岩石力学在采矿工程中的研究

合集下载

浅析岩石力学在采矿工程中的应用及问题探讨

浅析岩石力学在采矿工程中的应用及问题探讨

浅析岩石力学在采矿工程中的应用及问题探讨摘要:现如今,随着我国国民经济的飞速发展,人们在生产生活之中对于矿物的需求量也在逐渐的增加,现今,物产丰富的中国已经成了世界的采矿业的重头。

而采矿工程在社会建设发展中的地位也越来越凸显,成为人们十分热衷的话题。

而在具体的采矿工程中离不开对岩石力学的应用,其作为地质学和力学之间的一门边缘学科,其应用已经比较广泛。

本文就将对我国岩石力学在非金属矿山采矿工程中的应用进行分析探讨。

关键词:岩石力学;采矿;问题;措施在矿山的开采中对于岩石力学的应用是非常普遍的,其主要来源于大规模的工程实践。

由于采矿工程一般规模比较大、施工条件复杂,不管是地下还是露天的采矿工程,都是以具有地质构造的岩石为对象,这也就决定了岩石力学的问题将贯穿于整个采矿工程的实际。

在采矿工程中的岩石力学,主要包括岩石的稳定性以及强度等,它是会随着矿山中岩石内部的结构发生不同的变化。

与此同时,因为采矿工程是一个动态的过程,所以在这其中岩石的力学性质会随着矿山工程的进展发生变化,还有就是自然环境也对其有一定的影响。

这就决定了在矿山工程中的岩石力学应用手段必须多样化。

1、岩石力学研究的目的和内容岩石力学研究的目的是对矿区内不同类型岩体的地质结构、岩石组成及其强度和应力的资料给以解释,按岩石力学的要求对矿、岩体进行分类,以便根据其自然崩落性选择合适的开拓方式和采矿方法,从而为制定采矿试验计划和编制采矿设计提出推荐意见。

岩石力学研究的主要内容有:断层和破碎带的位置、形态和相对运动;不同类型岩石及其夹层的抗压、抗张、抗剪强度;微裂隙的类型及系统;区域残余应力的大小、方向和变化;应力释放的方法;在一段时间内岩石的应力集中及其移动的性态,坑内井巷工程不同支护方法的效果;使应力影响减少到最小的井巷工程的位置及方向等等。

2、背景研究2.1、采矿工程的力学背景采矿工程的力学背景,主要指的是在推翻原有平衡关系的基础之上建立起新的平衡结构,它具有一定的时代特色。

深部岩体力学与开采理论研究进展

深部岩体力学与开采理论研究进展

深部岩体力学与开采理论研究进展随着矿产资源的不断开采,浅层矿产资源日益枯竭,矿产开采逐步向深部转移。

深部岩体力学与开采理论作为矿产资源开采的重要支撑,近年来取得了长足的发展。

本文将探讨深部岩体力学与开采理论的研究现状及进展,旨在为相关领域的研究提供参考和借鉴。

深部岩体力学与开采理论是一个涉及多个学科领域的复杂系统。

在研究过程中,需要综合运用地球物理学、地质学、岩石力学、采矿学等多个学科的知识和方法,以揭示深部岩体复杂的物理、力学行为和开采过程中的动态变化规律。

针对深部岩体力学与开采理论的研究,国内外学者已取得一系列重要成果。

在理论方面,建立了深部岩体应力场、位移场分析方法,提出了多种数值计算模型和数值求解技术,为准确预测岩体动态行为提供了有效手段。

在实践方面,不断探索和发展了各种高效、安全的采矿技术和装备,为实现深部矿产资源的高效、安全开采提供了重要保障。

然而,深部岩体力学与开采理论仍面临诸多挑战和问题。

深部岩体复杂的物理、力学特性给理论研究带来很大困难,需要加强基础理论研究,深入揭示深部岩体的力学行为和变形规律。

深部开采过程中岩体应力场、位移场的调控技术和装备亟待研发,以实现开采过程的安全、高效和可控。

针对不同地域、不同矿种的开采技术需要进一步集成和创新,以满足多样化的矿产资源需求。

深部岩体力学与开采理论是矿产资源开采的重要基础,在未来的研究中需要不断加强基础理论、关键技术和装备的研究和开发,以适应矿产资源开采深度和广度的不断增加,推动我国矿业事业的持续发展。

