同济高等数学公式大全
同济高数上册公式大全

v1.0 可编辑可修改第一章 函数与极限一. 函数的概念1.两个无穷小的比较设0)(lim ,0)(lim ==x g x f 且l x g x f =)()(lim(1)l = 0,称f (x)是比g(x)高阶的无穷小,记以f (x) = 0[)(x g ],称g(x)是比f(x)低阶的无穷小。
(2)l ≠ 0,称f (x)与g(x)是同阶无穷小。
(3)l = 1,称f (x)与g(x)是等价无穷小,记以f (x) ~ g(x)2.常见的等价无穷小 当x →0时sin x ~ x ,tan x ~ x ,x arcsin ~ x ,x arccos ~ x ,1− cos x ~ 2/2^x , x e −1 ~ x ,)1ln(x + ~ x ,1)1(-+αx ~ x α二.求极限的方法1.两个准则准则 1. 单调有界数列极限一定存在准则 2.(夹逼定理)设g (x ) ≤ f (x ) ≤ h (x )若A x h A x g ==)(lim ,)(lim ,则A x f =)(lim2.两个重要公式 公式11sin lim0=→xxx公式2e x x x =+→/10)1(lim3.用无穷小重要性质和等价无穷小代换 4.用泰勒公式当x 0→时,有以下公式,可当做等价无穷小更深层次)()!12()1(...!5!3sin )(!...!3!2112125332++++-+++-=++++++=n n n n nxx o n x x x x x x o n x x x x e )(!2)1(...!4!21cos 2242n n n x o n x x x x +-+++-= )()1(...32)1ln(132n nn x o nx x x x x +-++-=++ )(!))1()...(1(...!2)1(1)1(2n n x o x n n x x x +---++-++=+ααααααα)(12)1(...53arctan 1212153+++++-+-+-=n n n x o n x x x x x 5.洛必达法则定理1 设函数)(x f 、)(x F 满足下列条件:(1)0)(lim 0=→x f x x ,0)(lim 0=→x F x x ;(2))(x f 与)(x F 在0x 的某一去心邻域内可导,且0)(≠'x F ; (3))()(limx F x f x x ''→存在(或为无穷大),则 这个定理说明:当)()(limx F x f x x ''→存在时,)()(lim 0x F x f x x →也存在且等于)()(lim 0x F x f x x ''→;当)()(limx F x f x x ''→为无穷大时,)()(lim 0x F x f x x →也是无穷大.这种在一定条件下通过分子分母分别求导再求极限来确定未定式的极限值的方法称为洛必达(H L 'ospital )法则.∞∞型未定式 定理2 设函数)(x f 、)(x F 满足下列条件:(1)∞=→)(lim 0x f x x ,∞=→)(lim 0x F x x ;(2))(x f 与)(x F 在0x 的某一去心邻域内可导,且0)(≠'x F ;)()(lim)()(lim 00x F x f x F x f x x x x ''=→→)()(lim )()(lim 00x F x f x F x f x x x x ''=→→(3))()(limx F x f x x ''→存在(或为无穷大),则 注:上述关于0x x →时未定式∞∞型的洛必达法则,对于∞→x 时未定式∞∞型同样适用.使用洛必达法则时必须注意以下几点: (1)洛必达法则只能适用于“00”和“∞∞”型的未定式,其它的未定式须先化简变形成“00”或“∞∞”型才能运用该法则; (2)只要条件具备,可以连续应用洛必达法则;(3)洛必达法则的条件是充分的,但不必要.因此,在该法则失效时并不能断定原极限不存在.6.利用导数定义求极限基本公式)()()(lim 0'000x f x x f x x f x =∆-∆+→∆(如果存在)7.利用定积分定义求极限基本格式⎰∑==∞→11)()(1lim dx x f n kf n n k n (如果存在)三.函数的间断点的分类函数的间断点分为两类: (1)第一类间断点设0x 是函数y = f (x )的间断点。
同济高等数学公式大全

270°+α -cosα sinα -ctgα -tgα
360°-α -sinα cosα -tgα -ctgα
360°+α sinα cosα tgα ctgα
sin( ) sin cos cos sin
cos( ) cos cos sin sin
tg (
)
tg 1 tg
2
2
高阶导数公式——莱布尼兹(Leibniz)公式:
n
(uv)(n)
C
k n
u
(nk
)
v
(
k
)
k 0
u (n)v nu (n1)v n(n 1) u (n2)v n(n 1)(n k 1) u v (nk ) (k ) uv(n)
2!
k!
