典型环节与及其阶跃响应
典型环节的模拟研究及阶跃响应分析

典型环节的模拟研究及阶跃响应分析实验二典型环节的模拟研究及阶跃响应分析一实验目的1.掌握各典型环节(比例、积分、比例积分、比例微分、惯性环节、比例积分微分环节等)模拟电路的构成方法,培养实验技能。
2.测试并熟悉各典型环节(比例、积分、比例积分、比例微分、惯性环节、比例积分微分环节等)的阶跃响应曲线。
3.了解参数变化对典型环节(比例、积分、比例积分、比例微分、惯性环节、比例积分微分环节等)阶跃响应的影响。
二实验任务与要求1.观测各种典型环节的阶跃响应曲线。
2.观测参数变化对典型环节阶跃响应的影响。
三实验原理本实验是利用运算放大器的基本特性(开环增益高、输入阻抗大、输出阻抗小等),设置不同的反馈网络来模拟各种环节。
典型环节原理方框图及其模拟电路如下:1、比例环节(P)。
其方框图如图2-1所示:Ui(S)Uo(S)K图1-1A 比例环节方框图图 2-1RRR1010KR10KiUUo--op5op6++10K100K图1-1B 比例环节模拟电路 R0=200K R1=100K;(200K)图 2-2U(S)0其传递函数是: ,K (2-1) Ui(S)比例环节的模拟电路图如图2-2所示,其传递函数是:U(S)R01 (2-2) ,Ui(S)R0比较式(2-1)和(2-2)得 (2-3) K,RR10当输入为单位阶跃信号,即U(t),1(t)时,,则由式(1-1)得到: U(s),1/Sii1 U(S)K,,0S所以输出响应为: (2-4) U,K(t,0)02、积分环节。
其方框图如图2-3所示。
其传递函数为:Ui(S)Uo(S)1TS图 2-3 图1-2A 积分环节方框图RC10KUiRUo--op5op610KR010K100K图1-2B 积分环节模拟电路C=1μf(2μf);R0=200K图 2-4U(S)10 (2-5) ,Ui(S)TS积分环节的模拟电路图如图2-4所示。
积分环节的模拟电路的传递函数为:US()10 (2-6) ,UiSRCS()0比较式(2-5)和(2-6)得:(2-7) T,RC0当输入为单位阶跃信号,即时,,则由式(2-5)得到:U(t),1(t)U(S),1Sii111 ,,,U(S)o2TSSTS所以输出响应为:1 (2-8) Utt(),oT3、比例积分(PI)环节。
典型环节及其阶跃响应

图1-1 运放的反馈连接 典型环节及其阶跃响应
比例环节:
参数设置:Z1=100K Ω Z2=100K Ω 单位阶跃响应波形如下:
波形分析如下: 惯性环节:
图 1-2 惯性环节模拟电路
参数设置:R1=100K Ω R2=100K C1=1f 单位阶跃响应波形如下:
分析波形如下:
积分环节
参数设置:R1=100K C1=1f
单位阶跃响应波形如下:
波形分析如下:
微分环节
微分环节模拟电路参数设置:C1=1f C2=0.01f R2=100K
单位阶跃响应波形如下:
波形分析如下:
比例微分环节
比例微分模拟电路
参数设置:R1=100K R2=100K C1=1f C2=0.01f 单位阶跃波形如下
波形分析如下:
比例积分环节
比例积分环节模拟电路
参数设置:R1=100K R2=200K C1=1f
单位阶跃波形如下
波形分析如下:
比例积分微分环节
比例积分微分模拟电路
参数设置1:R1=100K R2=200K C1=1f C2=0.1f 单位阶跃波形如下
单位阶跃波形如下
波形分析如下:。
典型环节及其阶跃响应实验报告

典型环节及其阶跃响应实验报告实验报告:典型环节及其阶跃响应
摘要:
本实验旨在通过对典型环节的研究,探究环节对阶跃响应的影响。
