1=3,∴b=2+3,∵f(a)=1,∴-a2+2=1,解得a=1或a=-1,∴(b-a)max=2+3-(-1)=3+3.一题多解:第二空:∵当x≤1时,y=-x2+2≤2,∴f(x)=3⇒x+1-1=3(x>1),故x=2+3,令-x2+2=1(x≤1),解得x=1或x=-1,令x+1-1=1(x>1),无解,∴a min=-1,b=2+3,∴(b-a)max=2+3-(-1)=3+3.。
专题3.1 函数概念及其表示(解析版)

专题3.1函数概念及其表示【知识储备】1.函数的概念一般地,设A ,B 是非空的数集,如果按照某种确定的对应关系f ,使对于集合A 中的任意一个数x 在集合B 中都有唯一确定的数f (x )和它对应,那么就称f :A →B 为从集合A 到集合B 的一个函数,记作y =f (x ),x ∈A .2.函数的定义域、值域(1)在函数y =f (x ),x ∈A 中,x 叫做自变量,x 的取值范围A 叫做函数的定义域;与x 的值相对应的y 值叫做函数值,函数值的集合{f (x )|x ∈A }叫做函数的值域.(2)如果两个函数的定义域相同,并且对应关系完全一致,我们就称这两个函数相等.3.函数的表示法表示函数的常用方法有解析法、图象法和列表法.4.分段函数(1)若函数在其定义域的不同子集上,因对应关系不同而分别用几个不同的式子来表示,这种函数称为分段函数.(2)分段函数虽由几个部分组成,但它表示的是一个函数.分段函数的定义域等于各段函数的定义域的并集,值域等于各段函数的值域的并集.必备技巧函数的概念(1)函数的定义要求第一个非空数集A 中的任何一个元素在第二个非空数集B 中有且只有一个元素与之对应,即可以“多对一”,不能“一对多”,而B 中有可能存在与A 中元素不对应的元素.(2)构成函数的三要素中,定义域和对应关系相同,则值域一定相同.同一函数只需判断定义域和对应关系即可.一、单选题1.若函数()y f x =的定义域M ={x |22x -≤≤},值域为N ={y |02y ≤≤},则函数()y f x =的图象可能是()A .B .C .D .【答案】B【解析】A 中定义域是{x |-2≤x ≤0},不是M ={x |-2≤x ≤2},故错误;C 中图象不表示函数关系,因为存在一个x 对应两个y ,不满足函数定义;D 中值域不是N ={y |0≤y ≤2}.只有B 中的定义域和值域满足题意,且表示函数关系,符合题意.故选:B.2.设{}{}|02,|12M x x N y y =≤≤=≤≤,给出下列四个图形,如下图所示,其中能表示从集合M 到N 的函数关系的有()个A .1个B .2个C .3个D .4个【答案】A【解析】由函数的定义知,①不能表示集合M 到N 的函数关系,因为图中y 的范围是[0,2];②不能表示集合M 到N 的函数关系,因为图中y 的范围是[0,2];③不能表示集合M 到N 的函数关系,因为对于一个x ,可能有两个y 值与之对应;④能表示集合M 到N 的函数关系.故满足题意的有④,共1个.故选:A.3.函数y =13x -的定义域为()A .3,2⎡⎫+∞⎪⎢⎣⎭B .(-∞,3)∪(3,+∞)C .3,32⎡⎫⎪⎢⎣⎭(3,+∞)D .(3,+∞)【答案】C【解析】要使函数y =+13x -有意义,则所以x x -≥-≠⎧⎨⎩23030,解得32x ≥且3x ≠,所以函数y =+13x -的定义域为3,32⎡⎫⎪⎢⎣⎭∪(3,+∞).故选:C.4.下列各组函数中,表示同一函数的是()A .2()1x xf x x +=+与()1g x x =-B .()2f x x =与()g x =C .()f x =()2g x =D .y =y =【答案】B【解析】A 中,()f x 的定义域为{|1}x x ≠-,()g x 的定义域为R ,故A 错误;B 中,()2()g x x f x ==,B 正确;C 中,()f x 的定义域为R ,()g x 的定义域为[0,)+∞,故C 错误;D 中,y =[1,)+∞,由210x -≥可得y =(,1][1,)∞∞--⋃+,D 错误.故选:B5.已知函数()f x 与x 的值对应如下表,x 123456()f x 51015202530那么函数()y f x =的定义域为()A .{}1,2,3,4,5,6B .{}15,20,25,30C .{}1,2,3,4D .{}4,5,6【答案】A【解析】由题意知:函数()y f x =的定义域为{}1,2,3,4,5,6.故选:A.6.下列关于函数与区间的说法正确的是()A .函数定义域必不是空集,但值域可以是空集B .函数定义域和值域确定后,其对应法则也就确定了C .数集都能用区间表示D .函数中一个函数值可以有多个自变量值与之对应【答案】D【解析】对于A ,函数的定义域和值域均为非空数集,A 错误;对于B ,若函数的定义域和值域均为R ,对应法则可以是y x =,也可以是2y x =,B 错误;对于C ,自然数集无法用区间表示,C 错误;对于D ,由函数定义可知,一个函数值可以有多个自变量值与之对应,D 正确.故选:D.7.已知函数()1f x x x=+,则()()1010f f -+的值是().A .20-B .0C .1D .20【答案】B【解析】()1=10+=10.11010f ,()1=10+=10.01101f ----则()()10.110.110010f f -=-+=+故选:B8.已知函数32231f x x x ⎛⎫=- ⎪-⎝⎭,则()2f -等于()A .4-B .2-C .1-D .0【答案】D【解析】由题意,函数32231f x x x ⎛⎫=- ⎪-⎝⎭,令221x =--,解得0x =,令0x =,可得()20f -=.故选:D.9.已知函数()()()F x f x g x =+,其中()f x 是x 的正比例函数,()g x 是x 的反比例函数,且119,(1)93F F ⎛⎫== ⎪⎝⎭,则(2)F =()A .3B .8C .9D .16【答案】C【解析】根据题意设(),()mf x kxg x x ==,则()()()m F x f x g x kx x=+=+,因为119,(1)93F F ⎛⎫== ⎪⎝⎭,所以131939k m k m ⎧+=⎪⎨⎪+=⎩,解得36k m =⎧⎨=⎩,所以6()3F x x x =+,所以6(2)3292F =⨯+=,故选:C10.已知t R ∈,函数()2,23,2x f x x t x ⎧>⎪=⎨-+≤⎪⎩,若((9))4=f f ,则t =()A .0B .2C .5D .6【答案】B【解析】因为()921f ==,所以()1134422f t t =-+=⇒=-=,故选:B11.函数()21xy x e =-的图象可能是()A .B .C .D .【答案】C 由题意,函数()()21x f x x e =-,因为()10f =,即函数()f x 的图象过点(1,0),可排除A 、B 项;又因为2(2)30f e --=>,可排除D 项,故选:C.12.设函数221,1()3,1x x f x x x x ⎧-≤=⎨+->⎩,则1(2)f f ⎛⎫ ⎪⎝⎭的值为()A .1516B .89C .2716-D .18【答案】B【解析】22111118()()1()1(2)2233399f f f f ⎛⎫===-=-= ⎪+-⎝⎭,故选:B 13.某高中生周末自主学习时,进行了一次数学探究活动,他将一天的日期与星期用有序数对表示,比如某个月10日,11日是周末,就分别用(10,6)和(11,7)表示,然后在平面直角坐标系内描出对应的点.他查阅了某年七月份的日历,利用数学软件在平面直角坐标系内描出了31个点,经过思考,他构造了函数()f x ,使得这些点都在()f x 的图象上,若(4)1f =,则下列叙述正确的是()A .该月12日是星期二,有五天是星期二B .该月12日是星期一,有四天是星期二C .该月23日是星期六,有五天是星期六D .该月23日是星期二,有四天是星期二【来源】安徽省阜阳市2021-2022学年高三上学期期末教学质量统测文科数学试题【答案】C【解析】由题意及(4)1f =可知,7月4日是星期一,列表如下:星期一星期二星期三星期四星期五星期六星期日12345678910111213141516171819202122232425262728293031可知选项C 正确.故选:C.14.设函数,若()()()20f f a f a -+=,则实数a 的值为()A1B .1-C 1D .1+【答案】B【解析】令()f a t =,()()()20f f a f a -+=,则()2f t t =-1°0t ≤时,222t t t +=-,则220t t ++=无解.2°0t >时,22t t -=-,∴1t =,∴()1f a =0a ≤时,221a a +=,则1a =;0a >时,21a -=无解综上:1a =.故选:B .15.已知函数202()282x x x f x x x ⎧+<<=⎨-+≥⎩,,,若()(2)(0,)f a f a a ∞=+∈+,,则1f a ⎛⎫= ⎪⎝⎭()A .2B .516C .6D .172【答案】A【解析】因为函数202()282x x x f x x x ⎧+<<=⎨-+≥⎩,,,且()(2)(0,)f a f a a ∞=+∈+,,当02a <<时,()2228a a a +=-++,即2340a a +-=,解得4a =-或1a =,当2a ≥时,()28228a a -+=-++,无解,综上:1a =,所以()112f f a ⎛⎫== ⎪⎝⎭,故选:A16.设函数()()22230x a x f x x x a x ⎧-≤⎪=⎨-++>⎪⎩,,,若(0)f 是函数()f x 的最小值,则实数a 的取值范围是()A .[﹣1,2]B .()1,2-C .[)0,2D .[0,2]【答案】D【解析】由题意,不妨设2()()g x x a =-,2()23h x x x a =-++,①当0a <时,由一元二次函数的性质可知,2()()g x x a =-在[,0]a 上单调递增,故对于[,0]x a ∀∈,()()(0)(0)f x g x g f =<=,这与(0)f 是函数()f x 的最小值矛盾;②当0a =时,2()g x x =,22()23(1)2h x x x x =-+=-+,由一元二次函数的性质可知,2()g x x =在(,0]-∞单调递减,故对于(,0]x ∀∈-∞,()()(0)(0)0f x g x g f =>==,当0x >时,22()()23(1)2f x h x x x x ==-+=-+在1x =时取得最小值2,从而当0a =时,满足(0)f 是函数()f x 的最小值;③当0a >时,由一元二次函数性质,2()()g x x a =-在(,0]-∞上单调递减,故对于(,0]x ∀∈-∞,2()()(0)(0)f x g x g f a =>==,当0x >时,22()()23(1)2f x h x x x x a ==-+=-++在1x =时取得最小值2a +,若使(0)f 是函数()f x 的最小值,只需22a a ≤+且0a >,解得,02a <≤.综上所述,实数a 的取值范围是[0,2].故选:D.17.已知函数()()1,1,,1xa x x f x a x ⎧-≤=⎨>⎩在x ∈R 上有最大值,那么实数a 的取值范围为()A .(0,1)B .(1,2)C .1,12⎡⎫⎪⎢⎣⎭D .10,2⎛⎤ ⎥⎝⎦【答案】D【解析】由题意可知()f x 在区间(],1-∞上是增函数,在区间()1,+∞上是减函数,且最大值在1x =处取得则01,10,1,a a a a <<⎧⎪->⎨⎪-≥⎩∴102a <≤.故选:D18.定义在R 上的函数()f x 满足()()6f x f x +=,当31x -≤<-时,2()(2)f x x =-+,当13x -≤<时,()f x x =,则(1)(2)(3)(2023)f f f f +++⋅⋅⋅+=()A .336B .338C .337D .339【答案】B【解析】:因为当13x -< 时,()f x x =,所以(0)0f =,f (1)1=,f (2)2=,又因为()()6f x f x +=,所以函数的周期为6,f (6)(0)0f ==,当31x -<- 时,2()(2)f x x =-+,所以f (3)(3)1f =-=-,f (4)(2)0f =-=,f (5)(1)1f =-=-,所以f (1)f +(2)f +(3)f +(4)f +(5)f +(6)1=,故f (1)f +(2)f +(3)()()()()()()()(2023)337123456f f f f f f f f +⋯+=++++++(1)338=.故选:B .19.设函数1121f x x ⎛⎫+=+ ⎪⎝⎭,则()f x 的表达式为()A .()111x xx +-≠B .()111x xx +-≠C .()111xxx +≠--D .()211xx x ≠-+【答案】B 【解析】令()111t t x=+≠,则可得11x t =-()1t ¹所以()()211111t f t t t t +=+=-≠-,所以()()111xf x x x +-≠=故选:B 20.已知22,0()32,0x x f x x x ⎧-=⎨->⎩,若()f x ax 在[1,1]x ∈-上恒成立,则实数a 的取值范围是()A .(,1][0,)-∞-+∞B .[0,1]C .[1,0]-D .(1,0)-【答案】C【解析】作出()y f x =,y ax =在[]1,1-上的图象如下图所示:因为()f x ax 在[]1,1x ∈-上恒成立,所以()y f x =的图象在y ax =的图象的上方(可以部分点重合),且()1121f -=-=,令320x -=,所以23x =,所以()21,1,,03A B ⎛⎫- ⎪⎝⎭,根据图象可知:当y ax =经过点()1,1A -时,a 有最小值,min 1a =-,当y ax =经过点2,03B ⎛⎫⎪⎝⎭时,a 有最大值,max 0a =,综上可知a 的取值范围是[]1,0-,故选:C.二、填空题21.已知函数()f x 对于任意的正实数x ,y 满足()()()f xy f x f y =+,且()31f =,则()81f =______.【答案】4【解析】由题可知()()()9332f f f =+=,()()()81994f f f =+=.故答案为:4.22.函数22()1x f x x =+,则11(1)(2)(3)(2012)23f f f f f f ⎛⎫⎛⎫++++++ ⎪ ⎪⎝⎭⎝⎭12012f ⎛⎫+ ⎪⎝⎭=_______.