中值定理与导数应用:
拉格朗日中值定理:f (b) f (a) f ( )(b a) 柯西中值定理:f (b) f (a) f ( )
s0 s ds(1 ຫໍສະໝຸດ y2 )3直线: K 0;
半径为 a的圆: K 1 . a
定积分的近似计算:
b
矩形法:
a
f
(x)
b
n
a
(
y0
y1
yn1 )
b
梯形法:
a
f
(x)
b
n
a
[1 2
(
y0
yn
)
y1
yn1 ]
b
抛物线法:
a
f
(x)
ba 3n
[(
y0
yn
)
2(
y2
y4
yn2
)
4(
y1
y3
(完整版)同济高等数学公式大全

高等数学公式导数公式:基本积分表:三角函数的有理式积分:⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰+±+=±+=+=+=+-=⋅+=⋅+-==+==Ca x x a x dx C shx chxdx C chx shxdx Ca a dx a Cx ctgxdx x C x dx tgx x Cctgx xdx x dx C tgx xdx x dx xx)ln(ln csc csc sec sec csc sin sec cos 22222222C axx a dx C x a xa a x a dx C a x ax a a x dx C a xarctg a x a dx Cctgx x xdx C tgx x xdx Cx ctgxdx C x tgxdx +=-+-+=-++-=-+=++-=++=+=+-=⎰⎰⎰⎰⎰⎰⎰⎰arcsin ln 21ln 211csc ln csc sec ln sec sin ln cos ln 22222222⎰⎰⎰⎰⎰++-=-+-+--=-+++++=+-===-Cax a x a x dx x a Ca x x a a x x dx a x Ca x x a a x x dx a x I nn xdx xdx I n n nn arcsin 22ln 22)ln(221cos sin 2222222222222222222222ππax x a a a ctgx x x tgx x x x ctgx x tgx a x x ln 1)(log ln )(csc )(csc sec )(sec csc )(sec )(22='='⋅-='⋅='-='='222211)(11)(11)(arccos 11)(arcsin x arcctgx x arctgx x x x x +-='+='--='-='222212211cos 12sin u dudx x tg u u u x u u x +==+-=+=, , , 一些初等函数: 两个重要极限:三角函数公式: ·诱导公式:·和差角公式: ·和差化积公式:2sin2sin 2cos cos 2cos2cos 2cos cos 2sin 2cos 2sin sin 2cos2sin 2sin sin βαβαβαβαβαβαβαβαβαβαβαβα-+=--+=+-+=--+=+αββαβαβαβαβαβαβαβαβαβαβαctg ctg ctg ctg ctg tg tg tg tg tg ±⋅=±⋅±=±=±±=±1)(1)(sin sin cos cos )cos(sin cos cos sin )sin(μμμx xarthx x x archx x x arshx e e e e chx shx thx e e chx e e shx x xxx xx xx -+=-+±=++=+-==+=-=----11ln21)1ln(1ln(:2:2:22)双曲正切双曲余弦双曲正弦...590457182818284.2)11(lim 1sin lim 0==+=∞→→e xxx x x x·倍角公式:·半角公式:ααααααααααααααααααcos 1sin sin cos 1cos 1cos 12cos 1sin sin cos 1cos 1cos 122cos 12cos 2cos 12sin -=+=-+±=+=-=+-±=+±=-±=ctg tg·正弦定理:R CcB b A a 2sin sin sin === ·余弦定理:C ab b a c cos 2222-+=·反三角函数性质:arcctgx arctgx x x -=-=2arccos 2arcsin ππ高阶导数公式——莱布尼兹(Leibniz )公式:)()()()2()1()(0)()()(!)1()1(!2)1()(n k k n n n n nk k k n k n n uv v u k k n n n v u n n v nu v u v u C uv +++--++''-+'+==---=-∑ΛΛΛ中值定理与导数应用:拉格朗日中值定理。
同济高等数学公式大全