通过实验数据的收集和分析,我们成功地建立了模型,并在此基础上进行了进一步探究。
实验操作:
1. 环节参数测量
本实验分别测量了三类环节的参数:惯性环节、比例环节和一阶惯性环节。
在测量期间,我们对示波器进行了正确连接,以确保实验数据的准确性。
2. 阶跃响应测试
我们在实验中使用了脉冲信号作为输入,并记录了系统的阶跃
响应。
3. 数据分析
我们使用MATLAB软件对实验数据进行了分析,并绘制了相
应的图表。
通过对图表的观察,我们可以清晰地看到各个环节对
系统响应的影响。
结果与讨论:
通过对典型环节的实验研究,我们得出了以下结论:
1. 惯性环节会显著影响系统的阶跃响应。
惯性越大,系统的响
应越迟缓,稳态误差也增加。
2. 比例环节是最简单的环节,但是其特性并不适合所有的系统。
在一些情况下,比例环节的加入会加剧系统的振荡。
3. 一阶惯性环节的响应相对较为平滑,且稳态误差也较小。
但是在某些情况下,一阶惯性环节的响应速度可能会比较慢。
结论:
本实验成功研究了典型环节对阶跃响应的影响。
我们成功地建立了模型,并通过对实验数据的分析,得出了较为准确的结论。
我们相信,这些研究成果将会对相关学科的研究和开发产生积极的推动作用。
典型环节及其阶跃响应实验报告

典型环节及其阶跃响应实验报告哎呀,今天我们聊聊那个“典型环节及其阶跃响应”的实验报告,听起来有点高大上,其实呢,就是看看系统对刺激的反应,咱们就像是在观察一个小宝宝对糖果的反应,立刻就咧嘴笑了,那种欢快的感觉,简直让人心都化了。
你知道的,典型环节就像是一个经典的舞蹈动作,所有的机器、设备,都要围绕着它来转。
我们这次实验就像是给这个舞蹈加点新的花样,看看能不能让它更好看,更精彩。
说到阶跃响应,嘿嘿,想象一下,你在沙滩上,突然来了一波浪,直接把你淹没,那就是阶跃嘛!一开始,水面平静,突然间,哗的一声,浪花四溅。
这个实验就是模拟这种场景,我们用一个信号,给系统一个突如其来的“惊喜”,然后看它的反应。
像小狗听到门铃声那样,瞬间就警觉起来。
我们记录下它的表现,慢慢地分析,像是侦探在拼凑案件一样,越看越有意思。
实验开始的时候,大家都是一副严肃的样子,结果一搞起来,气氛就轻松了很多。
仪器啊,数据啊,真是让人眼花缭乱,搞得我都快晕了。
但没关系,我们的目标明确,简简单单就是想知道这个系统到底是个什么样的“角色”。
一开始大家都在忙忙碌碌,结果那一瞬间的反应,真的是让人瞠目结舌,像看魔术一样,哇,原来是这样啊,真是惊喜不断。
在记录数据的时候,大家开始窃窃私语,笑声不断,有人甚至模仿起了实验设备发出的声音,笑得我差点喷出来。
你看,这个实验不只是冰冷的数字,还有一堆有趣的故事,简直是给我们这个枯燥的学习过程加了不少料。
每当设备显示出一个新的数据点,大家都像中了彩票一样,欢呼雀跃,实验室里瞬间变成了欢乐的海洋。
随着数据的增加,分析起来也变得越来越有趣。
我们开始画图,连接那些数据点,像是在给一个故事编排情节,每一条线都承载着我们的期待。
你可能觉得这有点无聊,其实不然,这过程就像是在拼拼图,一块一块的拼出来,最终看到那个完整的图案,真的是成就感满满。
每当看到图上出现那条漂亮的曲线,大家都像喝了蜂蜜水一样甜。
最终,实验结束,大家都松了一口气,互相道了声辛苦。
实验一 典型环节及其阶跃响应

实验一典型环节及其阶跃响应
概述:
在控制系统中,典型环节是指能够用数学模型描述的一类基本功能模块,包括比例环节、积分环节和微分环节等。
它们在工程中应用十分广泛,可用于控制系统的建模和分析。
本文将介绍比例环节、积分环节和微分环节的定义及其阶跃响应。
一、比例环节
