(完整版)华东理工大学高等数学(下册)第11章作业答案.doc
华东理工大学继续教育学院《高等数学》(下)练习试卷(4)(答案)

华东理工大学继续教育学院成人教育《高等数学》(下)(专升本68学时)练习试卷(4)(答案)一、单项选择题1、设(,)ln 2y f x y x x ⎛⎫=+ ⎪⎝⎭,则(1,0)x f = 答( A )(A) 1 (B) -1(C)(D) 解:(知识点:偏导数的概念、偏导数的计算方法)22312()(,)(1)22x y x y f x y y x x xy x x-=-=++ (1,0)1x f ⇒=, 所以选(A ) 2、下列方程中哪一个是椭球面方程 答( B )(A )2229x y z ++= (B )2222149y z x ++= (C )2229x y z +-= (D )2222149y z x +-= 解:(知识点:二次曲面)2222149y z x ++=可表示为222222123x y z ++=,它是椭球面方程,所以选(B ) 3、设y x xy u +=,则22yu∂∂= 答( C )(A) 2()x x y +(B) 222()x x y -+ (C) 232()x x y -+ (D) 2x y y -解:(知识点:二阶偏导数的概念、二阶偏导数的计算方法)222222233(2)2, ()()()()u x y y x u x x x y x y x y y x y x y ∂+-∂-===⋅=-∂++∂++, 所以选(C )4、如果(,)f x y 在点00(,)x y 的某邻域内连续,则0(,)f x y 答( A ) (A )在0x 点连续 (B )在0x 点可导 (C )在0x 点可微 (D )在0x 点有极值 解:(知识点:函数连续、可导、可微、极值的概念)因为(,)f x y 在点00(,)x y 的某邻域内连续 0(,)f x y ⇒在0x 点连续,所以选(A )5、微分方程 '''28sin 2y y y x +-=的一个特解形式p y = 答( C )(A )cos2p y a x = (B )(cos2sin2)p y x a x b x =+ (C )cos2sin 2p y a x b x =+ (D )sin 2p y b x=解:(知识点:二阶线性常系数非齐次微分方程的特解形式) 特征方程:220λλ+-=,特征根:122,1λλ=-=,根据特解形式可设方程的特解为: c o s 2s i n 2p y a x b x =+, 所以选(C )二、填空题1、设方程 2sin 0x z y ye z ++= 确定的隐函数(,)z z x y =,则 zx∂=∂ 解:(知识点:多元隐函数的概念、隐函数求导法)将方程两边对x 求偏导得sin 20x z zy ye z x x∂∂++=∂∂, 解得 2sin xz ye x z y∂=-∂+2、函数y = ⎽⎽⎽ ⎽⎽⎽⎽ 。
高数下册第11章解析

则 1时级数收敛; 1 时级数发散; 1时失效.
(5) 根值审敛法 (柯西判别法)
设 un 是正项级数,
n1
如果lim n n
un
(为数或 ),
则 1时级数收敛; 1时级数发散; 1时失效.
3、交错级数及其审敛法
定义 正 、负项相间的级数称为交错级数.
(1)n1un或 (1)nun (其中un 0)
如果级数 an x n 在x x0处发散,则它在满足
n0
不等式 x x0 的一切x 处发散.
推论
如果幂级数 an x n 不是仅在x 0 一点收敛,也
n0
不是在整个数轴上都收敛,则必有一个完全确定
的正数 R 存在,它具有下列性质:
当 x R时,幂级数绝对收敛;
当 x R时,幂级数发散;
函数
1、常数项级数
定义
un u1 u2 u3 un
n1
n
级数的部分和 sn u1 u2 un ui
i 1
级数的收敛与发散
常数项级数收敛(发散)
lim
n
sn
存在(不存在).
收敛级数的基本性质
性质1: 级数的每一项同乘一个不为零的常数, 敛散性不变.
性质2:收敛级数可以逐项相加与逐项相减.
(2)
讨论
lim
n
Rn
0
或
f
(n) ( x)
M,
则级数在收敛区间内收敛于 f ( x).
b.间接法 根据唯一性, 利用常见展开式, 通过 变量代换, 四则运算, 恒等变形, 逐项求导, 逐项积 分等方法,求展开式.