需要重视学科交叉和融合,加强国内外学术交流与合作,共同推进深部岩体力学与开采理论的研究和应用水平不断提升。

深部岩体力学与开采理论是采矿工程领域的重要研究方向。

本文将探讨这一领域的研究构思和预期成果展望。

深部岩体力学与开采理论的研究目标包括: a.深入了解深部岩体的应力场和变形特征; b.探究采矿活动对周围环境的影响; c.提出有效的开采技术和方法,提高开采效率; d.确保开采过程的安全性和环境保护。

深部开采工程岩石力学现状及其展望

深部开采工程岩石力学现状及其展望

深部开采工程岩石力学现状及其展望摘要:随着浅部资源的日益减少,进入深部开采已成为国内外矿产资源开采的必然趋势。

深部“三高一扰动”的复杂力学环境,使得深部岩体力学特性及其工程响应有着明显的不同,同时也在造成了岩爆、突水、顶板大面积来压和采空区失稳等灾害性事故在程度上加剧,频度上提高,成灾机理更加复杂。

因此,正确认识深部开采工程岩行力学与浅部开采岩石力学的区别,深入研究深部开采条件下的岩体力学特性、工程稳定性控制理论及其设计方法,对于避免深部资源开采中的重大事故发生,降低深部开采的成本,提高经济效益,保证21世纪我国主体能源的后备储量,具有重要的理论指导意义和现实意义。

关键词:深部开采;岩石力学;现状;展望深部开采岩石力学,主要是指在进行深部资源开采过程中引发的与巷道工程及采场工程有关的岩石力学问题。

目前,对能源的需求逐步增加,开采强度也不断加大,这些都造成了浅部资源的日益减少,因而国内外的矿山都相继进入深部资源开采状态。

而开采深度的不断增加,工程灾害也随之增多,这对深部资源安全高效的开采造成了巨大威胁。

1.深部开采岩体的力学特点1.1开采环境深部开采和浅部开采最明显的区别在于深部岩石所处的特殊环境,也就是“三高一扰动”的复杂力学环境。

“三高”主要是指高地温、高地应力和高岩溶水压。

“一扰动”主要是指强烈的开采扰动。

当进入深部开采后,岩体呈现塑性状态,即由各向不等压的原岩应力引起的压、剪应力超过岩石的强度,并且对岩石造成破坏。

1.2力学行为特性深部岩石的“三高一扰动”复杂环境,对深部岩体的组织结构、基本行为特征和工程响应产生根本性的影响。

主要表现在深部岩体动力响应的突变性,深部岩体应力场的复杂性,深部岩体的大变形和强流变性,深部岩体的脆性一延性转化,深部岩体开挖岩溶突水的瞬时性等五个方面。

2 深部开采工作今后研究重点2.1强度确定在浅部开采条件下,由于所处的地应力水平比较低,其工程岩体强度一般采用岩块的强度即可,即在实验室对岩块迸行加载直至破坏所确定的强度。