比例环节是指将输入信号按一定比例进行放大或缩小的环节。
用数学式子表示为y=kx,其中k为比例常数,x为输入信号,y为输出信号。
比例环节的作用是调整输入信号与输出信号之间的比例关系。
比例环节的阶跃响应:在阶跃信号的作用下,比例环节的输出将按比例变化。
阶跃信
号是指输入信号在某一时刻瞬间从0跳变到一个确定的值。
对比例环节而言,其阶跃响应
可以表示为:
$$
y(t)=K_{p} u(t)
$$
其中,$K_{p}$为比例放大的增益,$u(t)$为阶跃函数。
二、积分环节
总结:
比例环节、积分环节和微分环节是控制系统中常用的三种典型环节。
它们可以按照不
同的方法进行组合和调整,形成复杂的系统结构,实现对输入信号的更为精细的控制。
在
实际应用中,需要针对具体问题进行具体分析,选择合适的环节组合方案,以实现最佳的
控制效果。
自动控制原理实验典型环节及其阶跃响应,二阶系统阶跃

实验一、典型环节及其阶跃响应实验目的1、学习构成典型环节的模拟电路,了解电路参数对环节特性的影响。
2、学习典型环节阶跃响应的测量方法,并学会由阶跃响应曲线计算典型环节的传递函数。
实验内容构成下述典型环节的模拟电路,并测量其阶跃响应。
比例环节的模拟电路及其传递函数示图2-1。
G(S)=-R2/R1惯性环节的模拟电路及其传递函数示图2-2。
G(S)=-K/TS+1 K=R2/R1 ,T=R2*C积分环节的模拟电路及其传递函数示图2-3。
G(S)=1/TS T=RC微分环节的模拟电路及其传递函数示图2-4。
G(S)=-RCS比例加微分环节的模拟电路及其传递函数示图2-5。
G(S)=-K(TS+1) K=R2/R1 T=R2C比例加积分环节的模拟电路及其传递函数示图2-6。
G(S)=K(1+1/TS) K=R2/R1,T=R2C软件使用1、打开实验课题菜单,选中实验课题。
2、在课题参数窗口中,填写相应AD,DA或其它参数。
3、选确认键执行实验操作,选取消键重新设置参数。
实验步骤1、连接被测量典型环节的模拟电路及D/A、A/D连接,检查无误后接通电源。
2、启动应用程序,设置T和N。
参考值:T=0.05秒,N=200。
3、观测计算机屏幕示出的响应曲线及数据记录波形及数据(由实验报告确定)。
实验报告1、画出惯性环节、积分环节、比例加微分环节的模拟电路图,用坐标纸画出所有记录的惯性环节、积分环节、比例加微分环节的响应曲线。
2、由阶跃响应曲线计算出惯性环节、积分环节的传递函数,并与由电路计算的结果相比较。
实验二二阶系统阶跃响应一、实验目的1、研究二阶系统的特征参数,阻尼比ζ和无阻尼自然频ωn 对系统动态性能的影响,定量分析ζ和ωn与最大超调量Mp和调节时间 ts 之间的关系。
2、进一步学习实验仪器的使用方法。
3、学会根据系统阶跃响应曲线确定传递函数。
二、实验原理及电路典型二阶系统的闭环传递函数为其中ζ和ωn对系统的动态品质有决定的影响。
自动控制原理实验

自动控制原理实验报告册实验一典型环节及其阶跃响应一、实验目的1、掌握控制模拟实验的基本原理和一般方法。
2、掌握控制系统时域性能指标的测量方法。
二、实验公式1、比例环节G(S)= -R2/R12、惯性环节G(S)= -K/TS+1 K= R2/R1, T= R2C3、积分环节G(S)= -1/TS T=RC4、微分环节G(S)= -RCS5、比例+微分环节G(S)= -K(TS+1) K= R2/R1, T= R2C6、比例+积分环节G(S)= K(1+1/TS) K= R2/R1, T=R2C三、实验结果1、比例环节阶跃波、速度波、加速度波依次为:2、惯性环节阶跃波、速度波、加速度波依次为:3、积分环节阶跃波、速度波、加速度波依次为:4、微分环节阶跃波、速度波、加速度波依次为:5、比例+微分环节阶跃波、速度波、加速度波依次为:6、比例+积分环节阶跃波、速度波、加速度波依次为:实验二二阶系统阶跃响应一、实验目的1、研究二阶系统的特征参数,阻尼比和无阻尼自然频率对系统动态性能的影响。