高等数学公式导数公式:根本积分表:ax x a a a ctgx x x tgx x x x ctgx x tgx a x x ln 1)(log ln )(csc )(csc sec )(sec csc )(sec )(22='='⋅-='⋅='-='='222211)(11)(11)(arccos 11)(arcsin x arcctgx x arctgx x x x x +-='+='--='-='三角函数的有理式积分:222212211cos 12sin u dudx x tg u u u x u u x +==+-=+=, , , 一些初等函数: 两个重要极限:⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰+±+=±+=+=+=+-=⋅+=⋅+-==+==Ca x x a x dx C shx chxdx C chx shxdx Ca a dx a Cx ctgxdx x Cx dx tgx x Cctgx xdx x dx C tgx xdx x dx xx)ln(ln csc csc sec sec csc sin sec cos 22222222C axx a dx C x a xa a x a dx C a x ax a a x dx C a xarctg a x a dx Cctgx x xdx C tgx x xdx Cx ctgxdx C x tgxdx +=-+-+=-++-=-+=++-=++=+=+-=⎰⎰⎰⎰⎰⎰⎰⎰arcsin ln 21ln 211csc ln csc sec ln sec sin ln cos ln 22222222⎰⎰⎰⎰⎰++-=-+-+--=-+++++=+-===-Cax a x a x dx x a Ca x x a a x x dx a x Ca x x a a x x dx a x I nn xdx xdx I n n nn arcsin 22ln 22)ln(221cos sin 2222222222222222222222ππx x arshx e e e e chx shx thx e e chx ee shx x xxx xx xx ++=+-==+=-=----1ln(:2:2:22)双曲正切双曲余弦双曲正弦...590457182818284.2)11(lim 1sin lim 0==+=∞→→e xx x x x x三角函数公式: ·诱导公式:·和差角公式: ·和差化积公式:·倍角公式:2sin2sin 2cos cos 2cos2cos 2cos cos 2sin2cos 2sin sin 2cos2sin2sin sin βαβαβαβαβαβαβαβαβαβαβαβα-+=--+=+-+=--+=+αββαβαβαβαβαβαβαβαβαβαβαctg ctg ctg ctg ctg tg tg tg tg tg ±⋅=±⋅±=±=±±=±1)(1)(sin sin cos cos )cos(sin cos cos sin )sin(·半角公式:ααααααααααααααααααcos 1sin sin cos 1cos 1cos 12cos 1sin sin cos 1cos 1cos 122cos 12cos 2cos 12sin -=+=-+±=+=-=+-±=+±=-±=ctg tg·正弦定理:R CcB b A a 2sin sin sin ===·余弦定理:C ab b a c cos 2222-+=·反三角函数性质:arcctgx arctgx x x -=-=2arccos 2arcsin ππ高阶导数公式——莱布尼兹〔Leibniz 〕公式:)()()()2()1()(0)()()(!)1()1(!2)1()(n k k n n n n nk k k n k n n uv v u k k n n n v u n n v nu v u v u C uv +++--++''-+'+==---=-∑中值定理与导数应用:拉格朗日中值定理。
高数_高等数学公式_同济大学 公式

高等数学公式导数公式:基本积分 表:三角函 数的有理式积分:222212211cos 12sin u dudx x tg u u u x u u x +==+-=+=, , , ax x a a a ctgx x x tgx x x x ctgx x tgx a x x ln 1)(log ln )(csc )(csc sec )(sec csc )(sec )(22='='⋅-='⋅='-='='222211)(11)(11)(arccos 11)(arcsin x arcctgx x arctgx x x x x +-='+='--='-='⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰+±+=±+=+=+=+-=⋅+=⋅+-==+==Ca x x a x dx C shx chxdx C chx shxdx Ca a dx a Cx ctgxdx x C x dx tgx x Cctgx xdx x dx C tgx xdx x dx xx)ln(ln csc csc sec sec csc sin sec cos 22222222C axx a dx C x a xa a x a dx C a x ax a a x dx C a xarctg a x a dx Cctgx x xdx C tgx x xdx Cx ctgxdx C x tgxdx +=-+-+=-++-=-+=++-=++=+=+-=⎰⎰⎰⎰⎰⎰⎰⎰arcsin ln 21ln 211csc ln csc sec ln sec sin ln cos ln 22222222⎰⎰⎰⎰⎰++-=-+-+--=-+++++=+-===-Cax a x a x dx x a Ca x x a a x x dx a x Ca x x a a x x dx a x I nn xdx xdx I n n nn arcsin 22ln 22)ln(221cos sin 2222222222222222222222ππ一些初等函数: 两个重要极限:三角函数公式: ·诱导公式:·和差角公式: ·和差化积公式:2sin2sin 2cos cos 2cos2cos 2cos cos 2sin2cos 2sin sin 2cos2sin2sin sin βαβαβαβαβαβαβαβαβαβαβαβα-+=--+=+-+=--+=+αββαβαβαβαβαβαβαβαβαβαβαctg ctg ctg ctg ctg tg tg tg tg tg ±⋅=±⋅±=±=±±=±1)(1)(sin sin cos cos )cos(sin cos cos sin )sin( xxarthx x x archx x x arshx e e e e chx shx thx e e chx e e shx x x xx xx xx -+=-+±=++=+-==+=-=----11ln21)1ln(1ln(:2:2:22)双曲正切双曲余弦双曲正弦...590457182818284.2)11(lim 1sin lim0==+=∞→→e xxxx x xxxarthx x x archx x x arshx e e e e chx shx thx e e chx e e shx x x xx xx xx -+=-+±=++=+-==+=-=----11ln21)1ln(1ln(:2:2:22)双曲正切双曲余弦双曲正弦...590457182818284.2)11(lim 1sin lim0==+=∞→→e xxxx x x·倍角公式:·半角公式:ααααααααααααααααααcos 1sin sin cos 1cos 1cos 12cos 1sin sin cos 1cos 1cos 122cos 12cos 2cos 12sin -=+=-+±=+=-=+-±=+±=-±=ctg tg·正弦定理:R CcB b A a 2sin sin sin === ·余弦定理:C ab b a c cos 2222-+=·反三角函数性质:arcctgx arctgx x x -=-=2arccos 2arcsin ππ高阶导数公式——莱布尼兹(Leibniz )公式:)()()()2()1()(0)()()(!)1()1(!2)1()(n k k n n n n nk k k n k n n uv v u k k n n n v u n n v nu v u v u C uv +++--++''-+'+==---=-∑中值定理与导数应用:拉格朗日中值定理。
高数公式(同济大学)

【2-2】 导数公式:【4-2】 基本积分表:三角函数的有理式积分:222212, 2tan , 11cos , 12sin ududx x u u u x u u x +==+-=+= 【1-1】一些初等函数: 【1-6】两个重要极限:ax x a a a x x x x x x x x x x a x x ln 1)(log ln )(cot csc )(csc tan sec )(sec csc )(cot sec )(tan 22='='⋅-='⋅='-='='222211)cot (11)(arctan 11)(arccos 11)(arcsin x x arc x x x x x x +-='+='--='-='⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰+±+=±+=+=+=+-=⋅+=⋅+-==+==Ca x x a x dx C shx chxdx C chx shxdx Ca a dx a Cx ctgxdx x Cx dx tgx x Cctgx xdx x dx C tgx xdx x dx xx)ln(ln csc csc sec sec csc sin sec cos 22222222C axx a dx C x a xa a x a dx C a x ax a a x dx C a xarctg a x a dx Cctgx x xdx C tgx x xdx Cx ctgxdx C x tgxdx +=-+-+=-++-=-+=++-=++=+=+-=⎰⎰⎰⎰⎰⎰⎰⎰arcsin ln 21ln 211csc ln csc sec ln sec sin ln cos ln 22222222⎰⎰⎰⎰⎰++-=-+-+--=-+++++=+-===-Cax a x a x dx x a Ca x x a a x x dx a x Ca x x a a x x dx a x I nn xdx xdx I n n n n arcsin 22ln 