【答案】40232或2011.5【解析】∵2222222111()()111111x x x f x f x x x xx ⎛⎫ ⎪⎝⎭+=++=+++⎛⎫+ ⎪⎝⎭,且1(1)2f =∴1114023(1)(2)(3)(2012)2320122f f f f f f f ⎡⎤⎡⎤⎡⎤⎛⎫⎛⎫⎛⎫+++++++=⎪ ⎪ ⎪⎢⎥⎢⎥⎢⎥⎝⎭⎝⎭⎝⎭⎣⎦⎣⎦⎣⎦故答案为:40232.23.已知函数()25,24,2x x f x x m x ⎧->⎪=⎨-+≤⎪⎩.若[5f f =,则m =______.【答案】3【解析】由已知752f =-=.((2)25f f f m ==+=,3m =,故答案为:3.24.设函数()()11010(2)x x x xf x ⎧⎪-=≥⎨<⎪⎪⎪⎩,若()f a a =,则实数a 的值为_____.【答案】1-【解析】由题意知,()f a a =;当0a ≥时,有112a a -=,解得2a =-(舍去);当0a <时,有1a a=,解得1a =(舍去)或1a =-.所以实数a 的值是:1a =-.故答案为:1-.25.已知函数()()31,11)x x f x x ⎧+≤⎪=⎨>⎪⎩,则((4))f f =_____.【答案】98或1.125【解析】∵()()31,11)x x f x x ⎧+≤⎪=⎨>⎪⎩,()142f ∴=,因此,()()311941228f f f ⎛⎫⎛⎫==+= ⎪ ⎪⎝⎭⎝⎭.故答案为:98.26.已知函数(21)y f x =+的定义域为[]1,2-,则函数(1)=-y f x 的定义域为_________.【来源】辽宁省沈阳市第二中学2021-2022学年高二下学期期末数学试题【答案】[]0,6【解析】函数(21)y f x =+的定义域为[]12-,,即12x -≤≤,所以1215x -≤+≤,所以115x -≤-≤,即06x ≤≤,所以函数的定义域为[]0,6.故答案为:[]0,6.27.若函数()f x =R ,则实数a 的取值范围是__________.【答案】[0,4)【解析】()f x 的定义域是R ,则210ax ax ++>恒成立,0a =时,2110ax ax ++=>恒成立,0a ≠时,则20Δ40a a a >⎧⎨=-<⎩,解得04a <<,综上,04a ≤<.故答案为:[0,4).28.函数()2291163,12x ax x f x x a x x ⎧-+≤⎪=⎨+->⎪⎩,,若()()1f x f ≥恒成立,则实数a 的取值范围为__________.【答案】[2,4]【解析】当1x >时,21632x a x +-28833312222x a a a x x =++-≥=-,当且仅当28x x=即2x =时取等号,函数()2291163,12x ax x f x x a x x ⎧-+≤⎪=⎨+->⎪⎩,,若()()1f x f ≥恒成立,则()()1221a f f ⎧≥⎪⎨⎪≥⎩,即12312102a a a ⎧≥⎪⎪⎨⎪-≥-⎪⎩,解得24a ≤≤,故答案为:[2,4].29.若方程()()(]2,,21,,x x t f x x x t ∞∞⎧∈+⎪=⎨-∈-⎪⎩,若方程()3f x =无解,则实数t 的取值范围是______.2t ≤<【解析】当t =x t ≤时,()2113f x x =-≤<,当x t >时,方程()223f x x t =>=,方程()3f x =无解,当2t ≥时,x t ≤时,()2121f x x t =-≤-,方程()3f x =有解2x =,不符合题意.当t <时,x t ≤时,()212113f x x t =-≤-<-<,()3f x =无解,当x t >时,方程()22,f x x t x =>=时,方程()3f x =有解,不符合题意.2t <<时,x t ≤时,()21213f x x t =-≤-<,()3f x =无解,当x t >时,方程()223f x x t =>>时,方程()3f x =无解.综上,方程()3f x =无解,则实数t2t ≤<.2t ≤<30.设0a >,(),3313,333x a a x a f x x a x a x a ⎧+-<<⎪=⎨+≤-≥⎪⎩或,若()()1f x f x -<恒成立,则实数a 的取值范围是______.【答案】10,8⎛⎫ ⎪⎝⎭【解析】(),3,33,313,3313,3333x a a x a x a a x a x a a x a f x x a x a x a x a x a x a ---<<-⎧⎧+-<<⎪+-≤<⎪⎪==⎨⎨+≤-≥⎪⎪+≤-≥⎩⎪⎩或或作出函数()y f x =的图像,向右平移一个单位得到()1y f x =-的图像,如图所示.要使()()1f x f x -<恒成立,必有()91a a ---<,即18a <,又0a >,所以108a <<.故答案为:10,8⎛⎫ ⎪⎝⎭。
高三数学函数及其表示试题答案及解析

高三数学函数及其表示试题答案及解析1.设常数,函数,若,则.【答案】3【解析】由题意,则,所以.【考点】函数的定义.2.设函数则不等式的解集是()A.B.C.D.【答案】A【解析】由已知,∴当时,由得,,解得或.当,由得,,解得.综上所述:不等式的解集是.选A.3.设为不小于2的正整数,对任意,若(其中,,且),则记,如,.下列关于该映射的命题中,正确的是.①若,,则②若,,,且,则③若,,,,且,,则④若,,,,且,,则.【答案】②③④【解析】当时,所以,.所以不成立;由即设,所以即即②正确;由设,可得.所以,所以可得即③正确.同理根据的含义,可得④正确.【考点】1.新定义问题.2.整数的余式定理.3.分类的思想.4.建立数式运算解决数学问题.4.设集合={1,2,3,4,5},对任意和正整数,记,其中,表示不大于的最大整数,则=,若,则.【答案】,.【解析】由已知,==;观察可知,当一定时,随的增大而增大,进一步考察如下:==;=;=;当一定时,随的增大而增大,进一步考察如下:=;故,综上知,答案为,.【考点】新定义,取整函数.5.下列图象表示函数关系y=f(x)的有________.(填序号)【答案】①④【解析】根据函数定义,定义域内任意的一个自变量x的值都有唯一一个y与之对应.6.已知函数,对任意都有,且是增函数,则【答案】6【解析】本题看起来很难,好像没处下手,事实上,我们只要紧紧抓住函数的定义,从的初始值开始,如,首先,否则不合题意,其次若,则与是增函数矛盾,当然更不可能(理由同上),因此,,.【考点】函数的定义与性质.7.若对任意,,(、)有唯一确定的与之对应,称为关于、的二元函数. 现定义满足下列性质的二元函数为关于实数、的广义“距离”:(1)非负性:,当且仅当时取等号;(2)对称性:;(3)三角形不等式:对任意的实数z均成立.今给出个二元函数:①;②;③;④.则能够成为关于的、的广义“距离”的函数的所有序号是 .【答案】(1)【解析】对于①,f(x,y)=|x-y|≥0满足(1),f(x,y)=|x-y|=f(y,x)=|y-x|满足(2);f(x,y)=|x-y|=|(x-z)+(z-y)|≤|x-z|+|z-y|=f(x,z)+f(z,y)满足(3)故①能够成为关于的x、y的广义“距离”的函数;对于②不满足(3);对于③不满足(2);对于④不满足(1)(2),故答案为①【考点】1.函数的概念及其构成要素.8.已知函数且,其中为奇函数, 为偶函数,若不等式对任意恒成立,则实数的取值范围是 .【答案】【解析】∵h(x)为定义在R上的偶函数,g(x)为定义在R上的奇函数∴g(-x)=-g(x),h(-x)=h(x), 又∵由h(x)+g(x)=2x, h(-x)+g(-x)=h(x)-g(x)=2-x,∴h(x)=(2x+2−x),g(x)=(2x−2−x), 不等式2ag(x)+h(2x)≥0在[1,2]上恒成立,化简为:a(2x−2−x)+(22x+2−2x)≥0,x∈[1,2], ∵1≤x≤2∴2x-2-x>0,令t=2-x-2x,整理得:,由t=2-x-2x得在上单调递增,故意当时,即实数a的取值范围为.【考点】1.函数不等式的恒成立问题;2.换元法;3.基本不等式9.函数的两个零点分别位于区间A.和内B.和内C.和内D.和内【答案】A【解析】根据解析式,得故,则函数的零点分别位于和内.【考点】函数的零点定理.10.已知,其中、为常数,且,若为常数,则的值为 .【答案】.【解析】,,则,则有,即,则有,且,由得到,所以有,因式分解得,因为,所以,.【考点】函数的概念11.若函数为奇函数,且,则;.【答案】;【解析】试题解析:为奇函数,所以,所以,,,,.【考点】1.函数的解析式;2.倒序相加法12.,求=【答案】-3【解析】因为==-1,所以==-3.【考点】函数的性质和计算能力.13.已知A、B、C是直线上的不同三点,O是外一点,向量满足,记;(1)求函数的解析式;(2)求函数的单调区间.【答案】(1);(2)单调增区间为.【解析】(1)利用平面向量基本定理求解;(2)由(1)得解析式,然后利用导数求解单调增区间.试题解析:(1)∵,且A、B、C是直线上的不同三点,∴,∴;(2)∵,∴,∵的定义域为,而在上恒正,∴在上为增函数,即的单调增区间为.【考点】1.平面向量基本定理;2.利用导数求函数单调区间.14.已知,则的值等于.【答案】2014【解析】令,则所以,,故【考点】指数式与对数式的互化.15.已知函数.(1)若,解不等式;(2)若,,求实数的取值范围.【答案】(1)或;(2).【解析】本题考查绝对值不等式的解法和不等式的恒成立问题,考查学生的分类讨论思想和转化能力.第一问,利用零点分段法进行求解;第二问,利用函数的单调性求出最小值证明恒成立问题.试题解析:(1)当时,,而,解得或. 5分(2)令,则,所以当时,有最小值,只需,解得,所以实数的取值范围为. 10分【考点】1.绝对值不等式的解法;2.恒成立问题;3.分段函数的最值.16.式子满足,则称为轮换对称式.给出如下三个式子:①;②;③是的内角).其中,为轮换对称式的个数是()A.B.C.D.【答案】C【解析】,,所以,即为轮换对称式;,,,所以,即不是轮换对称式;同理可得,所以是轮换对称式.考点:1.新定义题型;2.三角化简.17.规定记号“”表示一种运算,即:,设函数。
2024年高考数学高频考点(新高考通用)函数的概念及其表示(精练:基础+重难点)解析版

【一轮复习讲义】2024年高考数学高频考点题型归纳与方法总结(新高考通用)第06讲函数的概念及其表示(精讲)【A组在基础中考查功底】则函数根据函数图像可知:(f x 故选:ACD.8.已知函数4 ()f x xx=+A.-3B 【答案】ABC四、解答题12.定义在R 上的函数()f x 对任意实数x 都有()2243f x x x -=-+.(1)求函数()f x 的解析式;(2)若函数()()23g x f x x =-+在[],1m m +上是单调函数,则求实数m 的取值范围.【答案】(1)()21f x x =-(2)(][),01,-∞+∞ 【分析】(1)配方后,利用整体法求解函数解析式;(2)求出()g x 的单调区间,与[],1m m +比较,得到不等式,求出实数m 的取值范围.【详解】(1)()()2224321f x x x x -=-+=--,故函数()f x 的解析式为()21f x x =-;(2)()()2223122121x x g x x x x =-+=---++=在(),1-∞上单调递减,在()1,+∞上单调递增,因为()g x 在[],1m m +上是单调函数,所以m 1≥或11m +≤,解得0m ≤或m 1≥,所以实数m 的取值范围是(][),01,-∞+∞ .【B 组在综合中考查能力】由图可得当且仅当0t<<时)的,故()()()()36494922f f f f m n =⨯=+=+.【C 组在创新中考查思维】,该函数在当32m>时,当x>m时()2,3f x⎛∈-∞-⎝①,当1,22aa >>时,()f x 在[]0,1上单调递增,②,由2222a a a x ⎛⎫-+⨯=- ⎪⎝⎭解得12x a +=或1x -=。
高考数学专题《函数的概念及其表示》习题含答案解析

专题3.1 函数的概念及其表示1.(2021·四川达州市·高三二模(文))已知定义在R 上的函数()f x 满足,2(1)2()1f x f x x -+=+,则(1)f =( )A .1-B .1C .13-D .13【答案】B 【解析】当0x =时,f (1)2(0)1f +=①;当1x =时,(0)2f f +(1)2=②,由此进行计算能求出f (1)的值. 【详解】定义在R 上的函数()f x 满足,2(1)2()1f x f x x -+=+,∴当0x =时,f (1)2(0)1f +=,①当1x =时,(0)2f f +(1)2=,②②2⨯-①,得3f (1)3=,解得f (1)1=. 故选:B2.(2021·浙江高一期末)已知231,1,()3,1,x x f x x x +⎧=⎨+>⎩则(3)f =( )A .7B .2C .10D .12【答案】D 【解析】根据分段函数的定义计算. 【详解】由题意2(3)3312f =+=.故选:D .练基础3.(2021·全国高一课时练习)设3,10()(5),10x x f x f x x +>⎧=⎨+≤⎩,则(5)f 的值为( )A .16B .18C .21D .24【答案】B 【解析】根据分段函数解析式直接求解. 【详解】因为3,10()(5),10x x f x f x x +>⎧=⎨+≤⎩,所以(5)(10)(15)15318f f f ===+=. 故选:B.4.(2021·浙江湖州市·湖州中学高一开学考试)若函数213()22f x x x =-+的定义域和值域都是[1,]b ,则b =( ) A .1 B .3C .3-D .1或3【答案】B 【解析】 根据函数213()22f x x x =-+在[1,]b 上为增函数,求出其值域,结合已知值域可求出结果. 【详解】 因为函数213()22f x x x =-+21(1)12x =-+在[1,]b 上为增函数,且定义域和值域都是[1,]b , 所以min ()(1)f x f =1=,2max 13()()22f x f b b b b ==-+=,解得3b =或1b =(舍),故选:B5.(上海高考真题)若是的最小值,则的取值范围为( ).A .[-1,2]B .[-1,0]C .[1,2]D .[0,2]【答案】D 【详解】由于当0x >时,1()f x x a x=++在1x =时取得最小值2a +,由题意当0x ≤时,2()()f x x a =-应该是递减的,则0a ≥,此时最小值为2(0)f a =,因此22a a ≤+,解得02a ≤≤,选D .6.(广东高考真题)函数()f x x=的定义域是______. 【答案】[)()1,00,∞-⋃+ 【解析】由根式内部的代数式大于等于0且分式的分母不等于0联立不等式组求解x 的取值集合得答案. 