(4) 常见函数展开式
e x 1 x 1 x2 1 xn x (,)
高数 下 典型习题及参考答案 第8、9、10、11、12章习题及答案

4 f (x, y)dy
x2
0
0
0
C、
4
y
∫0 dy∫0
f
(x,
y )dx
D、
4
∫0 dy∫0
y
f
(x,
y)dx
2、设 Ω 是由 x = 0, x = 1, y = 0, y = 1, z = 0, z = 1所围成的区域,则 ∫∫∫ xyzdxdydz =
Ω
3、旋转抛物面 z = x 2 + y 2 在 0 ≤ z ≤ 2 那部分的曲面面积 S=( ) 2
−a
a2 −x2
0
−a
28、设 D 由 x 轴和 y = sin x, x ∈ [0,π ]所围成,则积分 ∫∫ dσ = D
29、设 Ω :
0
≤
x
≤
1,0
≤
y
≤ 1,0
≤
z
≤
K
,且
∫∫∫
xdxdydz =
1 4
,则
K
=
Ω
二、解答题
( ) ( ) 1、计算三重积分 ∫∫∫ x2 + y 2 dv ,其中Ω是由曲面 2 x2 + y 2 = z 与平面 z = 4所围成的区域。
Ω
∫ ∫ ∫ ∫ ∫ ∫ ( ) 正确的(
)A、
2π
dθ
a
1
dr
r 3dz
B、
2π
dθ
a
dr
1
r
r2
+
z2
dz
0
0
0
0
0
0
∫ ∫ ∫ ∫ ∫ ∫ ( ) C、
2π
高等数学下册 第十一章 综合练习题答案

第十一章自测题参考答案一、填空题: 1.()⎰Γ++ds R Q P γβαcos cos cos 切向量2.()⎰⎰∑++dS R Q P γβαcos cos cos 法向量3.⎰⎰⎪⎪⎭⎫ ⎝⎛∂∂-∂∂D dxdy y P x Q 4. 0 5. π4 6. π2 7. 0 8.()⎰⎰101,dy y x f dx , ()⎰⎰-110,dy y x f dx , 09.()⎰-Lds x x y x P 22,二、选择题:1.C2.C3.A4.A5.D 三、计算题:1.解 由于曲线L 表达式中x ,y, z 是对称的,所以⎰Lds x 2=⎰Lds y 2=⎰Lds z 2,故⎰L ds x 2=()⎰++ds z y x 22231=3223223131a a a ds a L ππ=⋅=⎰. 2.解 原式=()[](){}⎰+---π20sin cos 1cos 12dt t t t()⎰+=π202sin sindt t t =π202sin 2121⎪⎭⎫ ⎝⎛-t t =π 3.解 记222:y x a z S --=,D :xoy 平面上圆域222a y x ≤+原式=()dxdy y z x z y x a y x D222221⎪⎪⎭⎫⎝⎛∂∂+⎪⎭⎫ ⎝⎛∂∂+--++⎰⎰ =()⎰⎰--⋅--++Ddxdy yx a y x a y x a2222221注意到积分区域D 关于坐标轴的对称性及被积函数的奇偶性知⎰⎰--Ddxdy yx a x 222=⎰⎰--Ddxdy yx a y 222=0,所以原式=⎰⎰Ddxdy a=2aa π⋅=3a π.4.解 利用高斯公式原式=()⎰⎰⎰Ω++dxdydz z y x 2其中Ω为S 所围成的空间区域。
由Ω关于坐标平面的对称性知⎰⎰⎰Ωxdxdydz =⎰⎰⎰Ωydxdydz =0,所以,原式=⎰⎰⎰Ωzdxdydz 2=⎰⎰⎰+1222y x D zdz dxdy xy=()⎰⎰--xyD dxdy y x 221=()⎰⎰-12201ρρρθπd d=2412ππ=⋅5.解 原式=()()[]()⎰+--π202222sin cos 1cos 1dt t a t a t a=()⎰-π20253cos 12dt t a =⎰π20253sin 8dt at=du u a⎰π53sin 16=315256a 6.解 ()()()()()x f y x Q y x f e y x P x -=+=,,,要使曲线积分与路径无关,当且仅当xQ y P ∂∂=∂∂,即()()x f x f e x '-=+ 解此微分方程可得()x xe Cex f 21-=-,又()210=f ,所以C =1,故()x x e e x f 21-=- 现在计算从()0,0A 到()1,1B 的曲线积分的值.由于积分与路径无关,故选取有向折线________CB AC +进行积分,其中()0,1C 。