定量分析和与最大超调量和调节时间之间的关系。
2、进一步学习使用实验系统的使用方法。
3、学会根据系统阶跃响应曲线确定传递函数。
二、实验公式1、超调量:%=(Y MAX-Y OO)/Y OO X100%2、典型二阶系统的闭环传递函数:(S)= (1) (s)=U2(s)/U1(s)=(1/T2)/(S2+(K/T)S+1/T2) (2)式中:T=RC, K=R2/R1由(1)(2)可得: Wn=1/T=1/RCE=K/2=R2/2R1三、实验结果R1=100K、R2=50KR1=100K、R2=100KR1=100K、R2=100KR1=50K、R2=200K实验三控制系统的稳定性分析一、实验目的1、观察系统的不稳定现象。
2、研究系统开环增益和时间常数对系统稳定性的影响。
二、实验公式开环传递函数:G(S)=10K/S(0.1S+1)(TS+1)式中:K1=R3/R2 R2=100K R3=0~500K T=RC R=100K C=1uf或C=0.1uf三.实验结果第一种情况:C=1uf R3=50r3=100kr3=150kr3=200kr3=250kr3=450k第二种情况:C=0.1uf R=50kr=100k200k300k实验四系统频率特性测量一、实验目的1、加深了解系统及元件频率特性的物理概念。
典型环节及其阶跃响应实验报告

典型环节及其阶跃响应实验报告学院:机械工程学院班级:过控一班姓名:***学号:***********实验内容 比例环节响应 实验人 卢世宝实验时间 教师签字学号后三位 由于本人的学号为416 所以取R=416电路传递函数响应函数 48.0)(0-==K t U实验波形图实验内容 积分环节模拟电路实验人 卢世宝实验时间 教师签字学号后三位 由于本人的学号为416 所以取R=416电路传递函数响应函数t t Tt U 740.01)(0-=-=实验波形图48.0)()(21-=-=R RS U S U i o SCS R S U S U i o /740.01)()(0-=-=实验内容 比例积分环节模拟电路实验人 卢世宝实验时间教师签字学号后三位 由于本人的学号为416 所以取R=416电路传递函数)1(1)()(001010CSR R R CS R CS R S U S U i +-=+-== 0.35+0.014 / S响应函数 t TK t U 1)(0+= = -0.35 – 0.73 t实验波形图实验内容 比例微分环节模拟电路 实验人 卢世宝 实验时间教师签字学号后三位由于本人的学号为416 所以取R=416电路传递函数)11()()(321210+•++-=CS R CS R R R R S U S U i =)122101(+⨯+-S S响应函数)330210210()(CR t e R R R R R R R t U -++-=t e 50088.0088.0(--+-=)实验波形图实验内容 惯性环节模拟电路 实验人 卢世宝实验时间 教师签字学号后三位由于本人的学号为416 所以取 R=416电路传递函数1)()(11+-=CSRRRSUSUi14.0343.0+-=S响应函数)1()(0TteKtU---=)1(343.025te---=实验波形图实验内容PID模拟电路实验人卢世宝实验时间教师签字学号后三位由于本人的学号为416 所以取R=416电路传递函数)1()()(020211001S C R R R S C R R R S Ui S U ++-≈ = - ( 13 + 10S )响应函数]})1(1[1{)(0232211102210021C R te C R C R C R C R t C R R R R t U --++++-=)1(5.1350t e t -+--=实验波形图实验一 典型环节及其阶跃响应一.