【详解】由{100x x +≥≠,得1x ≥-且0x ≠.∴函数()f x =的定义域为:[)()1,00,-⋃+∞; 故答案为[)()1,00,-⋃+∞.7.(2021·青海西宁市·高三一模(理))函数()f x 的定义域为[]1,1-,图象如图1所示,函数()g x 的定义域为[]1,2-,图象如图2所示.若集合()(){}0A x f g x ==,()(){}0B x g f x ==,则A B 中有___________个元素.【答案】3 【解析】利用数形结合分别求出集合A 与集合B ,再利用交集运算法则即可求出结果. 【详解】若()()0f g x =,则()0g x =或1-或1,∴{}1,0,1,2A =-, 若()()0g f x =,则0f x 或2,∴{}1,0,1B =-,∴{}1,0,1=-AB .故答案为:3.8.(2021·湖北襄阳市·襄阳五中高三二模)已知函数22211x x y f x x ⎛⎫+-= ⎪+-⎝⎭的定义域是[)1,+∞,则函数()y f x =的定义域是_______.【答案】(]1,2 【解析】令()()222111x x g x x x x +-=≥+-,根据函数值域的求解方法可求得()g x 的值域即为所求的()f x 的定义域.【详解】令()()222111x x g x x x x +-=≥+-,则()()222111111111x x x x g x x x x x x x x+-+==+=+≥+-+--+, 1y x x =-在[)1,+∞上单调递增,10x x∴-≥,10111x x∴<≤-+,()12g x ∴<≤,()f x ∴的定义域为(]1,2.故答案为:(]1,2.9.(2021·黑龙江哈尔滨市第六中学校高三二模(文))已知函数()221,01,0x x f x x x⎧+≥⎪=⎨<⎪⎩,若()2f a =,则实数a =___________. 【答案】1或- 【解析】分别令212a +=,212a=,解方程,求出方程的根即a 的值即可. 【详解】当0a ≥,令212a +=,解得:1a =,当0a <,令212a =,解得:2a =-, 故1a =或2-, 故答案为:1或2-. 10.(2021·云南高三二模(理))已知函数231,1()1,1x x f x x x +≤⎧=⎨->⎩,若n m >,且()()f n f m =,设t n m =-,则t 的取值范围为________.【答案】171,12⎤⎥⎦【解析】用n 表示出m ,结合二次函数的性质求得t n m =-的取值范围. 【详解】画出()f x 图象如下图所示,3114⨯+=,令()2140x x -=>,解得x =由()(),n m f n f m >=得2311m n +=-,223n m -=,且1n <≤所以(222121333n t n m n n n n -=-=-=-++<≤,结合二次函数的性质可知,当131223n =-=⎛⎫⨯- ⎪⎝⎭时,t 取得最大值为2133217322312⎛⎫-⨯++= ⎪⎝⎭,当n =时,t取得最小值为212133-⨯=. 所以t的取值范围是171,12⎤⎥⎦.故答案为:171,12⎤⎥⎦1.(2021·云南高三二模(文))已知函数231,1()1,1x x f x x x +≤⎧=⎨->⎩,若n m >,且()()f n f m =,设t n m =-,则( ) A .t 没有最小值 B .t 1 C .t 的最小值为43D .t 的最小值为1712【答案】B 【解析】先作出分段函数图象,再结合图象由()()f n f m =,得到m 与n 的关系,消元得关于n 的函数,最后求最值. 【详解】如图,作出函数()f x 的图象,练提升()()f n f m =且n m >,则1m ,且1n >,2311m n ∴+=-,即223n m -=.由21014n n >⎧⎨<-≤⎩,解得1n <≤222211317(32)()333212n n m n n n n -⎡⎤∴-=-=---=--+⎢⎥⎣⎦,又1n <≤∴当n =()min 1n m -=.故选:B.2.(2020·全国高一单元测试)已知函数21,0,()2,0,x x f x x x ⎧+≤=⎨->⎩,若()05f x =,则0x 的取值集合是( )A .{2}-B .5,22⎧⎫-⎨⎬⎩⎭C .{2,2}-D .52,2,2⎧⎫--⎨⎬⎩⎭【答案】A 【解析】根据分段函数值的求解方法,对00x ≤与00x >两种情况求解,可得答案. 【详解】若00x ≤,可得2015x +=,解得02x =-,(02x =舍去);若00x >,可得02x -=5,可得052x =-,与00x >相矛盾,故舍去,综上可得:02x =-. 故选:A.3.【多选题】(2021·全国高一课时练习)(多选题)下列函数中,定义域是其值域子集的有( )A .865y x =+ B .225y x x =--+ C .y =D .11y x=- 【答案】AC 【解析】分别求得函数的定义域和值域,利用子集的定义判断. 【详解】A 函数的定义域和值域都是R ,符合题意;B.定义域为R ,因为2225(1)66y x x x =--+=-++≤,所以函数值域为(,6]-∞,值域是定义域的真子集不符合题意;C.易得定义域为[1,)+∞,值域为[0,)+∞,定义域是值域的真子集;D.定义域为{|0}x x ≠,值域为{|1}x x ≠-,两个集合只有交集; 故选:AC4.【多选题】(2021·全国高一课时练习)已知f (x )=2211x x +-,则f (x )满足的关系有( )A .()()f x f x -=-B .1f x ⎛⎫⎪⎝⎭= ()f x - C .1f x ⎛⎫⎪⎝⎭=f (x ) D .1()()f f x x-=-【答案】BD 【解析】根据函数()f x 的解析式,对四个选项逐个分析可得答案. 【详解】因为f (x )= 2211x x+-, 所以()f x -=221()1()x x +---=2211x x +-()f x =,即不满足A 选项;1f x ⎛⎫ ⎪⎝⎭=221111x x ⎛⎫+ ⎪⎝⎭⎛⎫- ⎪⎝⎭=2211x x +-,1f x ⎛⎫⎪⎝⎭=()f x -,即满足B 选项,不满足C 选项, 1()f x -=221111x x ⎛⎫+- ⎪⎝⎭⎛⎫-- ⎪⎝⎭=2211x x +-,1()()f f x x -=-,即满足D 选项. 故选:BD5.【多选题】(2021·全国高三其他模拟)已知函数21,0,()2,0,x x f x x x x +<⎧=⎨-+≥⎩令()()()g x f f x =,则下列说法正确的是( ) A .()10g -=B .方程()2g x =有3个根C .方程()2g x =-的所有根之和为-1D .当0x <时,()()f x g x ≤【答案】ACD 【解析】由题意知()10f -=可得()10g -=;令()f x u =,因为方程()2f u =没有实根,即()2g x =没有实根;令()u f x =,则方程()2g x =-,即()2f u =-,通过化简与计算即可判断C ;当0x <时,()(1)g x f x =+,则将函数()f x 在(,1)-∞的图象向左平移1个单位长度可得函数()g x 的图象,即可判断D . 【详解】对于A 选项,由题意知()10f -=,则()()()()1100g f f f -=-==,所以A 选项正确; 对于B 选项,令()f x u =,则求()()()2g x f f x ==的根,即求()2f u =的根, 因为方程()2f u =没有实根,所以()2g x =没有实根,所以选项B 错误;对于C 选项,令()u f x =,则方程()2g x =-,即()2f u =-,得112,03u u u +=-<⇒=-,2222,01u u u u -+=-≥⇒=由方程1()f x u =得13(0)x x +=-<或223(0)x x x -+=-≥,解得4x =-或3x =,易知方程2()f x u =,没有实数根,所以方程()2g x =-的所有根之和为-1,选项C 正确;对于D 选项,当0x <时,()(1)g x f x =+,则将函数()f x 在(,1)-∞的图象向左平移1个单位长度可得函数()g x 的图象,当0x <时,函数()g x 的图象不在()f x 的图象的下方,所以D 选项正确,故选:ACD .6.【多选题】(2021·全国高三专题练习)已知函数()f x ,(,0)(0,)x ∈-∞⋃+∞,对于任意的,(,0)(0,)x y ∈-∞+∞,()()()f xy f x f y =+,则( )A .()f x 的图象过点()1,0和()1,0-B .()f x 在定义域上为奇函数C .若当1x >时,有()0f x >,则当10x -<<时,()0f x <D .若当01x <<时,有()0f x <,则()0f x >的解集为()1,+∞ 【答案】AC 【解析】根据抽象函数的性质,利用特殊值法一一判断即可; 【详解】解:因为函数()f x ,(,0)(0,)x ∈-∞⋃+∞,对于任意的,(,0)(0,)x y ∈-∞+∞,()()()f xy f x f y =+,令1x y ==,则()()()111f f f =+,则()10f =,令1x y ==-,则()()()111f f f =-+-,则()10f -=,所以()f x 过点()1,0和()1,0-,故A 正确;令1y =-,则()()()1f x f x f -=+-,即()()f x f x -=,所以()f x 为偶函数,故B 错误; 令1y x =-,则()()110f f x f x ⎛⎫-=+-= ⎪⎝⎭,则()1f f x x ⎛⎫-=- ⎪⎝⎭当1x >时,所以()11,0x -∈-,又()0f x >,则10f x ⎛⎫-< ⎪⎝⎭,即当10x -<<时,()0f x <,故C 正确;令1y x =,则()()110f f x f x ⎛⎫=+= ⎪⎝⎭,则()1f f x x ⎛⎫=- ⎪⎝⎭,当01x <<时,所以()11,x ∈+∞,又()0f x <,则10f x ⎛⎫> ⎪⎝⎭,即当1x >时,()0f x >,因为()f x 是偶函数,所以1x <-时,()0f x >,所以()0f x >的解集为()(),11,-∞-+∞,故D 错误;故选:AC7.【多选题】(2021·全国高三专题练习)已知函数()22,023,0x x x f x x x ⎧-<=⎨-+≥⎩,则( )A .()13f f -⎡⎤⎣=-⎦B .若()1f a =-,则2a =C .()f x 在R 上是减函数D .若关于x 的方程()f x a =有两解,则(]0,3a ∈ 【答案】ABD 【解析】根据函数解析式,代入数据可判断A 、B 的正误,做出()f x 的图象,可判断C 、D 的正误,即可得答案. 【详解】对于A :由题意得:2(1)(1)2(1)3f -=--⨯-=, 所以()(3)23331f f f -==-⨯+=-⎡⎤⎣⎦,故A 正确;对于B :当0a <时,2()21f a a a =-=-,解得a =1,不符合题意,舍去当0a ≥时,()231f a a =-+=-,解得2a =,符合题意,故B 正确; 对于C :做出()f x 的图象,如下图所示:所以()f x 在R 上不是减函数,故C 错误;对于D :方程()f x a =有两解,则()y f x =图象与y a =图象有两个公共点, 如下图所示所以(]0,3a ∈,故D 正确. 故选:ABD8.(2021·浙江高三月考)已知0a >,设函数2(22),(02)(),(2)x a x x a f x ax x a ⎧-++<<+=⎨≥+⎩,存在0x 满足()()00f f x x =,且()00f x x ≠,则a 的取值范围是______.1a ≤< 【解析】求得()2x ax a y =≥+关于y x =对称所得函数的解析式,通过构造函数,结合零点存在性列不等式,由此求得a 的取值范围.【详解】由于()f x 存在0x 满足()()0f f x x =,且()00f x x ≠,所以()f x 图象上存在关于y x =对称的两个不同的点.对于()()2,2y ax x a y a a =≥+≥+,交换,x y 得x ay =, 即()()12,2y x x a a y a a=≥+≥+, 构造函数()()22111222222g x x a x x x a x x x a a a a ⎛⎫⎛⎫=-++-=-++-=-++- ⎪ ⎪⎝⎭⎝⎭(()22a a x a +≤<+),所以()g x 的零点122a a +-满足()12222a a a a a+≤+-<+, 由1222a a a +-<+得()()21111001a a a a a a a a+---==<⇒<<,由()1222a a a a+≤+-得3210a a -+≤,即()()()()31111a a a a a a a --+=+---()()()21110a a a a a a ⎛=+--=--≤ ⎝⎭⎝⎭,由于01a <<1a ≤<.故答案为:112a ≤< 9. (2021·浙江高一期末)已知函数()1f x x =-+,()()21g x x =-,x ∈R .(1)在图1中画出函数()f x ,()g x 的图象;(2)定义:x R ∀∈,用()m x 表示()f x ,()g x 中的较小者,记为()()(){}min ,m x f x g x =,请分别用图象法和解析式法表示函数()m x .(注:图象法请在图2中表示,本题中的单位长度请自己定义且标明)【答案】(1)图象见解析;(2)()(][)()()21,,01,1,0,1x x m x x x ⎧-+∈-∞⋃+∞⎪=⎨-∈⎪⎩;图象见解析. 【解析】(1)由一次函数和二次函数图象特征可得结果;(2)根据()m x 定义可分段讨论得到解析式;由解析式可得图象. 【详解】(1)()f x ,()g x 的图象如下图所示:(2)当0x ≤时,()211x x -≥-+,则()()1m x f x x ==-+;当01x <<时,()211x x -<-+,则()()()21m x g x x ==-; 当1≥x 时,()211x x -≥-+,则()()1m x f x x ==-+;综上所述:()(][)()()21,,01,1,0,1x x m x x x ⎧-+∈-∞⋃+∞⎪=⎨-∈⎪⎩. ()m x 图象如下图所示:10. (2021·全国高一课时练习)已知函数()12f x x x =++-,()3g x x =-. (1)在平面直角坐标系里作出()f x 、()g x 的图象.(2)x R ∀∈,用()min x 表示()f x 、()g x 中的较小者,记作()()(){}min ,x f x g x =,请用图象法和解析法表示()min x ;(3)求满足()()f x g x >的x 的取值范围.