采矿工程中的岩石力学问题探讨与解决方案

采矿工程中的岩石力学问题探讨与解决方案

采矿工程中的岩石力学问题探讨与解决方案引言:采矿工程中,岩石力学是一门关键的学科,它研究岩石的强度、变形性质和破坏机理等方面的问题。

岩石力学问题的解决对于确保采矿工程的顺利进行至关重要。

本文将就采矿工程中常见的岩石力学问题进行探讨,并提出相应的解决方案。

1.岩石强度分析与评估在采矿工程中,岩石强度分析与评估是保证工程安全运行的基础。

首先,需要对岩石样本进行采集,并通过试验手段测定其强度参数。

然后,基于实测数据,进行岩石强度参数的统计分析,确定岩石的强度分布特征。

最后,结合采矿工程的实际情况,进行岩石强度评估,并制定相应的支护方案。

2.岩石变形性质研究在采矿工程中,岩石的变形性质对于工程的稳定性和安全性具有重要影响。

因此,需要开展岩石的变形特性研究,包括岩石的弹性模量、剪切模量、压缩模量等参数的确定。

这可以通过采取野外观测、试验室试验以及数值模拟等方法进行。

研究结果可以为采矿工程的设计和管理提供科学依据。

3.岩石力学模型建立建立适用于采矿工程的岩石力学模型是解决岩石力学问题的重要步骤。

根据岩石的物理性质和实测数据,可以选择合适的力学模型,并进行参数拟合。

常用的岩石力学模型包括弹性模型、弹塑性模型和粘弹塑性模型等。

建立准确可靠的力学模型有助于预测岩石的强度和变形,为采矿工程提供科学的指导。

4.岩石破坏机理研究研究岩石的破坏机理是为采矿工程提供有效的支护措施的重要前提。

通过对岩石的破坏过程进行分析,可以确定岩石发生破坏的主要因素和机制。

常见的岩石破坏机理包括岩石断裂、滑动、剥落等。

研究岩石的破坏机理可以为制定合理的支护措施和采矿方案提供科学依据。

5.岩石支护措施设计根据岩石力学问题的分析结果,设计有效的支护措施是确保采矿工程安全运行的关键。

支护措施可以根据实际情况选择,常见的支护方式包括开挖法支护、钢支撑、锚索支护等。

通过合理设计和施工,可以增强岩石的稳定性,保证采矿工程的正常进行。

总结:采矿工程中的岩石力学问题是影响工程安全运行的重要因素。

简述采矿工程中岩体力学的特点

简述采矿工程中岩体力学的特点

1.简述采矿工程中岩体力学的特点。

①采矿工程多处于地下较深处,而其它地下工程多在距地表较近(几十米)的范围内;②对矿山工程,只要求在开采期间不破坏,在采后能维持平衡状态不影响地表安全即可,故其计算精度、安全系数及加固等方面均低于国防、水利工程的标准;③矿山地质条件复杂,又受矿床赋存条件限制,故采矿工程的位置选择性不大,同时采掘工作面不断变化,因而采矿工程岩石力学具有复杂性的特点2.绘图并说明岩石的应力-应变全过程曲线。

3.3、简述岩石在三向压力作用下的变形规律。

1、裂隙压密阶段(OA)。

曲线上凹,体积缩小;A点:压密极限2、线弹性变形阶段(AB)。

呈直线,体积仍缩小;B点:弹性极限3、微裂隙稳定发展阶段(BC)。

近似线弹性,体积变形由缩小转为增大,发生“扩容”;C点:屈服极限屈服点:岩石从弹性变为塑性的转折点4、非稳定发展阶段(CD)5、裂隙扩展、新裂隙产生,体积膨胀加剧,显示宏观破坏迹象,岩石承载能力达到极限;D点:峰值强度/强度极限,即单轴抗压强度6、残余强度阶段(DE)岩石全面破坏,承载能力下降,但尚有承载力,此为岩石材料特点之一岩石三向压力(σ1>σ2=σ3)作用下变形规律1随着围压(σ2=σ3)增大,岩石抗压强度显著增加;2随着围压(σ2=σ3)增大,岩石变形显著增大;3随着围压(σ2=σ3)增大,岩石弹性极限显著增大;4随着围压(σ2=σ3)增大,岩石性质发生变化:由弹性→塑性4. 解释岩石的不稳定蠕变曲线,试述如何利用它进行岩体工程破坏的预报?5. 绘图并说明岩石力学介质常用的理论模型。

