材力题解第11章
材料力学习题解答[第五章]
![材料力学习题解答[第五章]](https://img.taocdn.com/s3/m/5c357285a0116c175f0e48fd.png)
5-1构件受力如图5-26所示。
试:(1)确定危险点的位置;(2)用单元体表示危险点的应力状态(即用纵横截面截取危险点的单元体,并画出应力)。
题5-1图解:a) 1) 危险点的位置:每点受力情况相同,均为危险点;2)用单元体表示的危险点的应力状态见下图。
b) 1) 危险点的位置:外力扭矩3T与2T作用面之间的轴段上表面各点;2)应力状态见下图。
c) 1) 危险点:A点,即杆件最左端截面上最上面或最下面的点;2)应力状态见下图。
d) 1)危险点:杆件表面上各点;2)应力状态见下图。
5-2试写出图5-27所示单元体主应力σ1、σ2和σ3的值,并指出属于哪一种应力状态(应力单位为MPa)。
10题5-2图解:a)1σ=50 MPa,2σ=3σ=0,属于单向应力状态AAT (a)(c)(d)364dFlπτ=a) b) c) d)a) b) c)b) 1σ=40 MPa, 2σ=0, 3σ=-30 MPa ,属于二向应力状态 c) 1σ=20 MPa, 2σ=10 MPa, 3σ=-30 MPa ,属于三向应力状态5-3已知一点的应力状态如图5-28所示(应力单位为MPa )。
试用解析法求指定斜截面上的正应力和切应力。
题5-3图解:a) 取水平轴为x 轴,则根据正负号规定可知: x σ=50MPa , y σ=30MPa , x τ=0, α=-30 带入式(5-3),(5-4)得 ατασσσσσα2sin 2cos 22x yx yx --++==45MPaατασστα2cos 2sin 2x yx +-== -8.66MPab) 取水平轴为x 轴,根据正负号规定:x σ= -40MPa , y σ=0 , x τ=20 MPa , α=120带入公式,得:240sin 20240cos 20402040---++-=ασ=7.32MPa x τ= 240cos 20240sin 2040+--=7.32MPac) 取水平轴为x 轴,则x σ= -10MPa , y σ=40MPa , x τ= -30MPa,α=30代入公式得:60sin )30(60cos 2401024010----++-=ασ=28.48MPa x τ= 60cos 3060sin 24010---=-36.65MPa5-4已知一点的应力状态如图5-29所示(应力状态为MPa )。
同学们自己总结的11材料力学考研重点

同学们自己总结的11材料力学考研重点我总结一下第四版的材料力学的重点,希望对大家能有一个导向的作用,注意这是第四版的,用第五版教材的每章都差不多,也有一定的借鉴价值。
第一章看第一章第三节简称1-3(以后都这样表示,单独列出的数字表示的章节都要看),1-4(即第一章第四节要仔细看),1-5。
第二章看2-1,2-2,例题2-1,2-3,公式的推导过程,就是关于积分的那部分不用看,只记住最后的公式就行了,例题2-2,例题2-3(这个题和专业课笔记上的那个很相似,是应该记住的题型),2-4,例题2-5关于变形的协调关系是重点,2-5,2-6这一节容易出选择,例题2-7,2-7,例题2-8,2-9,2-10.2-8不看。
思考题不做,以后的思考题如果没有特殊情况都不做。
习题2-21和2-22只写步骤,不查表。
其他习题第一遍复习时全做。
第三章看3-1,3-2,3-3例题3-1,3-4介绍的几何方面,物理方面,静力学方面是做材力题的三大步骤,要有这个概念,这一节开始接触应力状态,要看会那个框框上扎个箭头是什么意思,而且自己会画,以后到第七章的时候会大量用到。
看例题3-2,例题3-3不看,例题3-4看。
3-5,例题3-5,例题3-6,3-6,例题3-7记住里面的公式。
3-7记住那个切应力变化的示意图,图3-16,其他不看,例题3-18不做。
3-8不看。
思考题只看3-9,习题3-21到3-26不做。