【答案】(1)答案见解析;(2)答案见解析;(3)()(),20,-∞-+∞.【解析】(1)化简函数()f x 、()g x 的解析式,由此可作出这两个函数的图象;(2)根据函数()min x 的意义可作出该函数的图象,并结合图象可求出函数()min x 的解析式; (3)根据图象可得出不等式()()f x g x >的解集. 【详解】(1)()21,2123,1212,1x x f x x x x x x -≥⎧⎪=++-=-<<⎨⎪-≤-⎩,()3,333,3x x g x x x x -≥⎧=-=⎨-<⎩. 则对应的图象如图:(2)函数()min x 的图象如图:解析式为()3,20312,21min 3,103,3x x x x x x x x x -<-≤<⎧⎪--≤≤-⎪=⎨-<<⎪⎪-≥⎩或;(3)若()()f x g x >,则由图象知在A 点左侧,B 点右侧满足条件,此时对应的x 满足0x >或2x <-, 即不等式()()f x g x >的解集为()(),20,-∞-+∞.1.(山东高考真题)设f (x )={√x,0<x <12(x −1),x ≥1 ,若f (a )=f (a +1),则f (1a )=( ) A .2 B .4 C .6 D .8 【答案】C【解析】由x ≥1时f (x )=2(x −1)是增函数可知,若a ≥1,则f (a )≠f (a +1),所以0<a <1,由f(a)=f(a +1)得√a =2(a +1−1),解得a =14,则f (1a )=f(4)=2(4−1)=6,故选C.2.(2018上海卷)设D 是含数1的有限实数集,f (x )是定义在D 上的函数,若f (x )的图象绕原点逆时针旋转π6后与原图象重合,则在以下各项中,f (1)的可能取值只能是( ) A .√3 B .√32 C .√33 D .0 【答案】B 【解析】由题意得到:问题相当于圆上由12个点为一组,每次绕原点逆时针旋转π6个单位后与下一个点会重合. 我们可以通过代入和赋值的方法当f (1)=√3,√33,0时,此时得到的圆心角为π3,π6,0,然而此时x=0或练真题者x=1时,都有2个y 与之对应,而我们知道函数的定义就是要求一个x 只能对应一个y ,因此只有当x=√32,此时旋转π6,此时满足一个x 只会对应一个y , 故选:B .3. (2018年新课标I 卷文)设函数f (x )={2−x , x ≤01 , x >0 ,则满足f (x +1)<f (2x )的x 的取值范围是( )A. (−∞ , −1]B. (0 , +∞)C. (−1 , 0)D. (−∞ , 0) 【答案】D【解析】将函数f(x)的图象画出来,观察图象可知会有{2x <02x <x +1,解得x <0,所以满足f (x +1)<f (2x )的x 的取值范围是(−∞ , 0),故选D.4.(浙江高考真题(文))已知函数()2,1{66,1x x f x x x x≤=+->,则()2f f ⎡⎤-=⎣⎦ ,()f x 的最小值是 .【答案】162- 【解析】如图根据所给函数解析式结合其单调性作出其图像如图所示,易知()()min 12,62f f f x f ⎡⎤-=-==⎣⎦.5. (2018·天津高考真题(文))已知a R ∈,函数()22220220x x a x f x x x a x ⎧++-≤=⎨-+->⎩,,,.若对任意x ∈[–3,+∞),f (x )≤x 恒成立,则a 的取值范围是__________. 【答案】1,28⎡⎤⎢⎥⎣⎦【解析】由题意分类讨论0x >和0x ≤两种情况,结合恒成立的条件整理计算即可求得最终结果. 【详解】分类讨论:①当0x >时,()f x x ≤即:222x x a x -+-≤, 整理可得:21122a x x ≥-+, 由恒成立的条件可知:()2max 11022a x x x ⎛⎫≥-+> ⎪⎝⎭, 结合二次函数的性质可知: 当12x =时,2max 1111122848x x ⎛⎫-+=-+= ⎪⎝⎭,则18a ≥; ②当30x -≤≤时,()f x x ≤即:222x x a x ++-≤-,整理可得:232a x x ≤--+, 由恒成立的条件可知:()()2min3230a x x x ≤--+-≤≤,结合二次函数的性质可知: 当3x =-或0x =时,()2min322x x --+=,则2a ≤;综合①②可得a 的取值范围是1,28⎡⎤⎢⎥⎣⎦,故答案为1,28⎡⎤⎢⎥⎣⎦.6.(2018·浙江高考真题)已知λ∈R,函数f (x )=24,43,x x x x x λλ-≥⎧⎨-+<⎩,当λ=2时,不等式f (x )<0的解集是___________.若函数f (x )恰有2个零点,则λ的取值范围是___________. 【答案】(1,4) (1,3](4,)⋃+∞ 【解析】分析:根据分段函数,转化为两个不等式组,分别求解,最后求并集.先讨论一次函数零点的取法,再对应确定二次函数零点的取法,即得参数λ的取值范围.详解:由题意得240x x ≥⎧⎨-<⎩或22430x x x <⎧⎨-+<⎩,所以24x ≤<或12x <<,即14x <<,不等式f (x )<0的解集是(1,4),当4λ>时,()40f x x =->,此时2()430,1,3f x x x x =-+==,即在(,)λ-∞上有两个零点;当4λ≤时,()40,4f x x x =-==,由2()43f x x x =-+在(,)λ-∞上只能有一个零点得13λ<≤.综上,λ的取值范围为(1,3](4,)⋃+∞.。
高中试卷-3.1 函数的概念及其表示方法(含答案)

3.1 函数的概念及其表示方法1. 函数概念的理解;2. 求函数的定义域;3. 求函数值(值域);4. 函数的三种表示方法;5. 求函数解析式;6. 分段函数的概念;7.分段函数的求值;8.函数的图象及应用;9. 分段函数与方程、不等式综合问题一、单选题1.(2021·全国高一课时练习)设()1,01,01,0x x f x x x +>ìï==íï-<î,则()()0f f 等于( )A .1B .0C .2D .-1【答案】C 【解析】1,0()1,01,0x x f x x x +>ìï==íï-<îQ\ (0)1f =,((0))(1)112f f f ==+=.故选: C.2.(2021·浙江南湖嘉兴一中高一月考)下列函数中,与函数y =有相同定义域的是( )A.()f x =B .1()f x x=C .()||f x x =D.()f x =【答案】A 【解析】函数y =的定义域为{}0x x >;函数()f x ={}0x x >;函数1()f x x=的定义域为{}0,x x x ¹ÎR ;函数()f x x =的定义域为R ;函数()f x =定义域为{}1x x ….所以与函数y =有相同定义域的是()f x =.故选:A.3.(2021·浙江高一期中)函数1()f x x=的定义域是( )A .R B .[1,)-+¥C .(,0)(0,)-¥+¥U D .[1,0)(0,)-+¥U 【答案】D 【解析】由题意可得:10x +³,且0x ¹,得到1x ³-,且0x ¹,故选:D4.(2021·全国高一课时练习)已知函数f(x -1)=x 2-3,则f(2)的值为( )A .-2B .6C .1D .0【答案】B 【解析】令1x t -=,则1x t =+,()()213f t t \=+-,()()213f x x \=+-()()222136f \=+-=,故选B.5.(2021·全国高一课时练习)如果1f x æöç÷èø=1x x-,则当x≠0,1时,f(x)等于( )A .1xB .11x -C .11x-D .11x-【答案】B 【解析】令1x=t ,则x =1t ()1t ¹,代入1f x æöç÷èø=1x x -,则有f(t)=111t t-=11t -()1t ¹.即()()111f x x x =¹-.故选:B.6.(2021·全国高一课时练习)已知函数y =21,02,0x x x x ì+£í->î,则使函数值为5的x 的值是( )A .2-或2B .2或52-C .2-D .2或2-或52-【答案】C 【解析】当0x £时,令5y =,得215x +=,解得2x =-;当0x >时,令5y =,得25x -=,解得52x =-,不合乎题意,舍去.综上所述,2x =-.故选:C.7.(2021·全国高一课时练习)设函数若f (a )=4,则实数a =( )A .-4或-2B .-4或2C .-2或4D .-2或2【答案】B 【解析】当0a £时,()4f a a =-=,解得4a =-;当0a >时,24()f a a ==,解得2a =±,因为0a >,所以2a =,综上,4a =-或2,故答案选B 8.(2021·全国高一)函数()f x x =+的值域是( )A .1,2éö+¥÷êëøB .1,2æù-¥çúèûC .(0,)+¥D .[1,)+¥【答案】A【解析】t =,且0t ³,则212t x +=,函数转化为2211(1)22t y t t +=+=+由0t ³,则12y ≥,即值域为1,2éö+¥÷êëø故选:A.9.(2021·浙江高一课时练习)下列函数中,不满足:(2)2()f x f x =的是( )A .()f x x =B .()f x x x=-C .()1f x x =+D .()f x x=-【答案】C 【解析】A 中()()2222f x x x f x ===,B 中()()2222f x x x f x =-=,C 中()()2212f x x f x =+¹,D 中()()222f x x f x =-=10.(2021·浙江高一课时练习)设函数()f x 的定义域是[0,1],则函数()(2)(01)f x a f x a a +++<<的定义域为( )A .1,22a a -éù-êúëûB .,12a a éù--êúëûC .[,1]a a --D .1,2a a -éù-êúëû【答案】A 【解析】由1011021220101a x ax a a a x a x a a --ì+ìï-ïï+Þ-ííïï<<î<<ïî……………………得122a a x --……故选:A 二、多选题11.(2021·广东禅城 佛山一中高一月考)下列四个图形中可能是函数y =f (x )图象的是( )A .B .C .D .【答案】AD 【解析】在A ,D 中,对于定义域内每一个x 都有唯一的y 与之相对应,满足函数关系,在B ,C 中,存在一个x 有两个y 与x 对应,不满足函数对应的唯一性,故选AD.12.(2021·历下 山东师范大学附中高一学业考试)已知()221f x x +=,则下列结论正确的是( )A .()34f -=B .()2214x x f x -+=C .()2f x x=D .()39f =【答案】AB 【解析】由()221f x x +=,令21x t +=,可得12t x -=,可得:()222(1)2124t t t f t --+==,即:()2214x x f x -+=,故C 不正确,B 正确;可得:()2(31)344f ---==,故A 正确;()2(31)314f -==故D 不正确;故选:AB.13.(2021·江苏姑苏 苏州中学高一期中)下列各组函数中,两个函数是同一函数的有( )A .()||f x x =与()g x =B .()1f x x =+与21()1x g x x -=-C .||()x f x x =与1,0()1,0x g x x >ì=í-<îD .()f x =()g x =【答案】AC 【解析】对A, ()g x x ==,故A 正确.对B, ()1f x x =+定义域为R ,21()1x g x x -=-定义域为{}|1x x ¹,故B 错误.对C, 1,0()1,0x xf x x x >ì==í-<î,故C 正确.对D, ()f x =210x -³,解得1x £-或1x ³.()g x =定义域为1010x x +³ìí-³î即1x ³.故D 错误.故选:AC14.(2021·全国高一课时练习)已知函数()22,1,12x x f x x x +£-ì=í-<<î,关于函数()f x 的结论正确的是( )A .()f x 的定义域为RB .()f x 的值域为(),4-¥C .()13f =D .若()3f x =,则x E.()1f x <的解集为()1,1-【答案】BD 【解析】由题意知函数()f x 的定义域为(),2-¥,故A 错误;当1x £-时,()f x 的取值范围是(],1-¥,当12x -<<时,()f x 的取值范围是[)0,4,因此()f x 的值域为(),4-¥,故B 正确;当1x =时,()2111f ==,故C 错误;当1x £-时,23x +=,解得1x =(舍去),当12x -<<时,23x =,解得x =或x =,故D 正确;当1x £-时,21x +<,解得1x <-,当12x -<<时,21x <,解得11x -<<,因此()1f x <的解集为()(),11,1-¥--U ;故E 错误.故选:BD.三、填空题15.(2021·全国高一课时练习)下列对应或关系式中是A 到B 的函数的序号为________.①,ÎÎA R B R ,221x y +=;②A ={1,2,3,4},B ={0,1},对应关系如图:③,==A R B R ,1:2®=-f x y x ;④,==A Z B Z ,:®=f x y .【答案】②【解析】①,ÎÎA R B R ,221x y +=,存在x 对应两个y 的情况,所以不是A 到B 的函数;②符合函数的定义,是A 到B 的函数;③,==A R B R ,1:2®=-f x y x ,对于集合A 中的2x =没有对应y ,所以不是A 到B 的函数;④,==A Z B Z ,:®=f x y ,对于集合A 中的{|0,}x x x z £Î没有对应y ,所以不是A 到B的函数.故答案为:②16.(2021·浙江南湖 嘉兴一中高一月考)已知,若()()10f f a =,则a =______________.【答案】32【解析】0x >时,()20f x x =-<,∴由()10f x =知0x £,∴2110x +=,3x =-,而2()11f x x =+³,因此由()3f a =-知0a >,即23a -=-,32a =.故答案为:32.17.(2021·全国高一课时练习)已知()1,00,0x f x x ³ì=í<î则不等式()2xf x x +£的解集是________.【答案】{}|1x x £【解析】当0x ³时,()1f x =,代入()2xf x x +£,解得1x £,∴01x ££;当0x <时,()0f x =,代入()2xf x x +£,解得2x £,∴0x <;综上可知{}|1x x £.