PT100铂热电阻测温实验
实验四 热电阻测温特性实验

实验四热电阻测温特性实验(请先仔细阅读温控仪操作说明)一、实验目的:了解热电阻的测温原理与特性。
二、基本原理:热电阻用于测温时利用了导体电阻率随温度变化这一特性,对于热电阻要求其材料电阻温度系数大,稳定性好、电阻率高,电阻与温度之间最好有线性关系。
常用的有铂电阻和铜电阻,热电阻Rt与温度t的关系为:R t=R0(1+A t+B t2)本实验采用的是Pt100铂电阻,它的R0=100Ω,A t=3.9684×10-2/℃,B t=5.847×10-7/℃2,铂电阻采用三线连接法,其中一端接二根引线主要为了消除引线电阻对测量的影响。
三、仪器设备:K型热电偶、Pt100铂热电阻、温度控制仪、温度传感器实验模板。
四、实验步骤:图4-1 Pt100热电阻测温接线图1、按图4-1接线,将Pt100铂电阻的三根线分别接入温度实验模板上“Rt”输入端的a、b 点,用万用表欧姆档测量Pt100三根线,其中短接的二根线接b点,另一端接a点。
这样Pt100与R3、R1、Rw1、R4组成一直流电桥,它是一种单臂电桥。
Rw1滑动端与R6相接,Pt100的b点接R5。
2、按下模块上的电源按钮,将R5、R6端同时接地,接上电压表(2V档),调节Rw3,使V02=0V。
3、恢复图4-1连接,调节Rw1再次使V02=0V(此时电桥平衡,即桥路输出端b和RW1滑动端之间在室温下输出电压为零)。
4、将热电偶插到温控仪两个传感器插孔中任意一个插孔中,(K型、E型已装在一个护套内),K型热电偶的自由端接到温控仪面板上的EK端,用它作为标准传感器,配合温控仪用于设定温度,注意识别K型、E型引线标记及正极、负极不要接错。
5、将Pt100插入温度控制器的另一传感器插孔中,设定温控仪温度值为50℃,当温度稳定50℃时,记录下电压表读数,重新设定温度值为50℃+n·Δt,建议Δt=5℃,n=1……10,每隔1n读出数显表指示的电压值与温度表指示的温度值,并将结果填入下表4-1。
PT100温度测量试验

内燃机测试技术试验实验PT100热电阻温度测量试验实验学时:2实验类型:基础型实验对象:本科生一.实验目的:1.了解热电阻温度测量基本原理。
2.了解PT100热电阻温度特性。
3.掌握PT100热电阻恒流温度测量电路实现和关键参数计算。
二.实验原理及设备说明1.热电阻温度测量基本原理热电阻是中低温区最常用的一种温度检测器。
它的主要特点是测量精度高,性能稳定。
其中铂热电阻的测量精确度是最高的,它不仅广泛应用于工业测温,而且被制成标准的基准仪。
金属热电阻的感温元件有石英套管十字骨架结构,麻花骨架结构得杆式结构等。
金属热电阻常用的感温材料种类较多,最常用的是铂丝。
工业测量用金属热电阻材料除铂丝外,还有铜、镍、铁、铁—镍、钨、银等。
薄膜热电阻是利用电子阴极溅射的方法制造,可实现工业化大批量生产。
其中骨架用陶瓷,引线采用铂钯合金。
热电阻材料热电阻测温是基于金属导体的电阻值随温度的增加而增加这一特性来进行温度测量的。
热电阻大都由纯金属材料制成,目前应用最多的是铂和铜,此外,现在已开始采用镍、锰和铑等材料制造热电阻。
金属热电阻的电阻值和温度一般可以用以下的近似关系式表示,即Rt=Rt0[1+α(t-t0)]式中,Rt为温度t时的阻值;Rt0为温度t0(通常t0=0℃)时对应电阻值;α为温度系数。
半导体热敏电阻的阻值和温度关系为Rt=AeB/t式中Rt为温度为t时的阻值;A、B取决于半导体材料的结构的常数。
相比较而言,热敏电阻的温度系数更大,常温下的电阻值更高(通常在数千欧以上),但互换性较差,非线性严重,测温范围只有-50~300℃左右,大量用于家电和汽车用温度检测和控制。
金属热电阻一般适用于-200~500℃范围内的温度测量,其特点是测量准确、稳定性好、性能可靠,在程控制中的应用极其广泛。
工业上常用金属热电阻从电阻随温度的变化来看,大部分金属导体都有这个性质,但并不是都能用作测温热电阻,作为热电阻的金属材料一般要求:尽可能大而且稳定的温度系数、电阻率要大(在同样灵敏度下减小传感器的尺寸)、在使用的温度范围内具有稳定的化学物理性能、材料的复制性好、电阻值随温度变化要有间值函数关系(最好呈线性关系)。
Pt100铂电阻测温特性实验.