高等数学 课后习题答案第十一章

习题十一1.设L 为xOy 面内直线x =a 上的一段,证明:(),d 0L P x y x =⎰其中P (x ,y )在L 上连续. 证:设L 是直线x =a 上由(a ,b 1)到(a ,b 2)这一段,则 L :12x ab t b y t =⎧≤≤⎨=⎩,始点参数为t =b 1,终点参数为t =b 2故()()()221d ,d d 0d 0d b b L b b a P x y x P a,t t P a,t t t ⎛⎫=⋅=⋅= ⎪⎝⎭⎰⎰⎰2.设L 为xOy 面内x 轴上从点(a ,0)到点(b ,0)的一段直线,证明:()(),d 0d bLaP x y x P x,x=⎰⎰,其中P (x ,y )在L 上连续.证:L :0x xa xb y =⎧≤≤⎨=⎩,起点参数为x =a ,终点参数为x =b .故()(),d ,0d bL a P x y x P x x=⎰⎰3.计算下列对坐标的曲线积分:(1)()22d -⎰Lx y x,其中L 是抛物线y =x 2上从点(0,0)到点(2,4)的一段弧;(2)d L xy x ⎰其中L 为圆周(x -a )2+y 2=a 2(a >0)及x 轴所围成的在第一象限内的区域的整个边界(按逆时针方向绕行);(3)d d L y x x y +⎰,其中L 为圆周x =R cos t ,y =R sin t 上对应t 从0到π2的一段弧; (4)()()22d d Lx y x x y yx y +--+⎰,其中L 为圆周x 2+y 2=a 2(按逆时针方向绕行);(5)2d d d x x z y y z Γ+-⎰,其中Γ为曲线x =kθ,y =a cos θ,z =a sin θ上对应θ从0到π的一段弧; (6)()322d 3d ++-⎰x x zy x y z Γ,其中Γ是从点(3,2,1)到点(0,0,0)的一段直线;(7)d d d L x y y z -+⎰,其中Γ为有向闭拆线ABCA ,这里A ,B ,C 依次为点(1,0,0),(0,1,0),(0,0,1);(8)()()222d 2d L x xy x y xy y-+-⎰,其中L 是抛物线y =x 2上从点(-1,1)到点(1,1)的段弧.解:(1)L :y =x 2,x 从0变到2,()()22222435001156d d 3515L x y x x x x x x ⎡⎤-=-=-=-⎢⎥⎣⎦⎰⎰ (2)如图11-1所示,L =L 1+L 2.其中L 1的参数方程为图11-1cos 0πsin x a a tt y a t =+⎧≤≤⎨=⎩ L 2的方程为y =0(0≤x ≤2a )故()()()()()12π20π320ππ32203d d d 1+cost sin cos d 0d sin 1cos d sin d sin dsin π2LL L axy x xy x xy xa a t a a t t x a t t ta t t t ta =+'=⋅++=-+=-+=-⎰⎰⎰⎰⎰⎰⎰⎰(3)()π20π220π220d d sin sin cos cos d cos 2d 1sin 220Ly x x y R t R t R tR t tRt tR t +=-+⎡⎤⎣⎦=⎡⎤=⎢⎥⎣⎦=⎰⎰⎰(4)圆周的参数方程为:x =a cos t ,y =a sin t ,t :0→2π.故 ()()()()()()222π202π220d d 1cos sin sin cos sin cos d 1d 2πLx y x x y yx y a t a t a t a t a t a t t a a t a +--+=+---⎡⎤⎣⎦=-=-⎰⎰⎰(5)()()()2π22π3220π3320332d d d sin sin cos cos d d 131ππ3x x z y y zk k a a a a k a k a k a Γθθθθθθθθθθ+-=⋅+⋅--=-⎡⎤=-⎢⎥⎣⎦=-⎰⎰⎰(6)直线Γ的参数方程是32=⎧⎪=⎨⎪=⎩x t y t z t t 从1→0.故()032210314127334292d 87d 1874874t t t t t tt tt ⎡⎤=⋅+⋅⋅+-⋅⎣⎦==⋅=-⎰⎰(7)AB BC CA Γ=++(如图11-2所示)图11-21:0y x AB z =-⎧⎨=⎩,x 从0→1()01d d d 112AB x y y z dx -+=--=-⎡⎤⎣⎦⎰⎰. 