故答案为:{}|1x x £.四、双空题18.(2021·全国高一课时练习)已知f(x)=11x+ (x≠-1),g(x)=x 2+2,则f (2)=________,f(g (2))=________.【答案】13 17【解析】因为()11f x x =+,故可得()123f =;又()22g x x =+,故可得()22226g =+=;故()()()1267f g f ==.故答案为:13;17.19.(2021·安达市第七中学高一月考)设[]x 表示不超过x 的最大整数,已知函数[]()f x x x =-,则(0.5)f -=________ ;其值域为_________.【答案】0.5 [)0,1 【解析】作出函数[]()f x x x =-的图像,如图所示,由图可知(0.5)0.5(1)0.5f -=---=,其值域为[)0,1,故答案为(1). 0.5 (2). [)0,120.(2021·浙江高一期中)设函数()(2141x f x x ì<ï=í³ïî,则((0))f f =____,使得()4f a a ³的实数a 的取值范围是_____.【答案】4 1a £ 【解析】因为()(2141x f x x ì<ï=í³ïî,所以()01f =,因此((0))(1)4f f f ==;当1a <时,()4f a a ³可化为2(1)4+³a a ,即2(1)0a -³显然恒成立,所以1a <;当1a ³时,()44f a a =³,解得1a =;综上,1a £.故答案为4;1a £21.(2021·首都师范大学附属中学高一期中)已知函数22,(),x x x af x x x a ì-+£=í>î.(1)当a =1时,函数()f x 的值域是___________;(2)若函数()f x 的图像与直线y a =只有一个公共点,则实数a 的取值范围是_______________.【答案】R []0,1【解析】(1)当a =1时,22,1(),1x x x f x x x ì-+£=í>î当1x >时,()1f x x =>当1x £时,22()2(1)11f x x x x =-+=--+£所以函数()f x 的值域是(1,)(,1]R+¥-¥=U (2)因为当x a >时,()f x x a =>,所以只需函数2()2,()f x x x x a =-+£的图像与直线y a =只有一个公共点,当22x x x -+³,即01x ££时,所以当01a ££时,函数2()2,()f x x x x a =-+£的图像与直线y a =只有一个公共点,当22x x x -+<,即1x >或0x <时,所以当1a >或0a <,即2a x x >-+,从而函数2()2,()f x x x x a =-+£的图像与直线y a =无公共点,因此实数a 的取值范围是[]0,1故答案为:(1). R (2). []0,1五、解答题22.(2021·全国高一课时练习)求下列函数的定义域.(1)y =3-12x ;(2)y =(3)y(4)y 1x.【答案】(1)R ;(2)10,7éùêúëû;(3)()()2,11,---+¥U ;(4)()3,00,22éö-÷êëøU .【解析】(1)因为函数y =3-12x 为一次函数,所以该函数的定义域为全体实数R ;(2)由题意可得0170x x ³ìí-³î,解得107x ££,所以该函数的定义域为10,7éùêúëû;(3)由题意得1020x x +¹ìí+>î,解得2x >-且1x ¹-,所以该函数的定义域为()()2,11,---+¥U ;(4)由题意得230200x x x +³ìï->íï¹î,解得322x -£<且0x ¹,所以该函数的定义域为()3,00,22éö-÷êëøU .23.(2021·全国高一课时练习)已知2,11()1,11,1x x f x x x ì-££ï=>íï<-î(1)画出f(x)的图象;(2)若1()4f x =,求x 的值;(3)若1()4f x ³,求x 的取值范围.【答案】(1)作图见解析;(2)12x =±;(3)11,,22æùéö-¥-È+¥ç÷úêèûëø【解析】(1)函数2y x =的对称轴0x =,当0x =时,0y =;当1x =-时,1y =;当1x =时,1y =,则f(x)的图象如图所示.(2)1()4f x=等价于21114xx-££ìïí=ïî①或1114x>ìïí=ïî②或1114x<-ìïí=ïî③解①得12x=±,②③的解集都为Æ∴当1()4f x=时,12x=±.(3)由于1124fæö±=ç÷èø,结合此函数图象可知,使1()4f x³的x的取值范围是11,,22æùéö-¥-È+¥ç÷úêèûëø24.(2021·全国高一课时练习)根据下列条件,求f(x)的解析式.(1)f(x)是一次函数,且满足3f(x+1)-f(x)=2x+9;(2)f(x+1)=x2+4x+1;(3)12()(0) f f x x xxæö+=¹ç÷èø.【答案】(1)f(x)=x+3;(2)f(x)=x2+2x-2;(3)2()(0)33xf x xx=-¹【解析】(1)解由题意,设f(x)=ax+b(a≠0)∵3f(x+1)-f(x)=2x+9∴3a(x+1)+3b-ax-b=2x+9,即2ax+3a+2b=2x+9,由恒等式性质,得22 329 aa b=ìí+=î∴a=1,b=3∴所求函数解析式为f(x)=x+3.(2)设x+1=t,则x=t-1f(t)=(t-1)2+4(t-1)+1即f(t)=t2+2t-2.∴所求函数解析式为f(x)=x2+2x-2.(3)解1 ()2f x f xxæö+=ç÷èøQ,将原式中的x与1x互换,得112()f f xx xæö+=ç÷èø.于是得关于f(x)的方程组()()12112f x f x x f f x x x ìæö+=ç÷ïïèøíæöï+=ç÷ïèøî解得2()(0)33x f x x x =-¹.25.(2021·全国高一课时练习)已知函数22,2()2,2x x f x x x £ì=í+>î(1)若0)(8f x =,求0x 的值;(2)解不等式()8f x >.【答案】(1)0x =;(2){|>x x .【解析】(1)当02x £时,由02=8x ,得04x =,不符合题意;当02x >时,由2028+=x,得0x =0x =舍去),故0x =(2)()8f x >等价于228x x £ìí>î ——①或2228x x >ìí+>î——②解①得x f Î,解②得>x ,综合①②知()8f x >的解集为{|>x x .26.(2021·全国高一)已知(1)f x +的定义域为(2,4),(1)求()f x 的定义域;(2)求(2)f x 的定义域【答案】(1)(3,5);(2)35,22æöç÷èø.【解析】(1))1(f x +Q 的定义域为(2,4),24x \<<,则315x <+<,即()f x 的定义域为(3,5);(2)()f x Q 的定义域为(3,5);\由325x <<得3522x <<,即(2)f x 的定义域为35,22æöç÷èø.27.(2021·全国高一)若函数()f x =的定义域为R ,则m 的取值范围为多少?【答案】112mm ìü>íýîþ∣.【解析】Q 函数()f x =的定义域为R ,230mx x \++¹,若0m =,则3x ¹-,不满足条件.,若0m ¹,则判别式1120m D =-<,解得112m >,即1|12m m ìü>íýîþ。
高三数学函数及其表示试题答案及解析

高三数学函数及其表示试题答案及解析1.在函数y=|x|(x∈[-1,1])的图象上有一点P(t,|t|),此函数与x轴、直线x=-1及x=t围成图形(如图阴影部分)的面积为S,则S与t的函数关系图象可表示为()【答案】B【解析】当t∈[-1,0]时,S增速越来越平缓,当t∈[0,1]时,S增速越来越快,选B项.2.设函数f(x)=,则不等式f(x)>f(1)的解集是()A.(-3,1)∪(3,+∞)B.(-3,1)∪(2,+∞)C.(-1,1)∪(3,+∞)D.(-∞,-3)∪(1,3)【答案】A【解析】画出分段函数的图象如图,令f(x)=f(1),得x=-3,1,3.所以当f(x)>f(1)时,必有x∈(-3,1)∪(3,+∞).故选A.3. f(x)=3x+sinx+1(x∈R),若f(t)=2,则f(-t)的值为________.【解析】由f(t)=3t+sint+1=2得3t+sint=1,所以f(-t)=-3t-sint+1=-1+1=0.4.定义全集U的非空子集P的特征函数表示集合P在全集U的补集.已知均为全集U的非空子集,给出下列命题:①若,则对于任意;②对于任意;③对于任意;④对于任意.则正确命题的序号为【答案】①②③【解析】由于,当时,则;当且时,.所以成立;当且时,=0.综上都有.所以①正确.当时,.所以,.所以.当时,.所以.所以.时,,..所以都有即②正确;当时,.不能同时为1,所以.所以都有即③正确;当且时,,.所以④不正确.【考点】1.新定义的函数问题.2.集合间的关系.3.分类的数学思想.5.下列函数中,与函数y=有相同定义域的是()A.f(x)=lnx B.f(x)=C.f(x)=|x|D.f(x)=e x【答案】A【解析】由y=可得定义域是x>0,f(x)=lnx的定义域x>0;f(x)=的定义域是x≠0;f(x)=|x|的定义域是x∈R;f(x)=e x定义域是x∈R.故选A.6.已知正方形OABC的四个顶点O(0,0),A(1,0),B(1,1),C(0,1),设u=2xy,v=x2-y2,是一个由平面xOy到平面uOv上的变换,则正方形OABC在这个变换下的图形是()【答案】D【解析】当点在正方形的边时,的关系为,设,则,所以因此排除,当点在正方形的边时,的关系为,设,则,得,消去得,,是抛物线一部分,不是线段,因此排除故选D.【考点】映射.7.若函数满足,对定义域内的任意恒成立,则称为m 函数,现给出下列函数:①;②;③;④其中为m函数的序号是 .(把你认为所有正确的序号都填上)【答案】②③【解析】①若,则由得,即,所以不存在常数使成立,所以①不是m函数。
新课标2022版高考数学总复习第二章函数第一节函数及其表示练习含解析理

高考数学总复习:第一节 函数及其表示学习要求:1.了解构成函数的要素,会求一些简单函数的定义域和值域;了解映射的概念.2.在实际情境中,会根据不同的需要选择恰当的方法(如图象法、列表法、解析法)表示函数.3.了解简单的分段函数,并能简单应用.1.函数与映射的概念函数映射两集合A 、B设A 、B 是两个① 非空数集 设A 、B 是两个② 非空集合对应关系f :A →B按照某种确定的对应关系f ,使对于集合A中的③ 任意 一个数x ,在集合B 中都有④ 唯一确定 的数f (x )与之对应按某种确定的对应关系f ,使对于集合A 中的⑤ 任意 一个元素x ,在集合B 中都有⑥ 唯一确定 的元素y 与之对应名称 称f :A →B 为从集合A 到集合B 的一个函数 称对应f :A →B 为从集合A 到集合B 的一个映射记法y =f (x ),x ∈A 对应f :A →B▶提醒 判断一个对应关系是不是函数关系,就看这个对应关系是否满足函数定义中“定义域内的任意一个自变量的值都有唯一确定的函数值”这个核心点.2.函数的有关概念 (1)函数的定义域、值域:在函数y =f (x ),x ∈A 中,x 叫做自变量,x 的取值范围A 叫做函数的⑦ 定义域 ;与x 的值相对应的y 值叫做函数值,函数值的集合{f (x )|x ∈A }叫做函数的⑧ 值域 .(2)函数的三要素:⑨ 定义域 、值域和对应关系.(3)相等函数:若两个函数的⑩ 定义域 相同,且 对应关系 完全一致,则这两个函数相等,这是判断两函数相等的依据.(4)函数的表示方法: 解析法 、图象法、列表法.3.分段函数若函数在其定义域内,对于定义域内的不同取值区间,有着不同的对应关系,这样的函数通常叫做分段函数.分段函数虽然由几部分组成,但它表示的是一个函数.▶提醒一个分段函数的解析式要把每一段写在一个大括号内,各段函数的定义域不可以相交.知识拓展1.常见函数的定义域(1)分式函数中分母不等于0.(2)偶次根式函数的被开方式大于等于0.(3)一次函数、二次函数的定义域为R.(4)y=a x(a>0且a≠1),y=sin x,y=cos x的定义域均为R.(5)y=tan x的定义域为{x|x∈R且x≠xπ+π2,x∈Z}.(6)函数f(x)=x0的定义域为{x|x∈R且x≠0}.(7)y=log a x(a>0,且a≠1)的定义域为{x|x>0}.2.基本初等函数的值域(1)y=kx+b(k≠0)的值域是R.(2)y=ax2+bx+c(a≠0)的值域:当a>0时,值域为[4xx-x24x ,+∞);当a<0时,值域为(-∞,4xx-x24x].(3)y=xx(k≠0)的值域是{y|y≠0}.(4)y=a x(a>0且a≠1)的值域是(0,+∞).(5)y=log a x(a>0且a≠1)的值域是R.1.判断正误(正确的打“√”,错误的打“✕”).(1)函数y=1与y=x0是同一个函数.()(2)f(x)=√x-3+√2-x是一个函数.()(3)若两个函数的定义域与值域相同,则这两个函数相等.()(4)函数y=f(x)的图象与直线x=1的交点最多有1个.()答案(1)✕(2)✕(3)✕(4)√2.若函数y =f (x )的定义域为M ={x |-2≤x ≤2},值域为N ={y |0≤y ≤2},则函数y =f (x )的图象可能是 ( )答案 B3.(新教材人教A 版必修第一册P65例2改编)函数f (x )=√2x的定义域为 ( )A.(0,+∞)B.[0,+∞)C.(1,+∞)D.[1,+∞) 答案 A 要使f (x )=2x有意义,需满足2x-1>0,解得x >0,∴函数f (x )=2x的定义域为(0,+∞),故选A.4.(2020山东威海一中期中)已知函数f (x )的定义域为(-1,0),则函数f (2x -2)的定义域为( ) A.(-1,1) B.(-1,-12) C.(-1,0) D.(12,1)答案 D ∵f (x )的定义域为(-1,0),∴-1<2x -2<0,解得12<x <1,∴函数f (2x -2)的定义域为(12,1),故选D .5.已知f (x )是一次函数,且f [f (x )]=x +2,则f (x )= ( )A.x +1B.2x -1C.-x +1D.x +1或-x -1答案 A 因为f (x )是一次函数,所以可设f (x )=kx +b (k ≠0).由f [f (x )]=x +2得k (kx +b )+b =x +2,即k 2x +kb +b =x +2,所以k 2=1,kb +b =2,解得k =1,b =1,则f (x )=x +1.故选A.