实验三十Pt100铂电阻测温特性实验一、实验目的:在实验二十九的基础上了解P t100热电阻—电压转换方法及P t100热电阻测温特性与应用。
二、基本原理:利用导体电阻随温度变化的特性,可以制成热电阻,要求其材料电阻温度系数大,稳定性好,电阻率高,电阻与温度之间最好有线性关系。
常用的热电阻有铂电阻(500℃以内)和铜电阻(150℃以内)。
铂电阻是将0.05~0.07mm的铂丝绕在线圈骨架上封装在玻璃或陶瓷内构成,图30—1是铂热电阻的结构。
在0~500℃以内,它的电阻R t与温度t的关系为:R t=R o(1+At+Bt2),式中: R o系温度为0℃时的电阻图30—1铂热电阻的结构值(本实验的铂电阻R o=100Ω)。
A=3.9684×10-3/℃,B=-5.847×10-7/℃2。
铂电阻一般是三线制,其中一端接一根引线另一端接二根引线,主要为远距离测量消除引线电阻对桥臂的影响(近距离可用二线制,导线电阻忽略不计)。
实际测量时将铂电阻随温度变化的阻值通过电桥转换成电压的变化量输出,再经放大器放大后直接用电压表显示,如图30—2所示。
图30—2热电阻信号转换原理图图中△V=V1-V2;V1=[R3/(R3+R t)]V c;V2=[R4/(R4+R1+R W1)]V c;-V2={[R3/(R3+R t)]-[R4/(R4+R1+R W1)]}V c;△V=V1所以Vo=K△V= K{[R3/(R3+R t)]-[R4/(R4+R1+R W1)]}V c。
式中R t随温度的变化而变化,其它参数都是常量,所以放大器的输出Vo与温度(R t)有一一对应关系,通过测量Vo可计算出R t:Rt=R3[K(R1+R W1)V c-(R4+R1+R W1)V o]/[KV c R4+(R4+R1+R W1)V o]。
P t100热电阻一般应用在冶金、化工行业及需要温度测量控制的设备上,适用于测量、控制<600℃的温度。
传感器实验报告1

传感器实验报告实验一Pt100铂电阻测温特性实验一、实验目的1.通过自行设计热电阻测温实验方案,加深对温度传感器工作原理的理解。
2.掌握测量温度的电路设计和误差分析方法。
二、实验内容1.设计PT100铂热电阻测温实验电路方案;2.测量PT100的温度与电压关系,要求测温范围为:室温~65℃;温度测量精度:±2℃;输出电压≤4V,输出以电压V方式记录。
3.通过测量值进行误差分析。
三、实验仪器、设备、材料主机箱、温度源、Pt100热电阻(2支)、温度传感器实验模板、万用表。
四、实验原理利用导体电阻随温度变化的特性,可以制成热电阻,要求其材料电阻温度系数大,稳定性好,电阻率高,电阻与温度之间最好有线性关系。
常用的热电阻有铂电阻(650℃以内)和铜电阻(150℃以内)。
铂电阻是将~mm的铂丝绕在线圈骨架上封装在玻璃或陶瓷管等保护管内构成。
在0-650℃以内,它的电阻Rt与温度t的关系为:Rt=Ro(1+At+Bt2),式中:Ro系温度为0℃时的电阻值(本实验的铂电阻Ro=100Ω)。
A=×10-3/℃,B=-×10-7/℃2。
铂电阻一般是三线制,其中一端接一根引线另一端接二根引线,主要为远距离测量消除引线电阻对桥臂的影响(近距离可用二线制,导线电阻忽略不计。
)。
实际测量时将铂电阻随温度变化的阻值通过电桥转换成电压的变化量输出,再经放大器放大后直接用电压表显示。
五、实验步骤1、用万用表欧姆档测出Pt100三根线中其中短接的二根线(同种颜色的线)设为1、2,另一根设为3,并测出它在室温时的大致电阻值。