第四章看4-1,例题4-1,4-2,例题4-2到例题4-9全看,例题4-10不看,例题4-11例题4-12看,4-3,例题4-13是10年真题的基础图形,看,例题4-14这个图形也考过,看,4-4,例题4-15到例题4-19,4-5,记住那四个弯曲最大切应力的公式就好,例题4-20和例题4-21看一下切应力流的变化,这点09真题考过,例题4-22看,4-6。
思考题看4-13,4-14,4-17,4-18。
习题4-4全做,其他那些画图的每题可以自己选择性的删除四分之一左右,只要练会了就行,习题4-9选做,4-10也选做吧,但是这个要记住结果,习题4-16,4-17,4-18,4-20,4-34,4-35,4-43,都不做,其余遇到选择工字钢号码的也不查表,对照答案得到最后数据,不查表,其他全做。
清华大学土木工程系材力第7章答案

第7章强度失效分析与设计准则7-1对于建立材料在一般应力状态下的失效判据与设计准则,试选择如下合适的论述。
(A) 逐一进行试验,确定极限应力; (B) 无需进行试验,只需关于失效原因的假说; (C) 需要进行某些试验,无需关于失效原因的假说; (D) 假设失效的共同原因,根据简单试验结果。
正确答案是 D 。
7 — 2对于图示的应力状态(;「x ,y )若为脆性材料,试分析失 效可能发生在: (A) 平行于x 轴的平面; (B) 平行于z 轴的平面; (C) 平行于Oyz 坐标面的平面;(D) 平行于Oxy 坐标面的平面。
正确答案是 C 。
7— 3对于图示的应力状态,若:「y -;「x ,且为韧性材料,试根据 最大切应力准则,失效可能发生在: (A) 平行于y 轴、其法线与x 轴的夹角为45°的平面,或平行 于x 轴、其法线与y 轴的夹角为45°的平面内; (B) 仅为平行于y 轴、法线与z 轴的夹角为45°的平面; (C) 仅为平行于z 轴、其法线与x 轴的夹角为45°的平面;(D) 仅为平行于x 轴、其法线与y 轴的夹角为45 °的平面。
正确答案是 A 。
7— 4铸铁处于图示应力状态下,试分析最容易失效的是: (A) 仅图c ;(B) 图a 和图b ; (C) 图a 、b 和图c ; (D )图 a 、b 、c 和图 do习题7-4、7-5图正确答案是 C o7—5低碳钢处于图示应力状态下,若根据最大切应力准则,试分析最容易失效的是: (A) 仅图d ; (B) 仅图c ;(C) 图c 和图d ; (D )图a 、b 和图do 正确答案是 B o解:7— 6韧性材料所处应力状态如图所示, 根据最大切应力准则, (A ) W ,. =2;「/3 ;(B ) ;_-::: .,. =4;「/ 3 ;(C ) -■;(D ) 匚:..,;「=2 /3 o正确答案是 A o解:左图:;二3 h ;:': .2 . (1)_c门-:二 二-(Y) _:・「32 2所以图c 最危险右图:厂-;「,;「- ., C -二;「「3 . ( 2)试分析二者同时失效的条件是: 习题7-6图(3)(由(1),此式舍去) 由(1)、(2), CT +T =V CT 2+4^ 3二 ,显然匚-. 2选:Ao注:原题供选择答案(D )矛盾,现改为:(D );「::: .,;「-2,3 7 — 7承受内压的两端封闭的圆柱状薄壁容器由韧性材料制成。
材料力学性能课后习题(1)

材料⼒学性能课后习题(1)材料⼒学性能课后习题第⼀章1.解释下列名词①滞弹性:⾦属材料在弹性范围内快速加载或卸载后,随时间延长产⽣附加弹性应变的现象称为滞弹性,也就是应变落后于应⼒的现象。
②弹性⽐功:⾦属材料吸收弹性变形功的能⼒,⼀般⽤⾦属开始塑性变形前单位体积吸收的最⼤弹性变形功表⽰。
③循环韧性:⾦属材料在交变载荷下吸收不可逆变形功的能⼒称为循环韧性。
④包申格效应:⾦属材料经过预先加载产⽣少量塑性变形,卸载后再同向加载,规定残余伸长应⼒增加;反向加载,规定残余伸长应⼒降低的现象。
⑤塑性:⾦属材料断裂前发⽣不可逆永久(塑性)变形的能⼒。
⑥韧性:指⾦属材料断裂前吸收塑性变形功和断裂功的能⼒。