0:1x BC y z =⎧⎨=-⎩,z 从0→1()()()1010120d d d 112d 12232BC x y y z z dz z zz z -+=--+-⎡⎤⎣⎦=-⎡⎤=-⎢⎥⎣⎦=⎰⎰⎰0:1y CA z x =⎧⎨=-⎩,x 从0→1[]1d d d 1001CAx y y z dx -+=-+=⎰⎰.故()()d d d d d d 312122LABBCCAx y y zx y y z-+=++-+=-++=⎰⎰⎰⎰(8)()()()122421123541222d 224d 1415x x x x x x x xxx x x x--⎡⎤=-⋅+-⋅⋅⎣⎦=-+-=-⎰⎰4.计算()()d d Lx y x y x y ++-⎰,其中L 是(1)抛物线y 2=x 上从点(1,1)到点(4,2)的一段弧; (2)从点(1,1)到点(4,2)的直线段;(3)先沿直线从(1,1)到点(1,2),然后再沿直线到点(4,2)的折线; (4)曲线x =2t 2+t +1,y =t 2+1上从点(1,1)到点(4,2)的一段弧.解:(1)L :2x y y y ⎧=⎨=⎩,y :1→2,故()()()()()2221232124321d d 21d 2d 111232343L x y x y x yy y y y y yy y y yy y y ++-⎡⎤=+⋅+-⋅⎣⎦=++⎡⎤=++⎢⎥⎣⎦=⎰⎰⎰(2)从(1,1)到(4,2)的直线段方程为x =3y -2,y :1→2故()()()()()2121221d d 32332d 104d 5411L x y x y x y y y y y y y yy y ++-=-+⋅+-+⎡⎤⎣⎦=-⎡⎤=-⎣⎦=⎰⎰⎰(3)设从点(1,1) 到点(1,2)的线段为L 1,从点(1,2)到(4,2)的线段为L 2,则L =L 1+L 2.且L 1:1x y y =⎧⎨=⎩,y :1→2;L 2:2x x y =⎧⎨=⎩,x :1→4;故()()()()()12122211d d 101d 1d 212L x y x y x yy y y y y y y ++-=+⋅+-⎡⎤⎣⎦⎡⎤=-=-⎢⎥⎣⎦=⎰⎰⎰()()()()()()24144211d d 220d 12d 22272L x y x y x yx x x x x x ++-=++-⋅⎡⎤⎣⎦⎡⎤=+=+⎢⎥⎣⎦=⎰⎰⎰ 从而()()()()()12d d d d 1271422LL L x y x y x y x y x y x y++-=+++-=+=⎰⎰⎰(4)易得起点(1,1)对应的参数t 1=0,终点(4,2)对应的参数t 2=1,故()()()()()()122132014320d d 32412d 10592d 10592432323L x y x y x y t t t tt t tt t t tt t t t ++-⎡⎤=++++--⋅⎣⎦=+++⎡⎤=+++⎢⎥⎣⎦=⎰⎰⎰ 5.设质点受力作用,力的反方向指向原点,大小与质点离原点的距离成正比,若质点由(a ,0)沿椭圆移动到B (0,b ),求力所做的功.解:依题意知 F =kxi +kyj ,且L :cos sin x a t y a t =⎧⎨=⎩,t :0→π2()()()()π2022π20π222022d d cos sin sin cos d sin 2d 2cos 2222LW kx x ky yka t t kb t b t t k b a t tk b a t k b a =+=-+⋅⎡⎤⎣⎦-=--⎡⎤=⎢⎥⎣⎦-=⎰⎰⎰(其中k 为比例系数)6.计算对坐标的曲线积分:(1)d Lxyz z⎰,Γ为x 2+y 2+z 2=1与y =z 相交的圆,方向按曲线依次经过第Ⅰ、Ⅱ、Ⅲ、Ⅳ封限;(2)()()()222222d d d Lyz x z x y x y z-+-+-⎰,Γ为x 2+y 2+z 2=1在第Ⅰ封限部分的边界曲线,方向按曲线依次经过xOy 平面部分,yOz 平面部分和zOx 平面部分. 