2、在主机箱总电源、调节仪电源都关闭的状态下,再根据图1示意图接线,温度传感器实验模板中a、b(Rt)两端接传感器,这样传感器(Rt)与R3、R1、Rw1、R4组成直流电桥,是一种单臂电桥工作形式。
3、放大器调零:将图的温度传感器实验模板的放大器的两输入端引线(一根传感器引线、另一根桥路输出即Rw1活动触点输出)暂时不要引入,而用导线直接将放大器的两输入端相连(短接);将主机箱上的电压表量程(显示选择)切换开关打到2V档,合上主机箱电源开关,调节温度传感器实验模板中的RW2(逆时针转到底)增益电位器,使放大器增益最小;再调节RW3(调零电位器)使主机箱的电压表显示为0。
PT100铂热电阻测温实验

PT100铂热电阻测温实验PT100铂热电阻测温实验一、实验目的1.了解PT100铂热电阻的测温原理;2.掌握PT100铂热电阻的测温方法;3.学会使用数据采集仪进行温度测量。
二、实验原理PT100铂热电阻是一种利用铂金电阻随温度变化的特性来测量温度的传感器。
其基本原理是:在0℃时,PT100铂热电阻的阻值为100Ω,随着温度的升高,其阻值按一定规律增加。
通过测量PT100铂热电阻的阻值,可以推算出相应的温度值。
PT100铂热电阻的阻值与温度之间的关系可以用斯特曼方程表示:R(T) = R0(1 + AT + BT^2 + CT^3(1 - T0))其中,R(T)为温度T时的阻值,R0为0℃时的阻值,A、B、C为斯特曼系数,T0为参考温度(通常为0℃)。
在本实验中,我们只需要知道R0和A的值即可进行温度测量。
根据国际电工委员会(IEC)标准,PT100铂热电阻的R0为100Ω,A 为3.9083×10^-3℃。
三、实验步骤1.将PT100铂热电阻接入数据采集仪的输入通道;2.打开数据采集仪软件,设置采样率和采样时间;3.将数据采集仪与计算机连接,启动数据采集软件;4.将PT100铂热电阻放入恒温槽中,设置恒温槽的温度;5.等待恒温槽温度稳定后,记录数据采集仪显示的温度值;6.重复步骤4和5,改变恒温槽的温度,记录多个温度值;7.将实验数据整理成表格,进行分析和处理。
四、实验结果与分析实验数据如下表所示:根据实验数据,我们可以得出以下结论:1.PT100铂热电阻的测温精度较高,相对误差在±0.5%以内;2.随着温度的升高,PT100铂热电阻的阻值逐渐增大,与斯特曼方程的描述相符;3.数据采集仪能够准确地采集PT100铂热电阻的温度信号,并将其转换为数字量输出。
五、实验总结与体会通过本次实验,我们了解了PT100铂热电阻的测温原理和方法,并掌握了使用数据采集仪进行温度测量的技能。
温度检测试验试验指导

实验1 铂热电阻温度特性测试一、实验目的:了解铂热电阻的特性与应用。
二、实验仪器:智能调节仪、PT100(2只)、温度源、温度传感器实验模块。
三、实验原理:利用导体电阻随温度变化的特性,热电阻用于测量时,要求其材料电阻温度系数大,稳定性好,电阻率高,电阻与温度之间最好有线性关系。
当温度变化时,感温元件的电阻值随温度而变化,这样就可将变化的电阻值通过测量电路转换电信号,即可得到被测温度。
四、实验内容与步骤1.学会用智能调节仪来控制温度:1)在控制台上的“智能调节仪”单元中“输入”选择“Pt100”,并按图1-1接线。
将“+24V输出”经智能调节仪“继电器输出”,接加热器风扇电源,打开调节仪电源。