①岩石自身性质 ⑴ 虎克体——弹簧元件 理想弹性元件,呈线弹性,完全服从虎克定律,其力学关系为由于弹性模量E 为常量,故变形与时间无关,有dtd Edt d εσ=⑴ 过渡蠕变阶段(Ⅰ)在加载瞬间有一弹性变形ε0,继而以较快的速度增长,随后蠕变速度逐渐降低,并过渡到等速蠕变阶段。

若在此阶段内卸载,则会出现瞬间弹性变形(PQ 段),和通过一段时间才能恢复的变形(QR 段) ⑵ 稳定蠕变阶段(Ⅱ)变形缓慢,应变与时间近于线性关系,变形速度保持恒定若在此阶段卸载,则不仅出现瞬间的弹性恢复(TU 段)和弹性后效(UV 段),还会有不可恢复的永久变形残留 ⑶加速蠕变阶段(Ⅲ)蠕变速度加快,内部裂隙迅速发展,促使变形加剧,直到破坏 * 利用蠕变曲线进行岩石工程破坏预报。

岩石力学在采矿工程中的应用与分析

岩石力学在采矿工程中的应用与分析

岩石力学在采矿工程中的应用与分析岩石力学是研究岩石力学性质及其变形、破坏规律的学科,它在采矿工程中有着广泛的应用。

本文将从岩石力学在采矿工程中的应用以及分析岩石力学对采矿工程的影响等方面进行详述。

岩石力学在采矿工程中的应用主要体现在以下几个方面:1. 岩石力学对矿山开拓和开采方案的影响。

矿山的选址、矿体的开拓、采矿方法的选择等,都需要进行岩石力学分析,以确保工程的安全性和经济性。

岩石力学分析可以评估矿山围岩的稳定性,从而确定开采方案和支护设计,有效地避免岩体崩塌、冒顶等事故的发生。

2. 岩石力学在矿山巷道和洞穴设计中的应用。

在巷道和洞穴工程设计中,需要考虑岩体的强度、应力分布以及岩层之间的接触状态等。

通过岩石力学分析,可以合理选择巷道和洞穴的形状、尺寸和支护方式,确保工程的稳定性和安全性。

3. 岩石力学在采矿设备设计和维护中的应用。

采矿设备的设计和维护需要考虑岩石的力学性质,特别是岩石的强度、稳定性和裂缝发育状况。

岩石力学分析可以为采矿设备的合理使用提供依据,延长设备的使用寿命,同时也能减少设备故障和事故的发生。

4. 岩石力学在采矿工程中的监测和预测。

采矿过程中,岩石围岩会受到应力的改变和加速损伤的影响,而这些变化可能引发岩体破坏、冒顶等事故。

通过岩石力学监测和预测,可以及时掌握岩石围岩的变化趋势,提前采取防范措施,保证工程的安全性。

岩石力学分析在采矿工程中的重要性不可忽视,它对采矿工程的影响主要体现在以下几个方面:1. 确保采矿工程的安全性。

通过岩石力学分析,可以评估岩体的稳定性,及时采取支护措施,降低岩体破坏和灾害事故的风险。

2. 提高采矿工程的经济性。

岩石力学分析可以合理选择开采方案和支护设计,减少资源浪费,降低采矿成本。

3. 优化巷道和洞穴设计,提高工程的稳定性。

岩石力学分析可以为巷道和洞穴的形状、尺寸和支护方式等提供科学依据,降低工程风险,提高工程质量。

4. 延长采矿设备的使用寿命。

通过岩石力学分析,可以选择合适的采矿设备并制定相应的维护措施,延长设备的使用寿命,降低设备维护成本。

矿山开采过程中的岩石力学参数测定与分析

矿山开采过程中的岩石力学参数测定与分析

岩石的弹性模量与泊松比测定
总结词
岩石的弹性模量是指其在弹性变形范围内应力与应变之比,而泊松比则表示横向应变与 轴向应变之比。
详细描述
岩石的弹性模量和泊松比通常通过实验室内进行的单轴或三轴压缩试验测定。在单轴压 缩试验中,对岩石试样施加逐渐增大的压力直至其达到弹性极限,然后测量其应力与应 变值,计算出弹性模量。在三轴压缩试验中,对岩石试样施加围压和轴压,同时测量其