实验原理和设计合理运用运算放大器本身所具有的基本特性(开环增益高、输入阻抗大、输出阻抗小等)用不同的电阻、电容组成不同的反馈网络来模拟各种典型环节。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
实验一: 典型环节与及其阶跃响应一、实验目的1、掌握控制模拟实验的基本原理和一般方法。
2、掌握控制系统时域性能指标的测量方法。
二、实验仪器1、EL-AT-III 型自动控制系统实验箱一台2、计算机一台三、实验原理控制系统模拟实验采用复合网络法来模拟各种典型环节,即利用运算放大器不同的输入网络和反馈网络模拟各种典型环节,然后按照给定系统的结构图将这些模拟环节连接起来,便得到了相应的模拟系统。
再将输入信号加到模拟系统的输入端,并利用计算机等测量仪器,测量系统的输出,便可得到系统的动态响应曲线及性能指标。
若改变系统的参数,还可进一步分析研究参数对系统性能的影响。
四、实验内容构成下述典型一阶系统的模拟电路,并测量其阶跃响应1、比例环节的模拟电路及其传递函数G(S)= −R2/R12、惯性环节的模拟电路及其传递函数G(S)= −K/TS+1K=R2/R1T=R2C3、积分环节的模拟电路及传递函数G(S)=1/TST=RC4、微分环节的模拟电路及传递函数G(S)= −RCS5、比例+微分环节的模拟电路及传递函数G(S)= −K(TS+1)K=R2/R1T=R1C五、实验结果及分析(注:图中黄色为输入曲线、紫色为输出曲线)1、比例环节(1)模拟电路图:(2)响应曲线:2、惯性环节(1)模拟电路图:(2)响应曲线:(3)传递函数计算:实验值:X1=1029ms=1.029s=4TT=0.257sK=Y2/1000=2.017G(S)=-2.017/(0.257S+1) 理论值:G(S)=-2/(0.2S+1)结论:实验值与理论值相近。
3、积分环节(1)模拟电路图:(2)响应曲线:(3)传递函数计算:实验值:5000/(2110/2/2)=9.1G(S)=-9.1/S=-1/0.11S 理论值:G(S)=-1/0.1S结论:实验值与理论值相近。
4、微分环节(1)模拟电路图:(2)响应曲线:5、比例+微分环节(1)模拟电路图:(2)响应曲线:实验二:二阶系统阶跃响应一、实验目的1、研究二阶系统的特征参数,阻尼比ζ和无阻尼自然频率ωn 对系统动态性能的影响。
定量分析ζ和ωn 与最大超调量Mp 和调节时间tS 之间的关系。
2、学会根据系统阶跃响应曲线确定传递函数。
二、实验仪器1、EL-AT-III 型自动控制系统实验箱一台2、计算机一台三、实验原理控制系统模拟实验利用运算放大器不同的输入网络和反馈网络模拟各种典型环节,然后按照给定系统的结构图将这些模拟环节连接起来,便得到了相应的模拟系统。
再将输入信号加到模拟系统的输入端,并利用计算机等测量仪器,测量系统的输出,便可得到系统的动态响应曲线及性能指标。
若改变系统的参数,还可进一步分析研究参数对系统性能的 影响。
四、实验内容典型二阶系统的闭环传递函数为2222nn nw s w s w ++ξ其中 ζ 和ωn 对系统的动态品质有决定的影响。
构成如图典型二阶系统的模拟电路, 并测量其阶跃响应。