图1-1 智能调节仪温度控制接线图2)按键,进入智能调节仪设置菜单,仪表靠上的窗口显示“”,靠下窗口显示待设置的设定值。
按“”可改变小数点位置,按或键可修改靠下窗口的设定值。
再按回到初始状态。
2.调节智能调节仪,将温度控制在500C,在另一个温度传感器插孔中插入另一只铂热电阻温度传感器PT100。
3.将±15V直流稳压电源接至温度传感器实验模块。
温度传感器实验模块的输出Uo2接实验台直流电压表。
4.将温度传感器模块上差动放大器的输入端Ui短接,调节电位器Rw4使直流电压表显示为零。
5按图2-2并将PT100的3根引线插入温度传感器实验模块中Rt两端(其中颜色相同的两个接线端是短路的)。
图2-2 铂热电阻测试5.拿掉短路线,将R6两端接到差动放大器的输入Ui,记下模块输出Uo2的电压值。
6.改变温度源的温度每隔50C记下Uo2的输出值。
直到温度升至1200C。
并将实验结果填入下表。
三、实验报告根据表1实验数据,作出U O2-T曲线,分析PT100的温度特性曲线,计算其非线性误差。
实验2 K型热电偶测温实验一、实验目的:了解K型热电偶的特性与应用二、实验仪器:智能调节仪、PT100、K型热电偶、温度源、温度传感器实验模块。
金属铂电阻PT100传感器测温

2.5
2
1.5
电电/ V
1
0.5
0
-0.5
15
20
25
30
35
40
45
50
温温
图 4. 温度-电压曲线
拟合曲线方程为 y=0.0666x-1.0196,计算标准差为 0.2691。线性度比较好。 产生实验误差主要原因及改进措施如下: (1)万用表测温度只能精确到度,而加热器温度上升缓慢,在万用表温度示数不变时, 台表测试的输出电压不断上升,不同的时刻读到的值不同,造成一定误差。采用更精确的测 温装置能减小误差。 (2)PT100 引线电阻随温度变化对实验结果造成影响。实际应用中常采用三线制或四线 制接线方式,但实验室提供的 PT100 只有两根引出线,无法减小引线电阻变化的影响。 (3)测温电路本身的非线性等原因。此项误差由电路设计保证,非常小,可以忽略不计。
图 1. INA129 内部结构图
由芯片资料知,通过配置 1 脚和 8 脚之间的外接电阻 RG 即可调节电路的增益。题目要求
测温范围为室温~65 °C ,此时 PT100 电阻变化约为 20 Ω ,输出电压变化约为 10mV。题目要
求输出电压不超过
4V,故取
RG
=150
Ω
,此时放大器的放大倍数
G
=
1
+
49.4kΩ RG
=330.3
倍,不
超过 4V,满足设计要求。 综上,设计实验电路如图 2。
-2-
图 2. 电路原理图
三、实验步骤
1.用万用表测量室温,和室温时的 PT100 电阻值。PT100 的阻值预设 R3 的值。
万用表得的室温为 16 °C ,室温时 PT100 的电阻值为 105.24 Ω ,查表知该阻值对应的温度
PT100温度测量试验

内燃机测试技术试验实验PT100热电阻温度测量试验实验学时:2实验类型:基础型实验对象:本科生一.实验目的:1.了解热电阻温度测量基本原理。
2.了解PT100热电阻温度特性。
3.掌握PT100热电阻恒流温度测量电路实现和关键参数计算。
二.实验原理及设备说明1.热电阻温度测量基本原理热电阻是中低温区最常用的一种温度检测器。
它的主要特点是测量精度高,性能稳定。
其中铂热电阻的测量精确度是最高的,它不仅广泛应用于工业测温,而且被制成标准的基准仪。
金属热电阻的感温元件有石英套管十字骨架结构,麻花骨架结构得杆式结构等。