22)ln(221cos sin 2222222222222222222222ππ【1-7】 无穷小的比较:【1-9】''=αβαβlim lim,''=→αβαβlimlimx x三角函数公式:·和差角公式: ·和差化积公式:2sin2sin 2cos cos 2cos2cos 2cos cos 2sin2cos 2sin sin 2cos2sin2sin sin βαβαβαβαβαβαβαβαβαβαβαβα-+=--+=+-+=--+=+αββαβαβαβαβαβαβαβαβαβαβαcot cot 1cot cot )cot(tan tan 1tan tan )tan(sin sin cos cos )cos(sin cos cos sin )sin(±⋅=±⋅±=±=±±=± xxarthx x x archx x x arshx e e e e chx shx thx e e chx e e shx x xxx xx xx -+=-+±=++=+-==+=-=----11ln21)1ln(1ln(:2:2:22)双曲正切双曲余弦双曲正弦...590457182818284.2)11(lim 1sin lim 0==+=∞→→e xxx x x x·倍角公式:·半角公式:ααααααααααααααααααcos 1sin sin cos 1cos 1cos 12cos 1sin sin cos 1cos 1cos 122cos 12cos 2cos 12sin -=+=-+±=+=-=+-±=+±=-±=ctg tg·正弦定理:R CcB b A a 2sin sin sin === ·余弦定理:C ab b a c cos 2222-+=·反三角函数性质:x arc x x x cot 2arctan arccos 2arcsin -=-=ππ【2-3】高阶导数公式--莱布尼兹(Leibniz )公式:)()()()2()1()(0)()()(!)1()1(!2)1()(n k k n n n n nk k k n k n n uv v u k k n n n v u n n v nu v u v u C uv +++--++''-+'+==---=-∑【3-1】中值定理与导数应用:拉格朗日中值定理。
(完整版)同济高等数学公式大全

高等数学公式导数公式:基本积分表:三角函数的有理式积分:⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰+±+=±+=+=+=+-=⋅+=⋅+-==+==Ca x x a x dxCshx chxdx C chx shxdx Ca a dx a Cx ctgxdx x C x dx tgx x Cctgx xdx x dx C tgx xdx x dx xx)ln(ln csc csc sec sec csc sin sec cos 22222222C axx a dx C x a xa a x a dx C a x ax a a x dx C a xarctg a x a dx Cctgx x xdx C tgx x xdx Cx ctgxdx C x tgxdx +=-+-+=-++-=-+=++-=++=+=+-=⎰⎰⎰⎰⎰⎰⎰⎰arcsin ln 21ln 211csc ln csc sec ln sec sin ln cos ln 22222222⎰⎰⎰⎰⎰++-=-+-+--=-+++++=+-===-Cax a x a x dx x a Ca x x a a x x dx a x Ca x x a a x x dx a x I nn xdx xdx I n n nn arcsin 22ln 22)ln(221cos sin 2222222222222222222222ππax x aa a ctgx x x tgx x x x ctgx xtgx a x x ln 1)(log ln )(csc )(csc sec )(sec csc )(sec )(22='='⋅-='⋅='-='='222211)(11)(11)(arccos 11)(arcsin x arcctgx x arctgx x x x x +-='+='--='-='222212211cos 12sin u dudx x tg u u u x u u x +==+-=+=, , 一些初等函数: 两个重要极限:三角函数公式:·诱导公式:函数角A sincos tg ctg -α-sinαcosα-tgα-ctgα90°-αcosαsinαctgαtgα90°+αcosα-sinα-ctgα-tgα180°-αsinα-cosα-tgα-ctgα180°+α-sinα-cosαtgαctgα270°-α-cosα-sinαctgαtgα270°+α-cosαsinα-ctgα-tgα360°-α-sinαcosα-tgα-ctgα360°+αsinαcosαtgαctgα·和差角公式: ·和差化积公式:2sin2sin 2cos cos 2cos2cos 2cos cos 2sin 2cos 2sin sin 2cos2sin 2sin sin