解:(1)Γ:2221x y z y z ⎧++=⎨=⎩ 即2221x z y z ⎧+=⎨=⎩其参数方程为:cos 2sin 22sin 2x t y t z t =⎧⎪⎪⎪=⎨⎪⎪=⎪⎩ t :0→2π故:2π2π2202π202π0222d cos sin sin cos d 2222sin cos d 42sin 2d 1621cos 4d 1622π16xyz z t t t t t t t t t t ttΓ=⋅⋅⋅==-==⎰⎰⎰⎰⎰(2)如图11-3所示.图11-3Γ=Γ1+Γ2+Γ3.Γ1:cos sin 0x t y t z =⎧⎪=⎨⎪=⎩ t :0→π2,故()()()()()1222222π2220π3320π320d d d sin sin cos cos d sincos d 2sin d 24233yz x z x y x y zt t t t tt t tt tΓ-+-+-⎡⎤=--⋅⎣⎦=-+=-=-⋅=-⎰⎰⎰⎰又根据轮换对称性知()()()()()()1222222222222d d d 3d d d 4334y z x z x y x y zy z x z x y x y zΓΓ-+-+-=-+-+-⎛⎫=⨯- ⎪⎝⎭=-⎰⎰7.应用格林公式计算下列积分:(1)()()d d 24356+-++-⎰x y x y x y Γ, 其中L 为三顶点分别为(0,0),(3,0)和(3,2)的三角形正向边界;(2)()()222d d cos 2sin e sin 2e x x L x yx y x xy x y x x y ++--⎰,其中L 为正向星形线()2223330x y a a +=>;(3)()()3222d d 2cos 12sin 3+--+⎰L x y xy y x y x x y ,其中L 为抛物线2x =πy 2上由点(0,0)到(π2,1)的一段弧;(4)()()22d d sin Lx yx y x y --+⎰,L 是圆周22y x x =-上由点(0,0)到(1,1)的一段弧;(5)()()d d e sin e cos xx Lx yy my y m +--⎰,其中m 为常数,L 为由点(a ,0)到(0,0)经过圆x 2+y 2=ax上半部分的路线(a 为正数).图11-4解:(1)L 所围区域D 如图11-4所示,P =2x -y +4,Q =3x +5y -6,3Q x ∂=∂,1P y ∂=-∂,由格林公式得()()d d 24356d d 4d d 4d d 1432212LD DDx yx y x y Q P x y x y x yx y+-++-∂∂⎛⎫-= ⎪∂∂⎝⎭===⨯⨯⨯=⎰⎰⎰⎰⎰⎰⎰(2)P =x 2y cos x +2xy sin x -y 2e x ,Q =x 2sin x -2y e x ,则2cos 2sin 2e xPx x x x y y ∂=+-∂, 2cos 2sin 2e xQx x x x y x ∂=+-∂.从而P Q y x ∂∂=∂∂,由格林公式得. ()()222d d cos 2sin e sin 2e d d 0++--∂∂⎛⎫-= ⎪∂∂⎝⎭=⎰⎰⎰x x LD x yxy x xy x y x x y Q P x y x y(3)如图11-5所示,记OA ,AB ,BO 围成的区域为D .(其中BO =-L )图11-5P =2xy 3-y 2cos x ,Q =1-2y sin x +3x 2y 2 262cos Pxy y x y ∂=-∂,262cos Q xy y x x ∂=-∂ 由格林公式有:d d d d 0L OA AB D Q P P x Q y x y x y -++∂∂⎛⎫-+== ⎪∂∂⎝⎭⎰⎰⎰故π21220012202d d d d d d d d ππd d 12sin 3243d 12π4π4++=+=+++⎛⎫=+-+⋅⋅ ⎪⎝⎭⎛⎫=-+ ⎪⎝⎭=⎰⎰⎰⎰⎰⎰⎰LOA AB OA ABP x Q y P x Q yP x Q y P x Q yO x yy y y y y(4)L 、AB 、BO 及D 如图11-6所示.