金属热电阻常用的感温材料种类较多,最常用的是铂丝。
工业测量用金属热电阻材料除铂丝外,还有铜、镍、铁、铁—镍、钨、银等。
薄膜热电阻是利用电子阴极溅射的方法制造,可实现工业化大批量生产。
其中骨架用陶瓷,引线采用铂钯合金。
热电阻材料热电阻测温是基于金属导体的电阻值随温度的增加而增加这一特性来进行温度测量的。
热电阻大都由纯金属材料制成,目前应用最多的是铂和铜,此外,现在已开始采用镍、锰和铑等材料制造热电阻。
金属热电阻的电阻值和温度一般可以用以下的近似关系式表示,即Rt=Rt0[1+α(t-t0)]式中,Rt为温度t时的阻值;Rt0为温度t0(通常t0=0℃)时对应电阻值;α为温度系数。
半导体热敏电阻的阻值和温度关系为Rt=AeB/t式中Rt为温度为t时的阻值;A、B取决于半导体材料的结构的常数。
相比较而言,热敏电阻的温度系数更大,常温下的电阻值更高(通常在数千欧以上),但互换性较差,非线性严重,测温范围只有-50~300℃左右,大量用于家电和汽车用温度检测和控制。
金属热电阻一般适用于-200~500℃范围内的温度测量,其特点是测量准确、稳定性好、性能可靠,在程控制中的应用极其广泛。
工业上常用金属热电阻从电阻随温度的变化来看,大部分金属导体都有这个性质,但并不是都能用作测温热电阻,作为热电阻的金属材料一般要求:尽可能大而且稳定的温度系数、电阻率要大(在同样灵敏度下减小传感器的尺寸)、在使用的温度范围内具有稳定的化学物理性能、材料的复制性好、电阻值随温度变化要有间值函数关系(最好呈线性关系)。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
PT100铂热电阻测温实验(预习报告)
一、实验原理
1.铂热电阻工作原理
铂热电阻的电阻值可以随温度而上升,因而可以用来测量温度。
铂电阻用来测量温度有很多其它金属所无法比拟的优点:温度和电阻的关系接近于线性关系,偏差极小,且性质稳定,不随时间和化学环境的变化而有明显的变化,可靠性好,热响应时间短。
PT100铂热电阻是指该电阻在0摄氏度的时候电阻值为100欧。
2.实验设计电路
目前使用铂热电阻测量温度的主要方法有电桥式和恒流源式,目前用于气象温度测量的主要是恒流源式的方法。
因为本实验的目的主要在于探究铂电阻在测温中的应用,所以在这里我把两种方案都讨论一下。
首先是恒流源式的铂电阻测温电路,其基本原理如图1所示
图1恒流源式铂电阻测温电路
恒流源与铂电阻组成电流回路,放大器和铂电阻组成电压回路。
电流回路中的电流是恒定的,当铂电阻的电阻值随温度发生变化时,其两端的电压会发生相应的变化,放大器是输入阻抗极大的集成电路,因此电压回路中的电流极小,铂电阻两端的电压可以经过很长的导线传输而几乎没有损失,消除了导线电阻的影响,放大器的输出经过A/D转换器即可转换为相应的数字信号。
在这种检测电路中,对恒流源以及A/D转换电路参考电压的准确度和稳定性要求比较高,会给最后的温度测量带来一定的误差。
如图2 所示为我设计的恒流源
图2我设计的恒流源1
该恒流源输出可调,可以控制测量系统的灵敏度,输入输出关系为
I out =V in −0.7R 1
推导过程:由于运算放大器处于深度负反馈状态,所以有Vin=V1,三极管上压降大约为0.7V ,所以V2=Vin -0.7,由此流过电阻的电流为
I e =V in −0.7R 1
由于三极管的射极电流和集电极电流大致相等,所以有
I out ≈I e =V in −0.7