βαβαβαβαβαβαβαβαβαβαβαβα-+=--+=+-+=--+=+αββαβαβαβαβαβαβαβαβαβαβαctg ctg ctg ctg ctg tg tg tg tg tg ±⋅=±⋅±=±=±±=±1)(1)(sin sin cos cos )cos(sin cos cos sin )sin( xxarthx x x archx x x arshx e e e e chx shx thx e e chx e e shx x xxx xx xx -+=-+±=++=+-==+=-=----11ln21)1ln(1ln(:2:2:22)双曲正切双曲余弦双曲正弦...590457182818284.211(lim 1sin lim0==+=∞→→e xxxx x x·倍角公式:·半角公式:ααααααααααααααααααcos 1sin sin cos 1cos 1cos 12cos 1sin sin cos 1cos 1cos 122cos 12cos 2cos 12sin -=+=-+±=+=-=+-±=+±=-±=ctg tg ·正弦定理:·余弦定理:R CcB b A a 2sin sin sin ===C ab b a c cos 2222-+=·反三角函数性质:arcctgxarctgx x x -=-=2arccos 2arcsin ππ 高阶导数公式——莱布尼兹(Leibniz )公式:)()()()2()1()(0)()()(!)1()1(!2)1()(n k k n n n n nk k k n k n n uv v u k k n n n v u n n v nu v u v u C uv +++--++''-+'+==---=-∑ 中值定理与导数应用:拉格朗日中值定理。
大一同济上册高数(一些重要公式及知识点)

2222 2 n2同济上册高数总结微分公式与积分公式1 (tgx) sec 2x 2(arcsin x)1 x(ctgx) (secx) csc secx x tgx(arccos x) 1 1 x2(cscx) (a x)cscx a xln actgx ( arctgx ) 1 1 x2(log a x)1 x ln a( arcctgx )1 1 x2tgxdxln cos x Cdxcos 2xsec 2xdxtgx Cctgxdx ln sin x C dx csc xdxctgx Csecxdxcscxdx ln secx tgx Cln csc x ctgx C sin xsecx tgxdxsecx C dx1 arctg x C ax a a cscxxctgxdxaxcscx C dx 1 x a22ln C a dxCln ax a dxa2x 22a x a 1ln a xC2a a xshxdx chxdx chx C shx C dxa2x2x arcsin Cadx ln( xxax2a 2) C2I sin n0 xdx 2cos nxdxn 1n 2 nx 2a 2dx x x 2a22 x a ln( x 2a2x 2a 2) C x2 a 2 dx x2a 22 x ln x2 a2x 2a2Cx a2x 2 dxa2 x22arcsinC2a三角函数的有理式积分:2 2Isin x2u2,cos x1 u 22,u tgx,dx 2du2 1 u 1 u 2 1 u两个重要极限:公式1 lim sin x 1公式2 lim (1 x)1 / x ex 0 x x 0有关三角函数的常用公式和差角公式:和差化积公式:sin( cos( tg() sin) costg)coscostgcossinsinsinsinsinsinsin2 sin22 cos2cos2sin2ctg (1 tgctg)ctgtgctg 1ctgcoscoscoscos2cos22sin2cos2sin2三倍角公式: 半角公式:sin(3 α)=3sin-4αsin^3( α) sin( α/2)±=√(1- cosα)/2cos(3 α)=4cos^3( -α3c)os αCos( α/2)=±√(1+cos α)/2降幂公式: 万能公式:sin^2( α)=-(c1os(2 α))/2=versin(2 α)/2 sin α=2tan( α/2)/[1+tan^2( α/2)] cos^2( α)=(1+cos(2 α))/2=covers(2 αc)o/2s α=[1-tan^2( α/2)]/[1+tan^2( α/2)] tan^2( α)=(-1c os(2 α))/(1+cos(2 α)) tan α=2tan( α/2)-/t[a1n^2( α/2)]推导公式tan α+cot α=2/sin2 αt an α-cot α=-2cot2 α1+cos2 α=2cos^2 α1-cos2 α=2sin^2 α1+sin α=(sin α/2+cos α/2)^2正弦定理: asin Absin Bc2 Rsin C余弦定理:c2 a 2 b 2 2ab cosC反三角函数性质:arcsin x arccos x2 arctgx arcctgx2n ( 特别要注意这两个恒等式,证明的话,只需做出左边的函数的导数为 0 即可)高阶导数公式——莱布尼兹( Leibniz )公式:(uv)( n)nC k u (n k 0k ) v( k)u ( n)vnu( n 1)vn(n 2!1) u ( n 2) vn(n 1)n k k!1) u( nk )v( k )uv(n)中值定理与导数应用:拉格朗日中值定理: f (b)f ( a) f ( )( b a)柯西中值定理: f (b) f (a)f ( ) F (b) F (a)F ( )当F( x) x 时,柯西中值定理就是 拉格朗日中值定理。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
