模糊PID温度控制毕业设计

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

模糊PID温度控制毕业设计

第一章绪论

1.1 选题背景及其意义

在工业生产过程中,控制对象各种各样,温度是生产过程和科学实验中普遍而且重要的物理参数之一。在生产过程中,为了高效地进行生产,必须对它的主要参数,如温度、压力、流量等进行有效的控制。温度控制在生产过程中占有相当大的比例,其关键在于测温和控温两方面。温度测量是温度控制的基础,技术已经比较成熟。由于控制对象越来越复杂,在温度控制方面,还存在着许多问题。如何更好地提高控制性能,满足不同系统的控制要求,是目前科学研究领域的一个重要课题。温度控制一般指对某一特定空间的温度进行控制调节,使其达到工艺过程的要求。本文主要研究电锅炉温度控制的方法。

电锅炉是将电能转换为热能的能量转换装置[1]。具有结构简单、无污染、自动化程度高等特点。与传统的以煤和石化产品为燃料的锅炉相比还具有基本投资少、占地面积小、操作方便、热效率高、能量转化率高等优点。近年来,电锅炉已成为供热采暖的主要设备。

锅炉控制作为过程控制的一个典型,动态特性具有大惯性大延迟的特点,而且伴有非线性。目前国电热锅炉控制大都采用的是开关式控制,甚至是人工控制方法。采用这些控制方法的系统稳定性不好,超调量大,同时对外界环境变化响应慢,实时性差。另外,频繁的开关切换对电网产生很大的冲击,降低了系统的经济效益,减少了锅炉的使

用年限。因此,研究一种最佳的电锅炉控制方法,对提高系统的经济性,稳定性具有重要的意义。

1.2 工业控制的发展概况

工业控制的形成和发展在理论上经历了三个阶段50年代末起到70年代为第一阶段,即经典控制理论阶段,这期间既是经典控制理论应用发展的鼎盛时期,又是现代控制理论应用和发展时期;70 年代至 90 年代为第二阶段,即现代控制理论阶段;90 年代至今为第三阶段,即智能控制理论阶段[2]

第一阶段:初级阶段。它以经典控制理论为主要控制方案,采用常规气动、液动和电动仪表,对生产过程中的温度、流量、压力和液位进行控制。在诸多控制系统中,以单回路结构、PID 策略为主,同时针对不同的对象与要求,设计了一些专门的控制算法如达林顿算法、Smith 预估器、根轨迹法等。这阶段的

主要任务是稳定系统、实现定值控制。

第二阶段:发展阶段。以现代控制理论为基础,以微型计算机和高档仪器为工具,对复杂现象进行控制。这阶段的建模理论、在线辨识和实时控制已突破前期的形式,继而涌现了大量的先进控制系统和高级控制策略,如克服对象时变和环境干扰等不确定影响的自适应控制,消除因模型失配而产生不良影响的预测控制等。这阶段的主要任务是克服干扰和模型变化,以满足复杂的工艺要求,提高控制质量。

第三阶段:高级阶段。不论从历史和现状,还是从发展的必要性和可能性来看,控制方法主要朝着综合化、智能化方向发展。尤其近些年来人工智能理论的迅速崛起为控制的智能化提供了一个腾飞的工具。智能控制理论中,专家系统、神经网络、模糊控制系统是最有潜力的三种方法。专家系统在工业生产过程、故障诊断和监督控制以及检测仪表有效性检测等方面获得成功应用;神经网络则可为复杂非线性过程的建模提供有效

的方法,进而可用于过程软测量和控制系统的设计上;模糊系统不仅有行之有效的模糊控制理论为基础,而且能够表达确定性和不确定性两类经验,并提炼成为知识进而改善已有控制。应用经典控制理论的前提是:必须有一个高阶微分方程式来描述系统的运动状态的数学模型,是建立在频率法的基础上的。而现代控制理论主要用来解决多输入多输出和时变系统的问题,它的数学模型是用一个一阶微分方程组即状态方程) 或差分方程组来描述,是一种时域表示方法。这两种方法在精确数学模型的自动控制系统中发挥了巨大的作用,并取得了令人满意的控制效果。

1.3 传统控制方法的缺陷

无论是经典控制理论还是现代控制理论,都是建立在系统的精确数学模型基础之上的。但在实际系统中被控对象一般都具有大惯性、大滞后、时变性、关联性、不确定性和非线性的特点,这里的关联性不仅包含过程对象中各物理参数之间的耦合交错,而且包含被控量、操作量和干扰量之间的联系;不确定性不单指结构上的不确定性,而且还指参数的不确定性;非线性既有非本质的非线性,又有本质非线性。由于被控对象的这种复杂性,决定了控制的艰难性。

传统控制方法绝大多数是基于被控对象的数学模型,即按照建模控制优化进行,建模的精确程度决定着控制质量的高低,尽管目前的建模理论和方法已有长足的长进,但仍有许多过程和对象的机理不清楚,动态特性难以掌握,使我们不得不对被控对象进行简化或近似,将一个理论上极为先进的控制策略应用在这样的模型上,控制效果自然会大打折扣,因此,用传统的控制手段进一步提高控制对象的质量遇到了极大的困难,传统控制方法面临着严峻的挑战。

1.4 智能控制方法概述

1.4.1 智能控制方法的起源、发展和分类

工业控制中存在着工业过程复杂、数学模型难以确定的系统,智能控制理论的产生正是针对被控对象、环境、控制目标或任务的复杂性提出的。1987年智能控制正式成为一门独立的学科,它是人工智能、运筹学和自动控制理论等多学科相结合的交叉学科。它与传统控制的主要区别在于可以解决非线性模型化系统的控制问题[3]。

目前,根据智能控制发展的不同历史阶段和不同的理论基础可以将它分为四大类:基于专家系统的智能控制、分层递阶智能控制、模糊逻辑控制、神经网络控制。

专家控制是基于知识的智能控制,由关于控制领域的知识库和体现该知识决策的推理机构构成主体框架,通过对控制领域知识(先验经验、动态信息、目标等)的获取与组织,按照某种策略及时地选用恰当的规则进行推理输出,进而对控制队象实施控制,或修改补充知识条目。其主要优点是层次结构、控制方法和知识表达上的灵活性较强,既可以符号推理,又允许模糊描述演绎。但灵活性同时带来了设计上的随意性和不规性,而且控制知识的获取、表达和学习,以及推理的有效性也是难点。

分层递阶智能控制模拟人脑的分层结构,由执行级、协调级和组织级构成。它不需要精确的模型,但需要具备学习功能,并能接受上一级的模糊指令和符号语言。其特点是自下而上智能递增而精度递减,即执行级用于高精度局部控制,协调级用于知识和实际输出调整执行级中的控制参数,而组织级进行推理决策和自主学习。该控制方法主要用于那些存在不确定性的系统,如机器人控制等,但应用围有限。

智能控制的发展主要得益于模糊逻辑控制和神经网络控制理论的不断成熟。90 年代以后,智能控制的集成技术研究取得很大重大进展,如模糊神经网络、模糊专家系统、传统 PID 控制与智能控制的结合等。这些都为智能控制技术的应用提供了广阔的前景[4]。

模糊控制是智能控制的一种典型和较早的形式,作为智能控制的一个重要分支,自

相关文档
最新文档