⑦加⼯硬化:⾦属材料在再结晶温度以下塑性变形时,由于晶粒发⽣滑移,出现位错的缠结,使晶粒拉长、破碎和纤维化,使⾦属的强度和硬度升⾼,塑性和韧性降低的现象。
⑧解理断裂:解理断裂是在正应⼒达到⼀定的数值后沿⼀定的晶体学平⾯产⽣的晶体学断裂。
2.解释下列⼒学性能指标的意义(1)E( 弹性模量);(2)ζp(规定⾮⽐例伸长应⼒)、ζe(弹性极限)、ζs(屈服强度)、ζ0.2(规定残余伸长率为0.2%的应⼒);(3)ζb(抗拉强度);(4)n(加⼯硬化指数);(5)δ(断后伸长率)、ψ(断⾯收缩率)3.⾦属的弹性模量取决于什么?为什么说他是⼀个对结构不敏感的⼒学性能?取决于⾦属原⼦本性和晶格类型。
因为合⾦化、热处理、冷塑性变形对弹性模量的影响较⼩。
4.常⽤的标准试样有5倍和10倍,其延伸率分别⽤δ5和δ10表⽰,说明为什么δ5>δ10。
答:对于韧性⾦属材料,它的塑性变形量⼤于均匀塑性变形量,所以对于它的式样的⽐例,尺⼨越短,它的断后伸长率越⼤。
5.某汽车弹簧,在未装满时已变形到最⼤位置,卸载后可完全恢复到原来状态;另⼀汽车弹簧,使⽤⼀段时间后,发现弹簧⼸形越来越⼩,即产⽣了塑性变形,⽽且塑性变形量越来越⼤。
试分析这两种故障的本质及改变措施。
材力第7章习题解

∴ = 0,
MPa,
MPa
MPa
2. = 248 MPa;
∴ = 0,
MPa,
MPa
MPa 3. = 290 MPa。
∴ = 0,
MPa,
MPa
MPa
7-13 铝合金制成的零件上某一点处的平面应力状态如图所示,其屈服应力 = 280MPa。试按最大切应 力准则确定。
1.屈服时的 的代数值; 2.安全因数为 1.2 时的 值。 1.解:
1.(a)
(b)
,
2.(a)
(b) 用形状改变比能,相当应力相同。
7-17 薄壁圆柱形锅炉容器的平均直径为 1250mm,最大内压强为 23 个大气压(1 个大气压 0.1MPa), 在高温下工作时材料的屈服应力 = 182.5MPa。若规定安全因数为 1.8,试按最大切应力准则设计容器的 壁厚。
解:
,
,
习题 7-17 解图
壁厚:
mm
7-18 平均直径 D = 1.8m、壁厚 = 14mm 的圆柱形容器,承受内压作用。若已知容器为钢制,其屈服应力 = 400MPa,要求安全因数 ns = 6.0。试分别应用以下准则确定此容器所能承受的最大内压力。
1.用最大切应力准则; 2.用形状改变比能准则。
①设:
习题 7-13 图
=0
得
= 230 MPa
②设: =0
得
MPa
∴
= 230 MPa 或
MPa
2.解:
, = 168 MPa
或
,
MPa
∴
= 168 MPa 或
MPa
7-16 两种应力状态分别如图 a 和 b 所示,若二者的 、 数值分别相等,且
完整版材料力学性能课后习题答案整理

材料力学性能课后习题答案第一章单向静拉伸力学性能1、解释下列名词。
1弹性比功:金属材料吸收弹性变形功的能力,一般用金属开始塑性变形前单位体积吸收的最大弹性变形功表示。
2.滞弹性:金属材料在弹性范围内快速加载或卸载后,随时间延长产生附加弹性应变的现象称为滞弹性,也就是应变落后于应力的现象。
3.循环韧性:金属材料在交变载荷下吸收不可逆变形功的能力称为循环韧性。
4.包申格效应:金属材料经过预先加载产生少量塑性变形,卸载后再同向加载,规定残余伸长应力增加;反向加载,规定残余伸长应力降低的现象。
5.解理刻面:这种大致以晶粒大小为单位的解理面称为解理刻面。
6.塑性:金属材料断裂前发生不可逆永久(塑性)变形的能力。
脆性:指金属材料受力时没有发生塑性变形而直接断裂的能力韧性:指金属材料断裂前吸收塑性变形功和断裂功的能力。
7.解理台阶:当解理裂纹与螺型位错相遇时,便形成一个高度为b的台阶。
8.河流花样:解理台阶沿裂纹前端滑动而相互汇合,同号台阶相互汇合长大,当汇合台阶高度足够大时,便成为河流花样。
是解理台阶的一种标志。
9.解理面:是金属材料在一定条件下,当外加正应力达到一定数值后,以极快速率沿一定晶体学平面产生的穿晶断裂,因与大理石断裂类似,故称此种晶体学平面为解理面。