图11-6由格林公式有d d d d ++∂∂⎛⎫-+=- ⎪∂∂⎝⎭⎰⎰⎰L AB BO D Q P P x Q y x y x y而P =x 2-y ,Q =-(x +sin 2y ).1∂=-∂Py ,1∂=-∂Q x ,即,0∂∂-=∂∂Q P x y于是()d d d d 0+++++=+=⎰⎰⎰⎰LABBOL AB BOP x Q y P x Q y从而()()()()()()()22222211220011300d d d d sin d d d d sin sin d d 1sin 131sin 232471sin 264L LBA OB P x Q y x y x y x y x y x y x y x y x y x y y x xy x y y +=--+=-+--+-+=-++⎡⎤⎡⎤=+-+⎢⎥⎢⎥⎣⎦⎣⎦=-+⎰⎰⎰⎰⎰⎰(5)L ,OA 如图11-7所示.图11-7P =e x sin y -my , Q =e x cos y -m , e cos x Py m y ∂=-∂,e cos x Q y x ∂=∂ 由格林公式得:22d d d d d d d d 1π22π8L OA D DDQ P P x Q y x y x y m x ym x ya m m a +∂∂⎛⎫-+= ⎪∂∂⎝⎭==⎛⎫=⋅⋅ ⎪⎝⎭=⎰⎰⎰⎰⎰⎰⎰于是:()()[]220202πd d d d 8πd 0e sin 00e cos08π0d 8π8+=-+=-+⋅⋅-⋅⋅-=-=⎰⎰⎰⎰L OA a x x a m aP x Q y P x Q y m a xm m m a xm a8.利用曲线积分,求下列曲线所围成的图形的面积:(1)星形线x =a cos 3t ,y =a sin 3t ; (2)双纽线r 2=a 2cos2θ; (3)圆x 2+y 2=2ax . 解:(1) ()()()()()2π3202π2π242222002π202π202π202d sin 3cos d sin 33sin cos d sin 2sin d 43d 1cos 41cos 2163d 1cos 2cos 4cos 2cos 416312π+d cos 2cos 61623π8LA y x a t a t tt a t t t a t t t a t t t a tt t t t a t t t a =-=-⋅-==⋅=--=--+⎡⎤=+⎢⎥⎣⎦=⎰⎰⎰⎰⎰⎰⎰(2)利用极坐标与直角坐标的关系x =r cos θ,y =r sin θ得 cos cos 2x a θ=sin cos 2y a θ=从而x d y -y d x =a 2cos2θd θ.于是面积为:[]π24π4π24π4212d d 2cos 2d sin 22LA x y y xa a a θθθ--=⋅-===⎰⎰(3)圆x 2+y 2=2ax 的参数方程为 cos 02πsin x a a y a θθθ=+⎧≤≤⎨=⎩故()()[]()2π022π021d d 21d a+acos sin 2d 1cos 2πcos sin L A x y y x a a a a a θθθθθθθ=-=-=+=⋅-⎰⎰⎰ 9.证明下列曲线积分与路径无关,并计算积分值: (1)()()()()1,10,0d d x y x y --⎰;(2)()()()()3,423221,2d d 663x yxy y x y xy +--⎰;(3)()()1,221,1d d x y x x y -⎰沿在右半平面的路径;(4)()()6,81,0⎰沿不通过原点的路径;证:(1)P =x -y ,Q =y -x .显然P ,Q 在xOy 面内有连续偏导数,且1P Q y x ∂∂==-∂∂,故积分与路径无关.取L 为从(0,0)到(1,1)的直线段,则L 的方程为:y =x ,x :0→1.于是()()()()11,100,00d 0d d x x y x y ==--⎰⎰(2) P =6xy 2-y 3,Q =6x 2y -3xy 2.显然P ,Q 在xOy 面内有连续偏导数,且2123Pxy y y ∂=-∂,2123Q xy yx ∂=-∂,有P Q y x ∂∂=∂∂,所以积分与路径无关. 取L 为从(1,2)→(1,4)→(3,4)的折线,则()()()()()()[]3,423221,2432214323212d d 663d d 63966434864236x yxyy x y xy y xy y x y y x x +--=+--=+⎡⎤--⎣⎦=⎰⎰⎰(3)2y P x =,1Q x =-,P ,Q 在右半平面内有连续偏导数,且21P y x ∂=∂,21Q x x ∂=∂,在右半平面内恒有P Q y x ∂∂=∂∂,故在右半平面内积分与路径无关. 