导数公式:(tgxY = sec 2 x (ctgx\ = -cscr x (secx)/ = secx・tgx (cscx)' = -cscx-ctgx (a x y = a x \na (log “)‘ = -^一 xina(arcsinx)' = ‘ 「,VI-x 2(arccosL¥)'=——.Vl-x 2(^W=T __基本积分表^ 三角函数的有理式积分:j tgxdx = - ln|cosx| + C J ctgxdx = In |s in x| + C jsec xdx = ln|sec x + tg^ + C J c scxdx = ln|cscx- ctgx\ + C \^-^- = -arctg-+C j 。
+JT a a JJ f -a『仝亠4+cJcr -x* 2a a-x f . JA =arcsin^ + C J 7777 G f —— = [sec 2xdx = tgx + C Jcos* x 」f = fcsc 2 xdx = -ctgx+ C J sin ~ x 」 J secx • tgxdx = secx + CJcscx ・c7gM: = -cscx + C [a x dx=— + C J In a ^shxdx = chx + C J chxdx = shx + C jj :" 2 = b(x +±(r ) + CZ/?-2n_2j y/x 2 +a 2dx = — ylx 2 +a 2 + 牛ln(x + y/x 2 +a 2) + C2 2f ^jx 2 -a 2dx = - Jx 2 -a 2 -— J 2 2 j >la 2 -x 2clx = ?-Ju 2 -x 2+ 牛arcsin — + C高等数学公式x-a x + a In *2 "2 I n = J sin" xdx =J cos" xdx =111 X + J + C2・ 2u1一"2sin x = ----- , cosx 二 ----- ?1 + w 21 + w 2双曲正^.thx = — =e ~e chx e x +e r arshx = ln(x + Jx' +1)archx = ±ln(x + y/x 2 一 1) arthx = —In2三角函数公式: •诱导公式:、^数 角卜、sin costgctg ・a・ sina cosa-tga-ctga90°-a cosa sina ctga tga 90°+a cosa ・ sina -ctga -tga 180°-a sina ・ cosa -tga -ctga 180°+a ・ sina ・ cosa tga ctga 270°-a -cosa ・ sina ctga tga 270°+a -cosa sina -ctga-tga 360°-a -sina cosa・tga -ctga 360°+a sina cosa tgactga•倍角公式:dx =2du 1 +w 2一些初等函数: 双曲正弦:曲¥ =X . -x双曲余弦乂加=__—2两个重要极限:v sinx ‘lini ------ = 1lim (1 + 丄)x =e = 2.718281828459045... x X•和差角公式:sin(a±0) = sinacos0 土 cosasin 0 cos((z±/7) = cosacos/7 + sin<zsin 0 fg(a±0) =tga 土 tg 。
ctg©±0) =迴込1ctgQ 土cfga•和差化积公式:q 小・& + 0 a_卩sincr + sin B = 2sin ----- cos ---------2 2 sin cr-sin 0 = 2cos a+ ^sin —―— 2 2 c c a +0 a_ 卩cosa + cosp = 2cos — cos —^― n c・a +卩.a_卩COSQ-COS0 = 2 sin — sinsin 2a = 2sinacosacos2a = 2cos‘ a -l = l-2sin‘ a = cos' a — sin' a cga =恥_12ctgal —fgy中值定理与导数应用:拉格朗日中值定理广(§)(b-a) 柯西中值定理丄也二LW2 = 口£!F(b)-F(“) F 《) 当F(x) = x 时,柯西中值定理就融格朗日中值定理c曲率:弧微分公式:ds = yji + y^dx.其中y r = tgada:从M 点到M'点,切线斜率的倾角变化量;As : MM 弧长。