含水率
岩石中含水分的重量与干 燥岩石重量的比值,影响 岩石的强度和变形特性。Biblioteka 岩石的力学性质弹性模量
表示岩石抵抗弹性变形的 能力,是衡量岩石刚度的 指标。
泊松比
表示岩石横向变形与纵向 变形的比值,反映岩石的 横向变形特性。
单轴抗压强度
岩石在单轴压力作用下的 极限抗压强度,是衡量岩 石强度的重要指标。
研究不足与展望
在实验过程中,未能完全模拟矿山实际开采条 件,如地应力场、温度场等,因此实验结果可
能存在一定误差。
同时,可以结合矿山实际开采情况,开展更深入的数 值模拟和理论研究,为矿山安全开采提供更加科学和
可靠的依据。
本研究仅针对部分岩石样本进行了实验和数值 模拟,未能全面反映不同地区和不同类型岩石 的力学特性。
岩石力学参数
包括岩石的物理性质、力学性质以及与岩石变形、强 度、破坏等相关的参数。
岩石力学参数测定
通过实验和测试方法,测定岩石的力学性质和相关参 数,为矿山开采和岩土工程提供基础数据。
岩石的物理性质
01
02
03
密度
岩石的质量与其体积的比 值,表示岩石的致密程度 。
孔隙率
岩石中孔隙体积与总体积 的比值,影响岩石的强度 和压缩性。

采矿专业科目

采矿专业科目

采矿专业科目标题:采矿专业科目概述采矿工程是一门以地球内部的矿产资源为研究对象,探讨其开发、利用和保护的一门工程技术学科。

它涉及到地质学、岩石力学、矿业经济学等多个学科领域,是一门综合性极强的专业。

本文将从采矿专业的核心课程入手,深入剖析这一领域的知识结构。

首先,地质学是采矿专业的基础理论课程。

地质学主要研究地球的物质组成、结构构造以及各圈层间的相互作用,这对于理解矿床形成机制、评估矿产资源储量、预测矿产分布等具有重要的指导意义。

在地质学的学习过程中,学生需要掌握矿物的物理性质和化学性质,了解地壳运动规律,学习如何进行地质勘探和矿产资源评价。

其次,岩石力学是采矿专业的重要技术课程。

岩石力学主要研究岩石在各种受力条件下的应力应变特性,以及岩石与支护结构之间的相互作用。

这门课程对于理解矿山开采过程中的岩体稳定性问题,设计合理的开采方案,确保矿山安全高效运行具有至关重要的作用。

在岩石力学的学习过程中,学生需要掌握岩石的力学性能测试方法,了解岩石破坏机理,学习如何进行矿山围岩稳定性分析。

再者,矿业经济学是采矿专业的应用理论课程。

矿业经济学主要研究矿产资源的经济价值、开发利用的成本效益、市场供需关系等问题。

这门课程可以帮助学生理解和把握矿业行业的经济规律,为企业制定科学合理的经营决策提供依据。

在矿业经济学的学习过程中,学生需要掌握基本的经济分析方法,了解矿产资源的价格形成机制,学习如何进行矿山投资项目评估。

除此之外,采矿专业还需要学习一些其他的专业课程,例如矿山环境工程、矿井通风与防尘、矿山测量与绘图、矿产资源政策与法规等。

这些课程涵盖了采矿工程的各个重要环节,可以为学生提供全面系统的专业知识。

总的来说,采矿专业是一个集理论知识与实践技能于一体的综合性学科。

通过系统的学习,学生不仅可以掌握采矿工程的基本原理和技术方法,还可以培养出良好的职业素养和创新能力。

在未来的职业生涯中,他们将成为推动我国矿业发展的重要力量,为国家的能源安全保障和经济社会发展做出贡献。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