函数、映射概念的理解典例1 (1)给出下列四个对应:①A =R,B =R,对应关系f :x →y ,y =1x +1,x ∈A ,y ∈B ;②A ={x |12x ∈N *},B ={x |x =1x,x ∈N *},对应关系f :a →b ,b =1x;③A ={x |x ≥0},B =R,对应关系f :x →y ,y 2=x ,x ∈A ,y ∈B ;④A ={x |x 是平面α内的矩形},B ={y |y 是平面α内的圆},对应关系f :每一个矩形都对应它的外接圆. 其中是从A 到B 的映射的为( )A.①③B.②④C.①④D.③④ (2)下列函数中,与函数y =x +1是相等函数的是 ( )A.y =(√x +1)2B.y =√x 33+1C.y =x 2x+1 D.y =√x 2+1答案 (1)B (2)B解析 (1)对于①,当x =-1时,y 的值不存在,所以①不是从A 到B 的映射;对于②,A ,B 是两个集合,分别用列举法表述为A ={2,4,6,…},B ={1,12,13,14,…},由对应关系f :a →b ,b =1x 知,②是从A 到B 的映射;③不是从A 到B 的映射,如A 中的元素1对应B 中两个元素±1;④是从A 到B 的映射.(2)对于A,函数y =(√x +1)2的定义域为{x |x ≥-1},与函数y =x +1的定义域不同,不是相等函数;对于B,两个函数的定义域和对应关系都相同,是相等函数;对于C,函数y =x 2x +1的定义域为{x |x ≠0},与函数y =x +1的定义域不同,不是相等函数;对于D,两个函数的定义域相同,但对应关系不同,不是相等函数,故选B .名师点评1.定义域和值域都相同的两个函数不一定是相等函数.2.判断一个从集合A 到集合B 的对应是不是一个函数(映射)的依据可归纳为可以一对一,也可以多对一,但不能一对多.1.下列对应关系:①A ={1,4,9},B ={-3,-2,-1,1,2,3}, f :x →x 的平方根; ②A =R,B =R, f :x →x 的倒数; ③A =R,B =R, f :x →x 2-2;④A ={-1,0,1},B ={-1,0,1}, f :x →x 2. 其中是A 到B 的映射的是 ( )A.①③B.②④C.③④D.②③ 答案 C2.下列四组函数中,表示相等函数的一组是 ( )A.f (x )=|x |,g (x )=√x 2B.f (x )=√x 2,g (x )=(√x )2C.f (x )=x 2-1x -1,g (x )=x +1D.f (x )=√x +1·√x -1,g (x )=√x 2-1 答案 A函数的定义域角度一 具体函数的定义域典例2 (1)函数f (x )=√x +1+lg(6-3x )的定义域为 ( )A.(-∞,2)B.(2,+∞)C.[-1,2)D.[-1,2] (2)函数f (x )=√4-|x |+lgx 2-5x +6x -3的定义域为 ( )A.(2,3)B.(2,4]C.(2,3)∪(3,4]D.(-1,3)∪(3,6] 答案 (1)C (2)C解析 (1)要使函数f (x )=√x +1+lg(6-3x )有意义,则{x +1≥0,6-3x >0,即-1≤x <2.故函数f (x )的定义域为[-1,2).(2)要使函数f (x )有意义,需满足{4-|x |≥0,x 2-5x +6x -3>0,即{|x |≤4,(x -3)(x -2)x -3>0,解得2<x <3或3<x ≤4,故f (x )的定义域为(2,3)∪(3,4].角度二 已知函数定义域,求参数的取值范围典例3 (1)(2019河北衡水联考)若函数y =xx -1xx 2+4xx +3的定义域为R,则实数m 的取值范围是 ( )A.(0,34]B.(0,34)C.[0,34]D.[0,34)(2)若函数f (x )=√xx 2+xxx +x 的定义域为{x |1≤x ≤2},则a +b 的值为 . 答案 (1)D (2)-92解析 (1)要使函数的定义域为R, 则mx 2+4mx +3≠0恒成立, ①当m =0时,显然满足条件; ②当m ≠0时,由Δ=(4m )2-4m ×3<0, 得0<m <34. 综上可知,0≤m <34.(2)函数f (x )=√xx 2+xxx +x 的定义域是不等式ax 2+abx +b ≥0的解集.由题意知不等式ax 2+abx +b ≥0的解集为{x |1≤x ≤2}, 所以{x <0,1+2=-x ,1×2=xx,解得{x =-32,x =-3, 所以a +b =-32-3=-92. 角度三 抽象函数的定义域典例4 已知函数f (x )的定义域是[0,2],则函数g (x )=f (x +12)+f (x -12)的定义域是 .答案 [12,32]解析 因为函数f (x )的定义域是[0,2],所以函数g (x )=f (x +12)+f (x -12)中的自变量x 需要满足{0≤x +12≤2,0≤x -12≤2,解得12≤x ≤32,所以函数g (x )的定义域是[12,32]. ◆变式探究 若函数y =f (x )的定义域是[0,2],则函数g (x )=x (2x )x -1的定义域是 .答案 [0,1)解析 由题意得{0≤2x ≤2,x -1≠0,解得0≤x <1,所以g (x )的定义域为[0,1).名师点评简单函数定义域的类型及求法(1)已知函数的解析式,构造使解析式有意义的不等式(组)求解. (2)抽象函数:①若已知函数f (x )的定义域为[a ,b ],则函数f [g (x )]的定义域由不等式a ≤g (x )≤b 求出; ②若已知函数f [g (x )]的定义域为[a ,b ],则f (x )的定义域为g (x )在x ∈[a ,b ]时的值域.1.(1)函数f (x )=√2x -1-1的定义域是 . (2)函数f (x )=(x -12)0√x +2的定义域是 .答案 (1)(1,3] (2)(-2,12)∪(12,+∞) 2.若函数y =的定义域为R,则实数a 的取值范围是 .答案 [0,12)解析 由题意得ax 2-4ax +2>0恒成立, 则a =0或{x >0,x =(-4x )2-4×x ×2<0,解得0≤a <12.3.已知函数y =f (x 2-1)的定义域为[0,2],则函数g (x )=x (2x )x -1的定义域是 .答案 [-12,1)∪(1,32]解析 因为y =f (x 2-1)的定义域为[0,2],所以x ∈[0,2],x 2-1∈[-1,3],所以{-1≤2x ≤3,x -1≠0,解得-12≤x ≤32且x ≠1,所以函数g (x )的定义域是[-12,1)∪(1,32].函数的解析式典例5 (1)已知二次函数f (2x +1)=4x 2-6x +5,求f (x ). (2)已知函数f (x )满足f (-x )+2f (x )=2x,求f (x ). 解析 (1)解法一(待定系数法):因为f (x )是二次函数,所以设f (x )=ax 2+bx +c (a ≠0),则f (2x +1)=a (2x +1)2+b (2x +1)+c =4ax 2+(4a +2b )x +a +b +c.因为f (2x +1)=4x 2-6x +5,所以{4x =4,4x +2x =-6,x +x +x =5,解得{x =1,x =-5,x =9,所以f (x )=x 2-5x +9(x ∈R). 解法二(换元法): 令2x +1=t (t ∈R),则x =x -12,所以f (t )=4(x -12)2-6·x -12+5=t 2-5t +9(t ∈R),所以f (x )=x 2-5x +9(x ∈R).解法三(配凑法):因为f (2x +1)=4x 2-6x +5=(2x +1)2-10x +4=(2x +1)2-5(2x +1)+9, 所以f (x )=x 2-5x +9(x ∈R).(2)(解方程组法)由f (-x )+2f (x )=2x①, 得f (x )+2f (-x )=2-x②,①×2-②得3f (x )=2x +1-2-x,即f (x )=2x +1-2-x3.故函数的解析式是f (x )=2x +1-2-x3(x ∈R).方法技巧求函数解析式的常用方法(1)配凑法:由已知条件f (g (x ))=F (x ),可将F (x )改写成关于g (x )的式子,然后以x 替代g (x )得f (x )的解析式.(2)换元法:已知函数f (g (x ))的解析式,求f (x )的解析式时可用换元法,即令g (x )=t ,从中解出x ,代入已知解析式进行换元,此时要注意新元的取值范围.(3)待定系数法:若已知函数的类型(如一次函数、二次函数),则可用待定系数法.(4)解方程组法:已知关于f (x )与f (1x )或f (-x )的等式,可根据已知条件构造出等式,组成方程组,通过解方程组求出f (x )的解析式.(2020河北衡水中学调研)已知f (x )是二次函数,且f (0)=0, f (x +1)=f (x )+x +1.求f (x )的解析式.解析 设f (x )=ax 2+bx +c (a ≠0), 由f (0)=0知c =0,则f (x )=ax 2+bx ,又由f (x +1)=f (x )+x +1得a (x +1)2+b (x +1)=ax 2+bx +x +1, 即ax 2+(2a +b )x +a +b =ax 2+(b +1)x +1,所以{2x +x =x +1,x +x =1,解得a =b =12,所以f (x )=12x 2+12x (x ∈R).分段函数角度一 分段函数的最值问题典例6 已知函数f (x )={x 2-2xx +9,x ≤1,x +4x +x ,x >1,若f (x )的最小值为f (1),则实数a 的取值范围是 .答案 [2,+∞)解析 当x >1时, f (x )=x +4x +a ≥4+a ,当且仅当x =2时,等号成立.当x ≤1时, f (x )=x 2-2ax +9为二次函数,要想在x =1处取最小值,则函数图象的对称轴要满足x =a ≥1,并且f (1)≤4+a ,即1-2a +9≤a +4,解得a ≥2.角度二 已知函数值,求参数的值(或取值范围)典例7 设函数f (x )={x 2+2x ,x <0,x +1,x ≥0,则f (-1)= ;若f (a )>f (a -1),则实数a 的取值范围是 .答案 -1;(-12,+∞)名师点评分段函数问题的求解策略(1)根据分段函数的解析式求函数值.首先确定自变量的值属于哪个区间,其次选定相应的解析式代入求解.(2)已知函数值或函数的取值范围求自变量的值或范围时,应根据每一段的解析式分别求解,但要注意检验所求自变量的值或范围是否符合相应段的自变量的取值范围.1.(2020辽宁盘锦一中模拟)已知函数f (x )={2e x -1,x <1,x 3+x ,x ≥1,则f (f (x ))<2的解集为 ( )A.(1-ln 2,+∞)B.(-∞,1-ln 2)C.(1-ln 2,1)D.(1,1+ln 2)答案 B 因为当x ≥1时, f (x )=x 3+x ≥2,当x <1时, f (x )=2e x -1<2,所以f (f (x ))<2等价于f (x )<1,即2e x -1<1,解得x <1-ln 2, 所以f (f (x ))<2的解集为(-∞,1-ln 2),故选B.2.(2018课标全国Ⅰ文,12,5分)设函数f (x )={2-x ,x ≤0,1,x >0,则满足f (x +1)<f (2x )的x 的取值范围是 ( )A.(-∞,-1]B.(0,+∞)C.(-1,0)D.(-∞,0)答案 D 函数f (x )={2-x ,x ≤0,1,x >0的图象如图所示:由f (x +1)<f (2x )得{2x <0,2x <x +1,得{x <0,x <1.∴x <0,故选D .3.已知函数f (x )={log 2(3-x ),x ≤0,2x -1,x >0,若f (a -1)=12,则实数a = .答案 log 23解析 由题意知当a -1≤0,即a ≤1时,log 2(3-a +1)=12,解得a =4-√2>1,舍去.当a -1>0,即a >1时,2a -1-1=12,解得a =log 23>1,成立.故a =log 23.微专题——新定义函数的有关计算新定义函数问题是近几年高考中函数的热点题型,解答这类问题的关键在于阅读理解时准确把握新定义、新信息,并把它纳入已有的知识体系之中,用原来的知识和方法来解决新情境下的问题,一般有两方面的考查:(1)利用新函数进行计算;(2)讨论新函数的性质.典例 (2020浙江镇海中学高三模拟)定义符号函数sgn x ={1,x >0,0,x =0,-1,x <0,若f (x )是定义在R 上的减函数,g (x )=f (x )-f (ax )(a >1),则 ( )A.sgn[g (x )]=sgn xB.sgn[g (x )]=-sgn xC.sgn[g (x )]=sgn[f (x )]D.sgn[g (x )]=-sgn[f (x )] 答案 A解析 由题意知g (x )=f (x )-f (ax ),且f (x )是R 上的减函数, 当x >0时,x <ax ,则有f (x )>f (ax ), 则g (x )=f (x )-f (ax )>0, 此时sgn[g (x )]=1;当x =0时,x =ax ,则有f (x )=f (ax ), 则g (x )=f (x )-f (ax )=0, 此时sgn[g (x )]=0;当x <0时,x >ax ,则有f (x )<f (ax ), 则g (x )=f (x )-f (ax )<0, 此时sgn[g (x )]=-1. 综上所述,sgn[g (x )]=sgn x. 故选A.根据新定义得到f (x )的表达式,判断函数f (x )在定义域的单调性,可得结果.1.(2020辽宁大连高三月考)在实数的原有运算法则中,我们定义新运算 “x” 如下:当a ≥b 时,a x b =a ;当a <b 时,a x b =b 2,则函数f (x )=(1x x )·x -(2x x )(x ∈[-2,2])的最大值等于(“·”和“-”仍为通常的乘法和减法) ( )A.-1B.1C.12D.6 答案 D 因为a x b ={x ,x ≥x ,x 2,x <x ,所以f (x )=(1x x )·x -(2x x )={x -2,-2≤x ≤1,x 3-2,1<x ≤2,易知函数f (x )在[-2,2]上单调递增,所以f (x )max =f (2)=6,故选D.2.定义符号函数sgn x ={1,x >0,0,x =0,-1,x <0,则当x ∈R 时,不等式x +2>(2x -1)sgn x的解集为 .