根据二阶系统的模拟电路图,画出二阶系统结构图并写出系统闭环传递函数。
把不同ζ和ωn 条件下测量的Mp 和ts 值列表,根据测量结果得出相应结论。
.画出系统响应曲线,再由ts 和Mp 计算出传递函数,并与由模拟电路计算的传递函数相比较。
五、实验电路六、实验结果1、取ωn=10rad/s, 即令R=100KΩ,C=1μf;分别取ζ=0、0.25、0.5、1、2,即取R1=100KΩ,R2 分别等于0、50KΩ、100KΩ、200KΩ、400KΩ。
输入阶跃信号,测量不同的ζ时系统的阶跃响应,并由显示的波形记录最大超调量Mp 和调节时间Ts 的数值和响应动态曲线,并与理论值比较。
(1)R2=0(2)R2=50kΩ(3)R2=100kΩ(4)R2=200kΩ(5)R2=400kΩ2、取ζ=0.5。
即电阻R2 取R1=R2=100KΩ;ωn=100rad/s, 即取R=100KΩ,改变电路中的电容C=0.1μf(注意:二个电容值同时改变)。
输入阶跃信号测量系统阶跃响应,并由显示的波形记录最大超调量σp 和调节时间Ts。
七、结果分析实验三:连续系统串联校正一、实验目的1、加深理解串联校正装置对系统动态性能的校正作用。
2、对给定系统进行串联校正设计,并通过模拟实验检验设计的正确性。
二、实验仪器1、EL-AT-III 型自动控制系统实验箱一台2、计算机一台三、实验内容1、串联超前校正(1)系统模拟电路图如图3-1,图中开关S断开对应未校情况,接通对应超前校正。
图3-1 超前校正电路图(2)系统结构图如图3-2图3-2 超前校正系统结构图图中 Gc1(s)=2Gc2(s)=1005.0)1055.02++s s (2、串联滞后校正(1) 模拟电路图如图3-3,开关s 断开对应未校状态,接通对应滞后校正。
图3-3 滞后校正模拟电路图(2)系统结构图示如图3-4图3-4 滞后系统结构图图中 Gc1(s)=5Gc2(s)=16)15++s s (3、串联超前—滞后校正(1) 模拟电路图如图3-5,双刀开关断开对应未校状态,接通对应超前—滞后校正。
图3-5 超前—滞后校正模拟电路图(2) 系统结构图示如图3-6。
图3-6 超前—滞后校正系统结构图图中Gc1(s)=6Gc2(s)=)105.0)(16()115.0)12.16++++s s ss((四、实验步骤1、超前校正:(1)连接被测量典型环节的模拟电路(图 3-1),开关s 放在断开位置。
(2)系统加入阶跃信号,测量系统阶跃响应,并记录超调量σp 和调节时间ts。
(3)开关 s 接通,重复步骤2,并将两次所测的波形进行比较。
2、滞后校正:(4)连接被测量典型环节的模拟电路(图 3-3),开关s 放在断开位置。
系统加入阶跃信号。
测量系统阶跃响应,并记录超调量σp 和调节时间ts。
(5)开关s 接通,重复步骤(2),并将两次所测的波形进行比较.3、超前--滞后校正(6)接被测量典型环节的模拟电路(图3-5)。
双刀开关放在断开位置。
系统加入阶跃信号。
测量系统阶跃响应,并记录超调量σp 和调节时间ts(7)双刀开关接通,重复步骤2,并将两次所测的波形进行比较。