取L 为从(1,1)到(1,2)的直线段,则()()()21,2211,1d d d 11x y x x y y -==--⎰⎰(4) P =,Q =P Q y x ∂∂=∂∂分在不含原点的区域内与路径无关, 取L 为从(1,0)→(6,0)→(6,8)的折线,则()()686,8101,0801529x y=+⎡=+⎣=⎰⎰⎰10.验证下列P (x ,y )d x +Q (x ,y )d y 在整个xOy 面内是某一函数u (x ,y )的全微分,并求这样的一个函数u (x ,y ):(1)(x +2y )d x +(2x +y )d y ; (2)2xy d x +x 2d y ;(3)(3x 2y +8xy 2)d x +(x 3+8x 2y +12y e y )d y ; (4)(2x cos y +y 2cos x )d x +(2y sin x -x 2sin y )d y . 解:证:(1)P =x +2y ,Q =2x +y . 2P Q y x ∂∂==∂∂,所以(x +2y )d x +(2x +y )d y 是某个定义在整个xOy 面内的函数u (x ,y )的全微分.()()()()()(),0,0022022d d ,22d d 2222222x y xy yu x yx y x y x y x x yx y x y xy x y xy =+++=++⎡⎤=++⎢⎥⎣⎦=++⎰⎰⎰(2)P =2xy ,Q =x 2, 2P Q x y x ∂∂==∂∂,故2xy d x +x 2d y 是某个定义在整个xOy 面内的函数u (x ,y )的全微分.()()(),20,02022d d ,0d d x y xy u xy x x yx y x x yx y=+=+=⎰⎰⎰(3)P =3x 2y +8xy 2,Q =x 3+8x 2y +12y e y ,2316∂∂=+=∂∂P Q x xy y x ,故(3x 2y +8xy 2)d x +(x 3+8x 2y +12y e y )d y是某个定义在整个xOy 面内函数u (x ,y )的全微分, ()()()()()(),22320,03200322d ,38812e 0d d 812e 412e 12e 12x y y xyy y y u x x y x y x y x x y y x y x x y y x y x y y =++++=+++=++-+⎰⎰⎰(4)P =2x cos y +y 2cos x ,Q =2y sin x -x 2sin y ,2sin 2cos Px y y x y ∂=-+∂,2cos 2sin Q y x x yx ∂=-∂, 有P Q y x ∂∂=∂∂,故(2x cos y +y 2cos x )d x +(2y sin x -x 2sin y )d y 是某一个定义在整个xOy 面内的函数u (x ,y )的全微分, ()()()()()(),220,020022d d ,2cos cos 2sin sin 2d d 2sin sin sin cos x y xyu x y x y x y y x y x x y x x yy x x y y x x y=++-=+-=+⎰⎰⎰11.证明:22d d x x y yx y ++在整个xOy 平面内除y 的负半轴及原点外的开区域G 内是某个二元函数的全微分,并求出这样的一个二元函数.证:22x P x y =+,22y Q x y =+,显然G 是单连通的,P 和Q 在G 内具有一阶连续偏导数,并且.()2222∂∂-==∂∂+P Q xy y x x y ,(x ,y )∈G因此22d d x x y y x y ++在开区域G 内是某个二元函数u (x ,y )的全微分.由()()22222222d d 11ln 22d x y x x y y d x y x y x y ++⎡⎤==+⎢⎥++⎣⎦ 知()()221ln ,2u x y x y =+.12.设在半平面x >0中有力()3kF xi yj r =-+构成力场,其中k为常数,r =,证明:在此力场中场力所做的功与所取的路径无关. 