岩石力学在采矿工程中的研究
【摘要】岩体力学不是一门系统的学科,它属于地质学与力学之间的一门边缘学科,现如今在采矿工程中的应用也比较广泛。

本文首先介绍了岩体力学的时代背景,其次又从三方面探讨了岩石力学在采矿工程中的应用,分别是:对于深部开采所带来的灾害预测、矿山地应力场测量、大型深凹露天矿边坡设计优化。

【关键词】岩石力学;采矿工程;应用
1.简述采矿工程中岩体力学的特点
①采矿工程多处于地下较深处,而其它地下工程多在距地表较近(几十米)的范围内;②对矿山工程,只要求在开采期间不破坏,在采后能维持平衡状态不影响地表安全即可,故其计算精度、安全系数及加固等方面均低于国防、水利工程的标准;③矿山地质条件复杂,又受矿床赋存条件限制,故采矿工程的位置选择性不大,同时采掘工作面不断变化,因而采矿工程岩石力学具有复杂性的特点。

在岩体表面或其内部进行任何工程活动,都必须符合安全、经济和正常运营的原则。

以露天采矿边坡坡角选择为例,坡角选择过陡,会使边坡不稳定,无法正常采矿作业,坡角选择过缓,又会加大其剥采量,增加其采矿成本。

然而,要使岩体工程既安全稳定又经济合理,必须通过准确地预测工程岩体的变形与稳定性、正确的工程设计和良好的施工质量等来保证。

其中,准确地预测岩体在各种应力场作用下的变形与稳定性,进而从岩体力学观点出发,选择相对优良的工程场址,防止重大事故,为合理的工程设计提供岩体力学依据,是工程岩体力学研究的根本目的和任务。

2.岩石力学在采矿工程中的应用
岩石力学理论服务于采矿活动,其目的有四个方面。

(1)充分利用地壳内部各种应力来进行落矿、运矿以减少崩矿费用。

(2)尽可能地减少工程量,降低采矿成本。

(3)控制崩落矿石块度,减少二次破碎
(4)最大限度地提高生产规模,创造矿山经济效益。

2.1矿山地应力场测量
地应力是存在于底层中的天然应力,它是引起采矿水利水电、土木建筑、铁道、公路和其他各种地下或露天沿途开挖工程变形和破坏的根本作用力,是实现采矿和岩土开挖设计和决策科学化的必要前提。

对于矿山设计来讲,只有掌握了
具体工程区域的地应力条件,才能合理确定矿山的总体布置,选取适当的采矿方法,确定巷道和采场的最佳断面形状、断面尺寸、开挖步骤、直呼形式、支护结构参数、直呼时间等,从而在保证围岩稳定性的前提下,最大限度地增加矿石产量,提高矿山经济效益,实现采矿工程的优化。

目前普遍采用的地应力测量方法有应力解除法和水压致裂法两大类。

其中,套孔应力解除法是发展时间最长,技术比较成熟的映众地应力测量方法。

在测定原始应力的适用性和可靠性方面,目前还没有那种方法可以与之相比。

据统计,在全世界已经获得的地应力测量资料中,有80%是有应力解除法测得的。

对于矿山来讲,采用应力接触法更有得天独厚的条件。

因为矿山有系列的航道、硐室可接近地下测点,而不需要向水压致裂法那样必须打专门的钻孔才能到达测点。

因而对矿山地应力测量而言,采用应力解除法是最经济和可靠的。

2.2地下矿山采矿设计优化
矿床的形成过程、赋存状态和开采稳定性均受地应力场的控制。

为此,必须以地应力为切入点进行采矿设计优化。

即:根据实测地应力和扎实的工程地质、水文地质及矿岩物理力学性质等基础资料,以及实际的矿体赋存和开采条件,通过定量计算和分析,选择合理的采矿方法,确定最佳的开采总体布置、采场结构管参数、开采顺序、直呼加固和地压控制措施,实现安全高效的开采目标。