五、实验结果 1、超前校正:(1)校正前(开关断开):a 、响应曲线:b 、传递函数: 61=C G ss s G +=22.040)((2)校正后(开关闭合): a 、响应曲线:b 、传递函数: =2c G =1005.0)1055.02++s s (s s s s s G +++=23205.0001.0)1055.0(40)(c 、波特图:2、滞后校正:(1)校正前(开关断开):a、响应曲线:b 、传递函数: 51=c G ss s s G ++=236.005.050)((2)校正后(开关闭合): a 、响应曲线:b 、传递函数:=2c G =16)15++s s ( ss s s s s G ++++=2346.665.03.0150)()(c 、波特图:3、串联超前—滞后校正: (1)校正前: a 、响应曲线:b 、传递函数: 61=c G ss s s G ++=2311.0001.060)((2)校正后: a 、响应曲线:b 、传递函数:=2c G )105.0)(16()115.0)12.16++++s s s s ((ss s s s s s s G ++++++=2345216.69665.003905.00003.060818.10)(c 、波特图:六、结果分析校正装置的作用:1.超前校正的目的是改善系统的动态性能,实现在系统静态性能不受损的前提下,提高系统的动态性能。
通过加入超前校正环节,利用其相位超前特性来增大系统的相位裕度,改变系统的开环频率特性。
一般使校正环节的最大相位超前角出现在系统新的穿越频率点。
2.滞后校正通过加入滞后校正环节,使系统的开环增益有较大幅度增加,同时又使校正后的系统动态指标保持原系统的良好状态。
它利用滞后校正环节的低通滤波特性,在不影响校正后系统低频特性的情况下,使校正后系统中高频段增益降低,从而使其穿越频率前移,达到增加系统相位裕度的目的。
3.超前-滞后校正适用于对校正后系统的动态和静态性能有更多更高要求的场合。
施加超前-滞后校正环节,主要是利用其超前部分增大系统的相位裕度,以改善系统的动态性能;利用其滞后部分改善系统的静态性能。
感想:刘畅此次实验包括了典型环节及其阶跃响应、二阶系统阶跃响应以及连续系统串联校正三部分内容。
通过测量比例环节、惯性环节、积分环节、微分环节、比例微分环节的传递函数并将其与理论值进行比较,我不仅掌握了控制系统时域性能指标的测量方法,还更进一步的分析研究了参数对系统性能的影响。
通过研究二阶系统的特征参数,分析了阻尼比ζ和无阻尼自然频率ωn 对系统动态性能的影响。
并且学会了根据系统阶跃响应曲线确定传递函数。
最后通过分别对比超前校正、滞后校正、串联超前滞后校正前后系统稳定性的比较,印证了串联校正装置对系统动态性能的校正作用。
在实验过程中,我们遇到了很多的问题,如在连线完成后输出波形与理论波形相差较大,或者输出的波形不稳定造成测量时有较大误差等。
这就要求我们需要更加仔细认真地做好实验中的每一步,这时我们首先会从最基本的检查电路开始,因为输出波形错误的原因往往都是因为连接电路时的马虎造成的。
其次便是检查仪器以及软件是否运行正确。
这时就要求我们要对实验目的和内容有深刻的认识,只有这样才能够发现问题并能迅速解决问题,在不断的解决问题的过程中逐步提升自己的实践动手能力以及对知识的熟悉掌握程度。
通过这次实验,我不仅更加深入的了解了书本中的理论知识,更重要的是我意识到了动手实践的重要性,因为只有亲自动手,才能把知识彻底理解吸收,我们才会真正的深入研究,才能从根本上弄懂原理解决问题。
成丽玲:这次实验是对之前学习的二阶系统及其响应的一次上机学习。
从时域及频域两个方面进行总结。
在实验中以及实验后,进一步加深了对所学知识的理解。
通过研究二阶系统的特征参数,分析了阻尼比ζ和无阻尼自然频率ωn 对系统动态性能的影响。
并且学会了根据系统阶跃响应曲线确定传递函数。
最后通过分别对比超前校正、滞后校正、串联超前滞后校正前后系统稳定性的比较,印证了串联校正装置对系统动态性能的校正作用。
在画Bode图的过程中进一步学习了matlab的应用。
并且发现自己在编程方面的不足并进行改正。