答案 {x |-3-√334<x <3}解析 当x >0时,不等式可转化为x +2>2x -1,解得0<x <3; 当x =0时,不等式可转化为2>1,不等式成立;当x <0时,不等式可转化为x +2>12x -1①,因为2x -1<0,所以①等价于(x +2)(2x -1)<1,即2x 2+3x -3<0,解得-3-√334<x <0.综上所述,不等式的解集为 {x |-3-√334<x <3}.A 组 基础达标1.下列各组函数中,表示同一个函数的是 ( )A.f (x )=x 2和f (x )=(x +1)2B.f (x )=(√x )2x和f (x )=(x )2C.f (x )=log a x 2和f (x )=2log a xD.f (x )=x -1和f (x )=√(x -1)2答案 B2.函数y =ln(x 2-x )+√4-2x 的定义域为 ( )A.(-∞,0)∪(1,+∞)B.(-∞,0)∪(1,2]C.(-∞,0)D.(-∞,2)答案 B 由已知得{x 2-x >0,4-2x≥0,解得{x <0或x >1,x ≤2,即x ∈(-∞,0)∪(1,2],故选B.3.已知函数f (x )的定义域为(-1,0),则函数f (2x +1)的定义域为( ) A.(-1,1) B.(-1,-12)C.(-1,0)D.(12,1)答案 B4.已知函数f (x +1)=3x +2,则f (x )= ( )A.3x +2B.3x +1C.3x -1D.3x +4 答案 C5.已知f (10x)=x ,则f (5)= ( )A.105B.510C.log 510D.lg 5 答案 D6.(2020湖南湘潭一中模拟)已知函数f (x )={x +1x -2,x >2,x 2+2,x ≤2,则f (f (1))= ( )A.-12 B.2 C.4 D.11 答案 C ∵函数f (x )={x +1x -2,x >2,x 2+2,x ≤2,∴f (1)=12+2=3,∴f (f (1))=f (3)=3+13-2=4.故选C.7.已知函数f (x )={3-x +1(x ≤0),x x +2(x >0),若f (f (-1))=18,则实数a 的值是 ( )A.0B.1C.2D.3 答案 C8.设函数f :R →R 满足f (0)=1,且对任意的x ,y ∈R 都有f (xy +1)=f (x )·f (y )-f (y )-x +2,则f (2 017)= ( ) A.0 B.1 C.2 017 D.2 018答案 D 令x =y =0,则f (1)=f (0)·f (0)-f (0)-0+2=1×1-1-0+2=2,令y =0,则f (1)=f (x )·f (0)-f (0)-x +2,将f (0)=1, f (1)=2代入得f (x )=1+x ,所以f (2 017)=2 018,故选D .9.(2020湖南郴州二中模拟)设x ∈R,用[x ]表示不超过x 的最大整数,则y =[x ]称为高斯函数.例如:[-2.1]=-3,[3.1]=3,已知函数f (x )=2x +32x +1,则函数y =[f (x )]的值域为 ( )A.{0,1,2,3}B.{0,1,2}C.{1,2,3}D.{1,2} 答案 D f (x )=2x +32x+1=2x +1+22x+1=1+22x+1,∵2x>0,∴1+2x>1,∴0<22x+1<2,∴1<1+22x +1<3,即1<f (x )<3.当1<f (x )<2时,[f (x )]=1;当2≤f (x )<3时,[f (x )]=2.综上,函数y =[f (x )]的值域为{1,2},故选D.B 组 能力拔高10.已知函数f (x )={(x -1)x +4-2x ,x <1,1+log 2x ,x ≥1,若f (x )的值域为R,则实数a 的取值范围是( )A.(1,2]B.(-∞,2]C.(0,2]D.[2,+∞)答案 A 当x ≥1时, f (x )=1+log 2x ≥1;当x <1时, f (x )=(a -1)x +4-2a 必须是增函数,且值域区间的右端点的值大于或等于1,才能满足f (x )的值域为R,可得{x -1>0,x -1+4-2x ≥1,解得1<a ≤2.11.(2020江苏苏州一中期中)已知函数f (x )={2x ,x ≤1,log 3(x -1),x >1,且f (x 0)=1,则x 0=( )A.0B.4C.0或4D.1或3 答案 C 当x 0≤1时,由f (x 0)=2x 0=1得x 0=0(满足x 0≤1);当x 0>1时,由f (x 0)=log 3(x 0-1)=1得x 0-1=3,得x 0=4(满足x 0>1),故选C. 12.(2020北京,11,5分)函数f (x )=1x +1+ln x 的定义域是 .答案 (0,+∞)解析 要使函数f (x )有意义,则{x +1≠0,x >0,故x >0,因此函数f (x )的定义域为(0,+∞). 13.(2019湖南衡阳模拟)已知函数f (x )=xxx -1,若f (x )+f (1x )=3,则f (x )+f (2-x )= .答案 6 解析 ∵f (x )=xx x -1, f (x )+f (1x)=3, ∴f (x )+f (1x )=xx x -1+xx 1x-1=xx x -1-x x -1=x (x -1)x -1=3,解得a =3,∴f (x )=3x x -1,∴f (x )+f (2-x )=3x x -1+6-3x 2-x -1=6(x -1)x -1=6.C 组 思维拓展14.(2020广东珠海一中模拟)已知x 为实数,用[x ]表示不超过x 的最大整数,例如[1.2]=1,[-1.2]=-2,[1]=1.对于函数f (x ),若存在m ∈R 且m ∉Z,使得f (m )=f ([m ]),则称函数f (x )是Ω函数. (1)判断函数f (x )=x 2-13x ,g (x )=sin πx 是不是Ω函数(只需写出结论);(2)已知f (x )=x +x x,请写出a 的一个值,使得f (x )为Ω函数,并给出证明. 解析 (1)f (x )=x 2-13x 是Ω函数,g (x )=sin πx 不是Ω函数. (2)a =32.证明:设k ∈N *,取a ∈(k 2,k 2+k ),令[m ]=k ,m =x x ,则一定有m -[m ]=xx -k =x -x 2x∈(0,1),且f (m )=f ([m ]),所以f (x )是Ω函数.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
专题3.1 函数的概念及其表示1.(2021·四川达州市·高三二模(文))已知定义在R 上的函数()f x 满足,2(1)2()1f x f x x -+=+,则(1)f =( )A .1-B .1C .13-D .13【答案】B 【解析】当0x =时,f (1)2(0)1f +=①;当1x =时,(0)2f f +(1)2=②,由此进行计算能求出f (1)的值. 【详解】定义在R 上的函数()f x 满足,2(1)2()1f x f x x -+=+,∴当0x =时,f (1)2(0)1f +=,①当1x =时,(0)2f f +(1)2=,②②2⨯-①,得3f (1)3=,解得f (1)1=. 故选:B2.(2021·浙江高一期末)已知231,1,()3,1,x x f x x x +⎧=⎨+>⎩则(3)f =( )A .7B .2C .10D .12【答案】D 【解析】根据分段函数的定义计算. 【详解】由题意2(3)3312f =+=.故选:D .练基础3.(2021·全国高一课时练习)设3,10()(5),10x x f x f x x +>⎧=⎨+≤⎩,则(5)f 的值为( )A .16B .18C .21D .24【答案】B 【解析】根据分段函数解析式直接求解. 【详解】因为3,10()(5),10x x f x f x x +>⎧=⎨+≤⎩,所以(5)(10)(15)15318f f f ===+=. 故选:B.4.(2021·浙江湖州市·湖州中学高一开学考试)若函数213()22f x x x =-+的定义域和值域都是[1,]b ,则b =( ) A .1 B .3C .3-D .1或3【答案】B 【解析】 根据函数213()22f x x x =-+在[1,]b 上为增函数,求出其值域,结合已知值域可求出结果. 【详解】 因为函数213()22f x x x =-+21(1)12x =-+在[1,]b 上为增函数,且定义域和值域都是[1,]b , 所以min ()(1)f x f =1=,2max 13()()22f x f b b b b ==-+=,解得3b =或1b =(舍),故选:B5.(上海高考真题)若是的最小值,则的取值范围为( ).A .[-1,2]B .[-1,0]C .[1,2]D .[0,2]【答案】D 【详解】由于当0x >时,1()f x x a x=++在1x =时取得最小值2a +,由题意当0x ≤时,2()()f x x a =-应该是递减的,则0a ≥,此时最小值为2(0)f a =,因此22a a ≤+,解得02a ≤≤,选D .6.(广东高考真题)函数()f x x=的定义域是______. 【答案】[)()1,00,∞-⋃+ 【解析】由根式内部的代数式大于等于0且分式的分母不等于0联立不等式组求解x 的取值集合得答案. 【详解】由{100x x +≥≠,得1x ≥-且0x ≠.∴函数()f x =的定义域为:[)()1,00,-⋃+∞; 故答案为[)()1,00,-⋃+∞.7.(2021·青海西宁市·高三一模(理))函数()f x 的定义域为[]1,1-,图象如图1所示,函数()g x 的定义域为[]1,2-,图象如图2所示.若集合()(){}0A x f g x ==,()(){}0B x g f x ==,则A B 中有___________个元素.【答案】3 【解析】利用数形结合分别求出集合A 与集合B ,再利用交集运算法则即可求出结果. 【详解】若()()0f g x =,则()0g x =或1-或1,∴{}1,0,1,2A =-, 若()()0g f x =,则0f x 或2,∴{}1,0,1B =-,∴{}1,0,1=-AB .故答案为:3.8.(2021·湖北襄阳市·襄阳五中高三二模)已知函数22211x x y f x x ⎛⎫+-= ⎪+-⎝⎭的定义域是[)1,+∞,则函数()y f x =的定义域是_______.【答案】(]1,2 【解析】令()()222111x x g x x x x +-=≥+-,根据函数值域的求解方法可求得()g x 的值域即为所求的()f x 的定义域.【详解】令()()222111x x g x x x x +-=≥+-,则()()222111111111x x x x g x x x x x x x x+-+==+=+≥+-+--+, 1y x x =-在[)1,+∞上单调递增,10x x∴-≥,10111x x∴<≤-+,()12g x ∴<≤,()f x ∴的定义域为(]1,2.故答案为:(]1,2.9.(2021·黑龙江哈尔滨市第六中学校高三二模(文))已知函数()221,01,0x x f x x x⎧+≥⎪=⎨<⎪⎩,若()2f a =,则实数a =___________. 【答案】1或- 【解析】分别令212a +=,212a=,解方程,求出方程的根即a 的值即可. 【详解】当0a ≥,令212a +=,解得:1a =,当0a <,令212a =,解得:2a =-, 故1a =或2-, 故答案为:1或2-. 10.(2021·云南高三二模(理))已知函数231,1()1,1x x f x x x +≤⎧=⎨->⎩,若n m >,且()()f n f m =,设t n m =-,则t 的取值范围为________.【答案】171,12⎤⎥⎦【解析】用n 表示出m ,结合二次函数的性质求得t n m =-的取值范围. 【详解】画出()f x 图象如下图所示,3114⨯+=,令()2140x x -=>,解得x =由()(),n m f n f m >=得2311m n +=-,223n m -=,且1n <≤所以(222121333n t n m n n n n -=-=-=-++<≤,结合二次函数的性质可知,当131223n =-=⎛⎫⨯- ⎪⎝⎭时,t 取得最大值为2133217322312⎛⎫-⨯++= ⎪⎝⎭,当n =时,t取得最小值为212133-⨯=. 所以t的取值范围是171,12⎤⎥⎦.故答案为:171,12⎤⎥⎦1.(2021·云南高三二模(文))已知函数231,1()1,1x x f x x x +≤⎧=⎨->⎩,若n m >,且()()f n f m =,设t n m =-,则( ) A .t 没有最小值 B .t 1 C .t 的最小值为43D .t 的最小值为1712【答案】B 【解析】先作出分段函数图象,再结合图象由()()f n f m =,得到m 与n 的关系,消元得关于n 的函数,最后求最值. 【详解】如图,作出函数()f x 的图象,练提升()()f n f m =且n m >,则1m ,且1n >,2311m n ∴+=-,即223n m -=.由21014n n >⎧⎨<-≤⎩,解得1n <≤222211317(32)()333212n n m n n n n -⎡⎤∴-=-=---=--+⎢⎥⎣⎦,又1n <≤∴当n =()min 1n m -=.故选:B.2.(2020·全国高一单元测试)已知函数21,0,()2,0,x x f x x x ⎧+≤=⎨->⎩,若()05f x =,则0x 的取值集合是( )A .{2}-B .5,22⎧⎫-⎨⎬⎩⎭C .{2,2}-D .52,2,2⎧⎫--⎨⎬⎩⎭【答案】A 【解析】根据分段函数值的求解方法,对00x ≤与00x >两种情况求解,可得答案. 【详解】若00x ≤,可得2015x +=,解得02x =-,(02x =舍去);若00x >,可得02x -=5,可得052x =-,与00x >相矛盾,故舍去,综上可得:02x =-. 故选:A.3.【多选题】(2021·全国高一课时练习)(多选题)下列函数中,定义域是其值域子集的有( )A .865y x =+ B .225y x x =--+ C .y =D .11y x=- 【答案】AC 【解析】分别求得函数的定义域和值域,利用子集的定义判断. 【详解】A 函数的定义域和值域都是R ,符合题意;B.定义域为R ,因为2225(1)66y x x x =--+=-++≤,所以函数值域为(,6]-∞,值域是定义域的真子集不符合题意;C.易得定义域为[1,)+∞,值域为[0,)+∞,定义域是值域的真子集;D.定义域为{|0}x x ≠,值域为{|1}x x ≠-,两个集合只有交集; 故选:AC4.【多选题】(2021·全国高一课时练习)已知f (x )=2211x x +-,则f (x )满足的关系有( )A .