10.穿晶断裂:穿晶断裂的裂纹穿过晶内,可以是韧性断裂,也可以是脆性断裂。
沿晶断裂:裂纹沿晶界扩展,多数是脆性断裂。
11.韧脆转变:具有一定韧性的金属材料当低于某一温度点时,冲击吸收功明显下降,断裂方式由原来的韧性断裂变为脆性断裂,这种现象称为韧脆转变2、说明下列力学性能指标的意义。
答:E 弹性模量 G 切变模量 r σ规定残余伸长应力 2.0σ屈服强度 gt δ金属材料拉伸时最大应力下的总伸长率 n 应变硬化指数 P15 3、 金属的弹性模量主要取决于什么因素?为什么说它是一个对组织不敏感的力学性能指标?答:主要决定于原子本性和晶格类型。
合金化、热处理、冷塑性变形等能够改变金属材料的组织形态和晶粒大小,但是不改变金属原子的本性和晶格类型。
材力习题册参考答案1

材力习题册参考答案(1第一章绪论一、选择题1.根据均匀性假设,可认为构件的在各处相同。
A.应力B.应变 C.材料的弹性系数D.位移2.构件的强度是指,刚度是指,稳定性是指。
A.在外力作用下构件抵抗变形的能力 B.在外力作用下构件保持原有平衡状态的能力 C.在外力作用下构件抵抗强度破坏的能力3.单元体变形后的形状如下图虚线所示,则A点剪应变依次为图(a) ,图(b),图(c) 。
A.0 B.2r C.r D. 4.下列结论中( C )是正确的。
A.内力是应力的代数和; B.应力是内力的平均值;C.应力是内力的集度; D.内力必大于应力;5. 两根截面面积相等但截面形状和材料不同的拉杆受同样大小的轴向拉力,它们的应力是否相等。
A.不相等; B.相等; C.不能确定;6.为把变形固体抽象为力学模型,材料力学课程对变形固体作出一些假设,其中均匀性假设是指。
A. 认为组成固体的物质不留空隙地充满了固体的体积;B. 认为沿任何方向固体的力学性能都是相同的;C. 认为在固体内到处都有相同的力学性能;D. 认为固体内到处的应力都是相同的。
二、填空题1.材料力学对变形固体的基本假设是连续性假设,均匀性假设,各向同性假设。
2.材料力学的任务是满足强度,刚度,稳定性的要求下,为设计经济安全的构件- 1 -提供必要的理论基础和计算方法。
3.外力按其作用的方式可以分为表面力和体积力,按载荷随时间的变化情况可以分为静载荷和动载荷。
4.度量一点处变形程度的两个基本量是应变ε和切应变γ。
三、判断题1.因为构件是变形固体,在研究构件平衡时,应按变形后的尺寸进行计算。
2.外力就是构件所承受的载荷。
3.用截面法求内力时,可以保留截开后构件的任一部分进行平衡计算。
4.应力是横截面上的平均内力。
5.杆件的基本变形只是拉(压)、剪、扭和弯四种,如果还有另一种变形,必定是这四种变形的某种组合。
6.材料力学只限于研究等截面杆。
四、计算题1.图示三角形薄板因受外力作用而变形,角点B垂直向上的位移为,但AB和BC仍保持为直线。
材力第十章

向力 Fz = 10 kN;在齿轮 2 上,作用有切向力 F'y = 5 kN、径向力 F'z = 1.82 kN。若许用应力 [ ]=100 MPa,试根据第四强度理论确定轴径。
题 10-13 图 解:将各力向该轴轴线简化,得其受力图如图 10-13a 所示。内力图( M z , M y 和 T )分 别示如图 b,c 和 d。
其相当应力为 (b)
比较式(a)和(b)可知,该轴真正的危险点是截面 A-A 上水平直径的左端点,其相当应力如 式(b)所示。 顺便指出,本题计算相当应力的另一种方法是先求 ( ) 与 τ ( ) ,再求 σ r3 ( ) 。这里的
5
从截面 A-A 上左边水平半径量起,以顺钟向为正。将 σ r3 ( ) 对 求导,寻找其极值位置,找 到的极值位置是 0 ,由此确定的危险点同上述真正的危险点,相当应力当然也同式(b)。
5.19 102 m 51.9 mm
10-16
图示钢质拐轴,承受铅垂载荷 F1 与水平载荷 F2 作用。已知轴 AB 的直径为
d,轴与拐臂的长度分别为 l 与 a,许用应力为[],试按第四强度理论建立轴 AB 的强度条件。