R 1
上图所示的电路中输入电压在10V 的时候,输出电流为5mA 。
虽然上图中所示电路较为精确,不过因为输出没有接地,所以电压是浮空的。
对于有接地要求的测量无法满足要求,所以有改进型的Howland 电流源,如 图 3 所示。
图 3我设计的直流电源2
该可控恒流源的输入输出关系为
I out =
V in ∗A V R 5
A v
=
R 3R 1
=
R 4R 2
上图所示的电路中输入电压为10V 时输出电流为5mA 。
推导过程:根据放大器深度反馈时具有的深度反馈的性质有下列等式成立
U 4=U 6−U 2R 4+R 2∗R 2+U 2=R 2∗U 6+R 4∗U 2
R 2+R 4
U 3=
U 5−U 1R 3+R 1∗R 1+U 1=R 1∗U 5+R 3∗U 1
R 1+R 3
U 4=U 3
在R3=R4,R1=R2,的条件下可以推出下列等式
R 1(U 6−U 5)=R 3(U 1−U 2)
又因为
V in =U 1−U 2
I out =(U 6−U 5)R 5
+
-U1U2
所以
I out=V in∗A V
R5A v=R3
R1
=R4
R2
接下来讨论电桥式铂电阻测温的方法,也就是实验指导书中要求的方法,电桥式铂电阻测温常用的有三线制和四线制,分别如图4 图5所示。
图 4 三线制电桥法铂电阻测温
图 5 四线制电桥法测温
由于实际测量中,电阻变化不大,且需要减小测量电路对电桥的影响,所以我们需要加上一个前级放大。
我们对前级放大的要求有:输入输出线性度好,电路产生噪声小,输入阻抗越大越好,比较好的选择是仪用放大器,不过由于要求是使用运算放大器,所以我们设计了一个差分放大器如图6 所示。
图 6 差分放大器设计
该放大器的输入阻抗约为集成运放的输入阻抗,由于是差分放大,能有效抑制共模噪声,在不超过0.9倍电源轨的情况线性度非常好。
该电路在R3=R1,R5=R4,R6=R7的情况下,输入输出方程为
V out =(R 2+R 1)R 2∗R 6
R 4
(V 1−V 2)
上图中的电路放大倍数为6倍。
推导过程:如图所示,根据放大器虚短虚断可以推出下列等式
V 3=V 1−V 2−V 1
R 2∗R 1=(R 2+R 1)V 1−R 1∗V 2R 2
V 4=V 2−V 1−V 2
R 2∗R 3=(R 3+R 2)V 2−R 3∗V 1R 2
V out =
V 3R 6(R 5+R 7)(R 4+R 6)R 5
−V 4R 7
R 5
在R3=R1R5=R4,R6=R7的时候,这些等式可以化简为
V out =
(R 2+R 1)R 2∗R 6
R 4
(V 1−V 2)
二、 实验目的
通过自行设计热电阻测温方案,加深对温度传感器工作原理的理解。
了解铂热电阻的特性与应用。
掌握测温电路的设计与实验数据的分析方法。
三、 实验内容
设计pt100铂热电阻测温电路。
测量pt100的温度与电压关系,要求测温范围为室温~65℃,误差允许范围:±2℃,输出电压为0~4V ,输出以电压方式记录。
通过测量所得数据进行误差分析。
四、 实验设备
pt100铂热电阻,面包板,传感器实验仪,双路直流稳压电源,数字万用表。
Vout
V1
五、实验步骤
1)完成系统方案设计,计算电阻值和选择电源电压大小;
2)按照设计图接线,搭建实验电路;
3)调节变阻器使电桥平衡,测取室温;
4)加热电阻,测取PT100 温度传感器在每上升2度时的数据;
5)对数据结果进行处理分析。