()()f x f x -=-B .1f x ⎛⎫⎪⎝⎭= ()f x - C .1f x ⎛⎫⎪⎝⎭=f (x ) D .1()()f f x x-=-【答案】BD 【解析】根据函数()f x 的解析式,对四个选项逐个分析可得答案. 【详解】因为f (x )= 2211x x+-, 所以()f x -=221()1()x x +---=2211x x +-()f x =,即不满足A 选项;1f x ⎛⎫ ⎪⎝⎭=221111x x ⎛⎫+ ⎪⎝⎭⎛⎫- ⎪⎝⎭=2211x x +-,1f x ⎛⎫⎪⎝⎭=()f x -,即满足B 选项,不满足C 选项, 1()f x -=221111x x ⎛⎫+- ⎪⎝⎭⎛⎫-- ⎪⎝⎭=2211x x +-,1()()f f x x -=-,即满足D 选项. 故选:BD5.【多选题】(2021·全国高三其他模拟)已知函数21,0,()2,0,x x f x x x x +<⎧=⎨-+≥⎩令()()()g x f f x =,则下列说法正确的是( ) A .()10g -=B .方程()2g x =有3个根C .方程()2g x =-的所有根之和为-1D .当0x <时,()()f x g x ≤【答案】ACD 【解析】由题意知()10f -=可得()10g -=;令()f x u =,因为方程()2f u =没有实根,即()2g x =没有实根;令()u f x =,则方程()2g x =-,即()2f u =-,通过化简与计算即可判断C ;当0x <时,()(1)g x f x =+,则将函数()f x 在(,1)-∞的图象向左平移1个单位长度可得函数()g x 的图象,即可判断D . 【详解】对于A 选项,由题意知()10f -=,则()()()()1100g f f f -=-==,所以A 选项正确; 对于B 选项,令()f x u =,则求()()()2g x f f x ==的根,即求()2f u =的根, 因为方程()2f u =没有实根,所以()2g x =没有实根,所以选项B 错误;对于C 选项,令()u f x =,则方程()2g x =-,即()2f u =-,得112,03u u u +=-<⇒=-,2222,01u u u u -+=-≥⇒=由方程1()f x u =得13(0)x x +=-<或223(0)x x x -+=-≥,解得4x =-或3x =,易知方程2()f x u =,没有实数根,所以方程()2g x =-的所有根之和为-1,选项C 正确;对于D 选项,当0x <时,()(1)g x f x =+,则将函数()f x 在(,1)-∞的图象向左平移1个单位长度可得函数()g x 的图象,当0x <时,函数()g x 的图象不在()f x 的图象的下方,所以D 选项正确,故选:ACD .6.【多选题】(2021·全国高三专题练习)已知函数()f x ,(,0)(0,)x ∈-∞⋃+∞,对于任意的,(,0)(0,)x y ∈-∞+∞,()()()f xy f x f y =+,则( )A .()f x 的图象过点()1,0和()1,0-B .()f x 在定义域上为奇函数C .若当1x >时,有()0f x >,则当10x -<<时,()0f x <D .若当01x <<时,有()0f x <,则()0f x >的解集为()1,+∞ 【答案】AC 【解析】根据抽象函数的性质,利用特殊值法一一判断即可; 【详解】解:因为函数()f x ,(,0)(0,)x ∈-∞⋃+∞,对于任意的,(,0)(0,)x y ∈-∞+∞,()()()f xy f x f y =+,令1x y ==,则()()()111f f f =+,则()10f =,令1x y ==-,则()()()111f f f =-+-,则()10f -=,所以()f x 过点()1,0和()1,0-,故A 正确;令1y =-,则()()()1f x f x f -=+-,即()()f x f x -=,所以()f x 为偶函数,故B 错误; 令1y x =-,则()()110f f x f x ⎛⎫-=+-= ⎪⎝⎭,则()1f f x x ⎛⎫-=- ⎪⎝⎭当1x >时,所以()11,0x -∈-,又()0f x >,则10f x ⎛⎫-< ⎪⎝⎭,即当10x -<<时,()0f x <,故C 正确;令1y x =,则()()110f f x f x ⎛⎫=+= ⎪⎝⎭,则()1f f x x ⎛⎫=- ⎪⎝⎭,当01x <<时,所以()11,x ∈+∞,又()0f x <,则10f x ⎛⎫> ⎪⎝⎭,即当1x >时,()0f x >,因为()f x 是偶函数,所以1x <-时,()0f x >,所以()0f x >的解集为()(),11,-∞-+∞,故D 错误;故选:AC7.【多选题】(2021·全国高三专题练习)已知函数()22,023,0x x x f x x x ⎧-<=⎨-+≥⎩,则( )A .()13f f -⎡⎤⎣=-⎦B .若()1f a =-,则2a =C .()f x 在R 上是减函数D .若关于x 的方程()f x a =有两解,则(]0,3a ∈ 【答案】ABD 【解析】根据函数解析式,代入数据可判断A 、B 的正误,做出()f x 的图象,可判断C 、D 的正误,即可得答案. 【详解】对于A :由题意得:2(1)(1)2(1)3f -=--⨯-=, 所以()(3)23331f f f -==-⨯+=-⎡⎤⎣⎦,故A 正确;对于B :当0a <时,2()21f a a a =-=-,解得a =1,不符合题意,舍去当0a ≥时,()231f a a =-+=-,解得2a =,符合题意,故B 正确; 对于C :做出()f x 的图象,如下图所示:所以()f x 在R 上不是减函数,故C 错误;对于D :方程()f x a =有两解,则()y f x =图象与y a =图象有两个公共点, 如下图所示所以(]0,3a ∈,故D 正确. 故选:ABD8.(2021·浙江高三月考)已知0a >,设函数2(22),(02)(),(2)x a x x a f x ax x a ⎧-++<<+=⎨≥+⎩,存在0x 满足()()00f f x x =,且()00f x x ≠,则a 的取值范围是______.1a ≤< 【解析】求得()2x ax a y =≥+关于y x =对称所得函数的解析式,通过构造函数,结合零点存在性列不等式,由此求得a 的取值范围.【详解】由于()f x 存在0x 满足()()0f f x x =,且()00f x x ≠,所以()f x 图象上存在关于y x =对称的两个不同的点.对于()()2,2y ax x a y a a =≥+≥+,交换,x y 得x ay =, 即()()12,2y x x a a y a a=≥+≥+, 构造函数()()22111222222g x x a x x x a x x x a a a a ⎛⎫⎛⎫=-++-=-++-=-++- ⎪ ⎪⎝⎭⎝⎭(()22a a x a +≤<+),所以()g x 的零点122a a +-满足()12222a a a a a+≤+-<+, 由1222a a a +-<+得()()21111001a a a a a a a a+---==<⇒<<,由()1222a a a a+≤+-得3210a a -+≤,即()()()()31111a a a a a a a --+=+---()()()21110a a a a a a ⎛=+--=--≤ ⎝⎭⎝⎭,由于01a <<1a ≤<.故答案为:112a ≤< 9. (2021·浙江高一期末)已知函数()1f x x =-+,()()21g x x =-,x ∈R .(1)在图1中画出函数()f x ,()g x 的图象;(2)定义:x R ∀∈,用()m x 表示()f x ,()g x 中的较小者,记为()()(){}min ,m x f x g x =,请分别用图象法和解析式法表示函数()m x .(注:图象法请在图2中表示,本题中的单位长度请自己定义且标明)【答案】(1)图象见解析;(2)()(][)()()21,,01,1,0,1x x m x x x ⎧-+∈-∞⋃+∞⎪=⎨-∈⎪⎩;图象见解析. 【解析】(1)由一次函数和二次函数图象特征可得结果;(2)根据()m x 定义可分段讨论得到解析式;由解析式可得图象. 【详解】(1)()f x ,()g x 的图象如下图所示:(2)当0x ≤时,()211x x -≥-+,则()()1m x f x x ==-+;当01x <<时,()211x x -<-+,则()()()21m x g x x ==-; 当1≥x 时,()211x x -≥-+,则()()1m x f x x ==-+;综上所述:()(][)()()21,,01,1,0,1x x m x x x ⎧-+∈-∞⋃+∞⎪=⎨-∈⎪⎩. ()m x 图象如下图所示:10. (2021·全国高一课时练习)已知函数()12f x x x =++-,()3g x x =-. (1)在平面直角坐标系里作出()f x 、()g x 的图象.(2)x R ∀∈,用()min x 表示()f x 、()g x 中的较小者,记作()()(){}min ,x f x g x =,请用图象法和解析法表示()min x ;(3)求满足()()f x g x >的x 的取值范围.【答案】(1)答案见解析;(2)答案见解析;(3)()(),20,-∞-+∞.【解析】(1)化简函数()f x 、()g x 的解析式,由此可作出这两个函数的图象;(2)根据函数()min x 的意义可作出该函数的图象,并结合图象可求出函数()min x 的解析式; (3)根据图象可得出不等式()()f x g x >的解集. 【详解】(1)()21,2123,1212,1x x f x x x x x x -≥⎧⎪=++-=-<<⎨⎪-≤-⎩,()3,333,3x x g x x x x -≥⎧=-=⎨-<⎩. 则对应的图象如图:(2)函数()min x 的图象如图:解析式为()3,20312,21min 3,103,3x x x x x x x x x -<-≤<⎧⎪--≤≤-⎪=⎨-<<⎪⎪-≥⎩或;(3)若()()f x g x >,则由图象知在A 点左侧,B 点右侧满足条件,此时对应的x 满足0x >或2x <-, 即不等式()()f x g x >的解集为()(),20,-∞-+∞.1.(山东高考真题)设f (x )={√x,0<x <12(x −1),x ≥1 ,若f (a )=f (a +1),则f (1a )=( ) A .2 B .4 C .6 D .8 【答案】C【解析】由x ≥1时f (x )=2(x −1)是增函数可知,若a ≥1,则f (a )≠f (a +1),所以0<a <1,由f(a)=f(a +1)得√a =2(a +1−1),解得a =14,则f (1a )=f(4)=2(4−1)=6,故选C.2.(2018上海卷)设D 是含数1的有限实数集,f (x )是定义在D 上的函数,若f (x )的图象绕原点逆时针旋转π6后与原图象重合,则在以下各项中,f (1)的可能取值只能是( ) A .√3 B .√32 C .√33 D .0 【答案】B 【解析】由题意得到:问题相当于圆上由12个点为一组,每次绕原点逆时针旋转π6个单位后与下一个点会重合. 我们可以通过代入和赋值的方法当f (1)=√3,√33,0时,此时得到的圆心角为π3,π6,0,然而此时x=0或练真题者x=1时,都有2个y 与之对应,而我们知道函数的定义就是要求一个x 只能对应一个y ,因此只有当x=√32,此时旋转π6,此时满足一个x 只会对应一个y , 故选:B .3. (2018年新课标I 卷文)设函数f (x )={2−x , x ≤01 , x >0 ,则满足f (x +1)<f (2x )的x 的取值范围是( )A. (−∞ , −1]B. (0 , +∞)C. (−1 , 0)D. (−∞ , 0) 【答案】D【解析】将函数f(x)的图象画出来,观察图象可知会有{2x <02x <x +1,解得x <0,所以满足f (x +1)<f (2x )的x 的取值范围是(−∞ , 0),故选D.4.(浙江高考真题(文))已知函数()2,1{66,1x x f x x x x≤=+->,则()2f f ⎡⎤-=⎣⎦ ,()f x 的最小值是 .【答案】162- 【解析】如图根据所给函数解析式结合其单调性作出其图像如图所示,易知()()min 12,62f f f x f ⎡⎤-=-==⎣⎦.5. (2018·天津高考真题(文))已知a R ∈,函数()22220220x x a x f x x x a x ⎧++-≤=⎨-+->⎩,,,.若对任意x ∈[–3,+∞),f (x )≤x 恒成立,则a 的取值范围是__________. 【答案】1,28⎡⎤⎢⎥⎣⎦【解析】由题意分类讨论0x >和0x ≤两种情况,结合恒成立的条件整理计算即可求得最终结果. 【详解】分类讨论:①当0x >时,()f x x ≤即:222x x a x -+-≤, 整理可得:21122a x x ≥-+, 由恒成立的条件可知:()2max 11022a x x x ⎛⎫≥-+> ⎪⎝⎭, 结合二次函数的性质可知: 当12x =时,2max 1111122848x x ⎛⎫-+=-+= ⎪⎝⎭,则18a ≥; ②当30x -≤≤时,()f x x ≤即:222x x a x ++-≤-,整理可得:232a x x ≤--+, 由恒成立的条件可知:()()2min3230a x x x ≤--+-≤≤,结合二次函数的性质可知: 当3x =-或0x =时,()2min322x x --+=,则2a ≤;综合①②可得a 的取值范围是1,28⎡⎤⎢⎥⎣⎦,故答案为1,28⎡⎤⎢⎥⎣⎦.6.(2018·浙江高考真题)已知λ∈R,函数f (x )=24,43,x x x x x λλ-≥⎧⎨-+<⎩,当λ=2时,不等式f (x )<0的解集是___________.若函数f (x )恰有2个零点,则λ的取值范围是___________. 【答案】(1,4) (1,3](4,)⋃+∞ 【解析】分析:根据分段函数,转化为两个不等式组,分别求解,最后求并集.先讨论一次函数零点的取法,再对应确定二次函数零点的取法,即得参数λ的取值范围.详解:由题意得240x x ≥⎧⎨-<⎩或22430x x x <⎧⎨-+<⎩,所以24x ≤<或12x <<,即14x <<,不等式f (x )<0的解集是(1,4),当4λ>时,()40f x x =->,此时2()430,1,3f x x x x =-+==,即在(,)λ-∞上有两个零点;当4λ≤时,()40,4f x x x =-==,由2()43f x x x =-+在(,)λ-∞上只能有一个零点得13λ<≤.综上,λ的取值范围为(1,3](4,)⋃+∞.。