题 10-16 图 解:将载荷 F1 与 F2 平移到截面 B 的形心,得轴 AB 的受力如图 b 所示。 显然,固定端处的横截面 A 为危险截面,该截面的轴力、扭矩与弯矩分别为
试求偏心距 a 的许用值。
题 10-8 图 解:1.确定内力
FN 250kN,M y Fa 2.50 105 a (N m) M z 0.050F 0.050 250103 N m 1.25104 N m
2.计算 Iz,Iy 及 A
0.100 0.1203 0.080 0.0803 4 )m 1.099105 m 4 12 12 3 0.020 0.100 0.080 0.0203 4 Iy ( 2 )m 3.39 106 m 4 12 12 A (0.100 0.020 2 0.080 0.020)m2 5.60 103 m 2 Iz (
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
11-2. 桥式起重机上悬挂一重量G=50kN 的重物,以匀速度v=1m/s 向前移动(在
图中移动的方向垂直于纸面)。
若起重机突然停止移动,重物将象单摆一样向前摆动。
若梁为No14工字钢,吊索截面面积A=5×10-4m 2,试问当惯性力为最大值时,梁及吊索内的最大应力增加多少
"
解:(1)起重机突然停止时,吊索以初速v 作圆周运动,此时吊索轴力增量是
kN R
v g G ma N n D 28.12
=⋅==Δ
(2)吊索的应力增量是
MPa A
N σD
d 56.2==
ΔΔ %
(3)梁内最大弯矩的增量是
l N M D ΔΔ4
1
=
(4)查表得梁的抗弯截面系数
3610102m W -⨯=
(5)梁内最大正应力的增量是
MPa W
M
σd 68.15'==
ΔΔ 11-4. 轴上装一钢质圆盘,盘上有一圆孔。
若轴与盘
=40 1/s 的匀角速度转动,
试求轴内因这一圆孔引起的最大正应力。
G
4m
400 400 ^
400
φ300
30
,
解:(1)假设挖空圆盘和圆孔部分的质量分别是M 和m ,它们的质心距轴线的
距离分别为R 的r ,则有
mr MR =
(2)挖空圆盘的惯性力是
kN ωr g
V
γωmr ωMR Ma F n n 64.10222=⋅=
=== 上式中钢的密度取
3/8.76m kN γ=
(3)轴内的最大正应力增量是
MPa W
l
F W M σn
d 5.1241max max ===Δ
…
11-5. 在直径为100mm 的轴上装有转动惯量I=m s2的飞轮,轴的转速为
300r/min 。
制动器开始作用后,在20转内将飞轮刹住,试求轴内最大剪应力。
设在制动器作用前,轴已与驱动装置脱开,且轴承的磨擦力矩可以不计。
解:(1)飞轮作匀减速转动
%
2
2
020/25.120 /42.3130
s rad φωωεωs rad π
n ωt t -=-=∴===
(2)惯性力距是
kNm εI m d 96.1=-=
(3)轴在飞轮和制动器之间发生扭转变形
MPa d
πT
W T τm T t d
10163
max ===∴= 飞轮
11-6. 钢轴AB 的直径为80mm ,轴上有一直径为80mm 钢质圆杆CD ,CD 垂直于
AB 。
若AB 以匀角速度=40rad/s 转动。
材料的许用应力[]=70MPa ,密度为cm3。
试校核AB 轴及CD 杆的强度。
%
解:(1)分析CD 的受力,不计重力的影响:
则有
]
[25.23.11)()()(6
.00
2
2
σMPa A
N σkN xdx g
ωA γdx x q N x ωg
A γx q d
d l d d d ==∴====
⎰⎰ (2)计算AB 轴的弯曲强度
][4.67832
141'3
3max σMPa D πl N D πl
N W M σd d d ==== —
(3)结论:AB 和CD 的强度足够。
11-7. AD 轴以匀角速度转动。
在轴的纵向对称面内,于轴线的两侧有两个重为
W 的偏心载荷,如图所示。
试求轴内的最大弯矩。
.