2.3大型深凹露天矿边坡设计优化
我国一大批大中型露天矿山已经或即将由山坡露天开采转为深凹开采。

随着边坡的价高架豆,边坡稳定性维护的难度越来越大,边坡滑移和倾倒破坏事故的发生日益频繁,严重威胁矿山的安全生产,制约矿山生产能力的提高。

但是另一方面,对于大型露天矿山,提高边坡角有事减少剥离和生产成本的重要手段。

国内外边坡稳定性分析和设计的传统方法是极限平衡法,这是一种静态的确定性分析方法,而实际的边坡状况是岁开采过程不断变化的,是动态的不确定性的;该方法是基于土力学理论提出来的,不能考虑实际的岩体条件,如断层、节理的存在,同时也不考虑地应力。

而实际上这些对边坡的稳定性和破坏起控制作用。

因而该方法度山坡露天矿设计可能是适用的,但对深凹露天矿设计并不适用。

为了克服传统的极限平衡分析方法的不足,必须采用现代的科学技术,充分考虑地应力的作用和实际的工程岩体条件,通过定量的计算分析,实现边坡设计的优化。

具体的试试路线为:采用数值模拟和极限平衡分析相结合的方法,对不同边坡角和边坡设计方案进行定量的计算和分析,在保证安全的前提下,尽可能低提高边坡角,减少剥离量,尽可能地减少生产成本,增加矿石产量和矿山效益。

2.4深部开采动力灾害预测与防治
深部开采动力灾害,包括岩爆、矿震、冲击地压,是深部开采中可能遇到的突出问题。

目前的研究技术路线为:从扎实的现场地应力测量、工程地质调查、岩石力学实验和现场检测资料的采集入手,以能量聚集和演化为主线,揭示岩爆发生的机理及其与采矿过程、地质构造和岩体特性的关系,对岩爆发生的时间、空间和强度进行定量的预测;将预测和防治、地下河地面、生产安全和环境安全融为一体进行评价和研究。

3.岩石力学在采矿工程中的发展趋势
岩石力学已经广泛应用到了采矿工程中的各个领域,而且其研究理论正在不断创新,研究手段也日新月异。

随着我国矿产资源的续开发,在采矿工程终将会遇到条件更复杂、拿督更大的岩石力学问题,因此,岩石力学与工程学科的理论水平和工程能力都有待进一步提高。

岩体力学的发展是和人类工程实践分不开的。

起初,由于岩体工程数量少,规模也小,人们多凭经验来解决工程中遇到的岩体力学问题。

因此,岩体力学的形成和发展要比土力学晚得多。

随着生产力水平及工程建筑事业的迅速发展,提出了大量的岩体力学问题。

由于岩体中具有天然应力、地下水等,并发育有各种结构面,所以它不仅具有弹性、脆性、塑性和流变性,而且还具有非线弹性、非连续性,以及非均质和各向异性等特征。

对于这样一种复杂的介质,不仅研究内容非常复杂,而且其研究方法和手段也应与连续介质力学有所不同。

今天,由于矿产资源勘探开采、能源开发及地球动力学研究等的需要,工程规模越来越大,所涉及的岩体力学问题也越来越复杂。

这对岩体力学提出了更高的要求。

[科]
【参考文献】
[1]李佃平,郭晓强,窦林名,韩荣军,刘衍高,刘辉.防冲煤柱合理宽度的确定方法研究及应用[J].金属矿山,2011(08).
[2]刘金龙,陈陆望,王吉利.考虑温度应力影响的立井井壁强度设计方法[J].岩石力学与工程学报,2011(08).
[3]华心祝,刘淑,刘增辉,查文华,李迎富.孤岛工作面沿空掘巷矿压特征研究及工程应用[J].岩石力学与工程学报,2011(08).
[4]杨宇江,李元辉,尹国光,韩洪江.露天转地下开采境界矿柱安全厚度稳定性分析[J].东北大学学报(自然科学版),2011(07).
[5]曹树刚,白燕杰,李勇,郭平,刘延保.具突出危险原煤瓦斯渗流特性试验[J].重庆大学学报,2011(07).。

相关文档
最新文档