直线:K = 0;半径为a 的圆:K = -. a定积分的近似计算:M 点的曲率:K 》T (siii3a = 3sina-4sin 3 a cos3a = 4cos~ a-3cosa•半角公式:.a . l-cosa sin — = ±J ----------2 \ 2 a il-cosa l-cosa sin a '2 Tl+cosa sin a 1 + cosa a , 1 + cosacos —= ±~ ------------2 \ 2 a Jl + cosa 1 + cosa sin a ctg — = ±、i ------- = ----------- = -----------2 V 1-cosa sin a 1-cosa•正弦定理:佥二总二佥皿•余弦定理:c 2 =a 2 +b 2 -labcQsC•反三角函数性质 :arcsinx = --------- arc COST2arctgx = ---- arcctgx髙阶导数公式一莱布尼兹(Leibniz)公式:八+ "计+冒严‘ +…+叱“上5宀宀…+沁k\平均曲率刁=矩形法:j f(x)心^(y 0 +)[ + …+ 儿t )a梯形法:j/(x) 2 =产[g (>'o + 儿)+ X + …+ 儿T ]b卜_抛物线法:]7 (x) 2[(儿+儿)+ 2(力+儿+…+儿_2)+ 4( X + y3 +…+儿T)1a定积分应用相关公式:功:W = Fs 水压力:F = p' A引力:-哼M 为引力系数 函数的平均值$ =厂一]f (x)dx 均方根(Cj 厂⑴力空间解析几何和向量代数:空间 2 点的距离:〃 =|M|M? | = J (£ _ 為)2 +(儿 _ 儿)2 +(% _ z J2 向量在轴上的投影PrZ 刁彳胡・COS0,0是丽与“轴的夹角。
Pr j u + 臣2 ) = Pr ja x + Pr ja 2 a-b=\a\- b cos0 = a x b x +a v b x +a.b :i 是一个数量也+吨+1也a, ,|c| = p|- b sin^.例:线速度:v = wxr. b z向量的混合积[abc ] = (axb) c = b x b Y b : = cixb •冋cosa,a 为锐角时,5 Cy 仝代表平行六面体的体积两向量之间的夹角eos^=, ------------------------ . -------------------b :+a ;+°;』.:+b ;+b ;• •-1 J c =axb = a x a xbx *平面的方程:1、 点法式:A(x-x o ) + B(y-y o ) + C(z-z o ) = O,其中n = {A,B,C},M 0(x 0,^0,z 0)2、 一般方程:Ax+By+Cz + D = O3、 截距世方程^ + ^- + - = 1a b c平面外任意一点到该畅的距离:〃」込「也+込岀y]A 2+B 2+C 2x = x ()+ mt 空间直线的方程 = == 其中“伽”〃}渗数方程』),=儿+加m n pZ = Z Q + pt二次曲面:1、 椭球面:二r+ — + d = la b" c ・ 2、 抛物面:二+ 2i = z,(/“同号)2p 2q3、 双曲面: 单叶双曲面4+4-^=iX L 双叶双曲面4-4+^=i (马鞍面)tr lr l多元函数微分法及应用全微分:边=更心+込W血=色心+竺/y +竺血dx dy ' dx dy - oz全微分的近似计算:Az 2 = /v (x,y)Ar + f y (x, >-)Ay多元复合函数的求导法dz dz du dz dv, ,dt du dt dv dt当i/ = u(x, y)9 v = v(x,刃时, du dudv dvdu =——ax + ——dydv = —dx + — dydx dy •dx dy 「隐函数的求导公式: 隐函妳3) = 0,字卡,瞬甘(_?)+?(_?)•牛dx F 、 dx^ ox F 、 dy F 、 ax 隐函数F(x,y,z) = 0,—,—= -—dx F : dy F :z = /["(/) W)]Z = f[u(x,y)y v(x 9y)] dz, dz du dz, dv ,,=—.” + — •—dx du dx dv ox微分法在几何上的应用:X =(p {t )空间曲线y = 0(/)在点M (_¥()?%)处的切线方程〉, , .“、 0(G ) 0仏)少仏)Z = “(/) 在点M 处的法平面方程:0仏)(x -儿)+ 0(G (y - y 。
) +少仏)(z -乙°) = 0G*3、过此点的法线方程,"一儿Fx (%o 9 5) Fy (x 0,5)耳(“'儿‘乙 o )方向导数与梯度:函数z = /(X, y )在一点p (x, y )沿任一方向/的方向导数为徨=—cos (p + — sin (p dl ox 6 其中0为X 轴到方向/的转角。
函数z = f (x.y )在一点/?(儿y )的梯度:gm 萌(俎y ) = ?亍+色了 ox dy 它与方向导数的关系是—= grad/(x,y ) e 9其中e=cos<p i +sin^-J,为/方向上的 dl 单位向量。
・・・生是gradf (x, y )在/上的投影。
dl多元函数的极值及其求法:设儿)=人(入,儿)=0,令:人(不),凡)=人几(不)」。