A
B
C
D
600
600
600
ω
A
B
C
D
b
b
l /3
*
l /3l /3
W
W C D N d x '
q (x)
—
解:(1)计算惯性力
2ωb g
W
ma F n d ⋅=
= (2)分析AD 受力,画弯矩图
.
约束力
3
3 33W
F R W F R d D d A -=
+= (3)最大弯矩
)31(39)3(2
max g
ωb Wl l W F M d +=+=
11-9. 重量为Q 的重物自高度H 下落冲击于梁上的C 点,设书籍梁的EI 及抗弯
截面系数W ,试求梁内最大正应力及梁的跨度中点的挠度。
)
解:(1)重物静止作用在C 处时
A —
(F +3W)l /9
d F -W
(F d -3W)l /9
(+)
(-)
~
(+)
查表得静挠度为
)( 2434])3()32([63233
222↓=--⋅⋅=EI
Ql l l l EIl l l Q st Δ
最大静应力
W
Ql
W M σst 92max max =
=
*
查表得梁中点的静挠度
)( 12962348)943(33
222
)
↓=-⋅=EI
Ql EI l l l Q l
st Δ
(2)自由落体的动荷系数是
3
224311211Ql
EIH
H K st d ++=+
+=Δ (3)求最大动应力和跨度中点的动挠度
)224311(129623)224311(923
3
2
)
2
)
3
max max Ql
EIH
EI Ql K Ql
EIH
W Ql σK σl st d l
d st d d ++=
=++==Δ
Δ
11-10. AB 杆的下端固定,长为l 。
在C 点受沿水平运动的物体的冲击,物体的重
量为Q ,与杆件接触时的速度为v 。
设杆件的E 、I 、和W 皆为已知量,试求AB 杆同最大应力。
&
解:(1)求载荷Q 作用在C 处时,
)
Qa
C 点的静挠度是
EI
Qa st 33
=Δ 最大静应力是
|
W
Qa
W M σst ==
max max
(3)冲击的动荷系数
3
2
23gQa
EIv g v K st d ==Δ (4)最大动应力
2
2max max 3gaW
Q
EIv σK σst d d == 11-15. 直径d=60mm 长度l =2m 的圆截面杆左端固定,右端有一直径D=的鼓轮。
轮上绕以绳,绳的端点A 悬挂吊盘。
绳长l 1=10m ,横截面面积A=120mm 2,E=200GPa 。
轴的剪切弹性模量G=80GPa 。
重量为800N 的物体自h=200mm 处落于吊盘上,求轴内最大剪应力和绳内最大拉应力。
/
解:(1)重物静止作用在吊盘时,圆轴发生扭转变形,绳索发生拉伸变形;
静位移
m
D GI l
QD
EA Ql D GI Tl EA Nl p p st 444111062.91029.61033.3222---⨯=⨯+⨯=⋅⋅+=⋅+=Δ
圆轴和绳索内的最大静应力为
|
MPa A
N σMPa
W QD W T
τst
st t t st st 67.677.32==
===
(2)自由落体的动荷系数
4.21211=+
+=st
d h
K Δ (3)圆轴和绳索内的最大动应力为
MPa
σK σMPa τK τst d d st d d 1437.80====
11-17. 10号工字梁的C 端固定,A 端铰支于空心钢管AB 上。
管的内径和外径分
别为30mm 和40mm 。
钢管的B 端亦为铰支座。
梁及钢管同为Q235钢,1=100,E=200GPa 。
当重为300N 的重物Q 落于梁的A 端时,试校核AB 杆的稳定性,设稳定安全系数规定为。
·
解:(1)重物静止作用在A 处时 ;
A
B
C
Q A B
C
(
3m
2m
10mm
Q
属一次静不定问题,解除约束A
变形谐调条件
AB A l f Δ=
列补充方程求出约束反力
N
R EA
Rl EI l R Q AB
AC
7.2993)(3
=∴-
=--
(2)计算静位移
m EA
Rl AB
st 61045.5-⨯==Δ
(3)自由落体的动荷系数
6.61211=++=st
d h
K Δ
(4)AB 杆上的动压力
kN K R P d d 46.18=⋅=
(5)AB 杆的稳定计算
计算AB 杆的柔度
12
2
2244160)
(4)(4
1
)(641
λd D l μd D πd D πl μi
l μλAB AB
AB
=-=
--==
AB 是大柔度杆,临界压力是
kN A λ
E
πA σP cr cr 39.4222=⋅=⋅=
稳定系数
st d
cr
n P P n 30.2==
压杆不稳定。