证:场力沿路径L 所作的功为.33d d L k k W x x y y r r =--⎰ 其中3kx P r =-,3kyQ r =-,则P 、Q 在单连通区域x >0内具有一阶连续偏导数,并且 53(0)P kxy Q x y r x ∂∂==>∂∂因此以上积分与路径无关,即力场中场力所做的功与路径无关.13.当Σ为xOy 面内的一个闭区域时,曲面积分()d d ,,R x yx y z ∑⎰⎰与二重积分有什么关系?解:因为Σ:z =0,在xOy 面上的投影区域就是Σ故()()d d d d ,,,,0R x y R x yx y z x y ∑∑=±⎰⎰⎰⎰当Σ取的是上侧时为正号,Σ取的是下侧时为负号. 14.计算下列对坐标的曲面积分: (1)22d d x y z x y∑⎰⎰,其中Σ是球面x 2+y 2+z 2=R 2的下半部分的下侧;(2)d d d d d d z x y x y z y z x ∑++⎰⎰,其中Σ是柱面x 2+y 2=1被平面z =0及z =3所截得的在第Ⅰ封限内的部分的前侧;(3)()()()d d 2d d d d ,,,,,,f x y z f y z x f z x y x y z x y z x y z ∑+++++⎡⎤⎡⎤⎡⎤⎣⎦⎣⎦⎣⎦⎰⎰,其中f (x ,y ,z )为连续函数,Σ是平面x -y +z =1在第Ⅳ封限部分的上侧;(4)d d d d d d xz x y xy y z yz z x ∑++⎰⎰,其中Σ是平面x =0,y =0,z =0,x +y +z =1所围成的空间区域的整个边界曲面的外侧;(5)()()()d d d d d d y z z x x y y z x y z x ∑++---⎰⎰,其中Σ为曲面22z x y =+与平面z =h (h >0)所围成的立体的整个边界曲面,取外侧为正向; (6)()()22d d d d d d +++-⎰⎰y y z x z x x yy xz x z ∑,其中Σ为x =y =z =0,x =y =z =a 所围成的正方体表面,取外侧为正向;解:(1)Σ:222z R x y =---,下侧,Σ在xOy 面上的投影区域D xy 为:x 2+y 2≤R 2.()()()()()()()()()()22222222π42222002π222222222002π35422222222200354*******d d d d d cos sin d 1sin 2d d 81d d 1cos421612422π1635xyD RR R xy z x y x y x yR x y r r rR r R r R R r r R R R r R R r R r R r R R R r R r ∑θθθθθθθ=----=---=-⋅-⎡⎤+--⎣⎦⎡⎤=----+---⎣⎦=-⋅-+--⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰()72220772π105RR r R ⎡⎤-⎢⎥⎣⎦=(2)Σ如图11-8所示,Σ在xOy 面的投影为一段弧,图11-8故d d 0z x y ∑=⎰⎰,Σ在yOz 面上的投影D yz ={(y ,z )|0≤y ≤1,0≤z ≤3},此时Σ可表示为:21x y =-(y ,z )∈D yz,故23202d d 1d d d 1d 31d yzD x y z y y zz y yy y∑=-=-=-⎰⎰⎰⎰⎰⎰⎰Σ在xOz 面上的投影为D xz ={(x ,z )|0≤x ≤1,0≤z ≤3},此时Σ可表示为:21y x =-(x ,z )∈D xz, 故23202d d 1d d d 1d 31d xzD y z x x z xz x xx x∑=-=-=-⎰⎰⎰⎰⎰⎰⎰因此:120120d d d d d d 231d 61d π643π2z x y x y z y z xx x x x∑++⎡⎤=-⎢⎥⎣⎦=-=⋅=⎰⎰⎰⎰(3)Σ如图11-9所示,平面x -y +z =1上侧的法向量为 n ={1,-1,1},n 的方向余弦为1cos 3α=,1cos 3β-=,1cos 3γ=,图11-9由两类曲面积分之间的联系可得:()()()()()()()()()d d 2d d d d ,,,,,,cos d (2)cos d ()d d cos cos d d (2)d d ()d d cos cos (2)()d d d d 1d d xyD f x y z f y z x f z x y x y z x y z x y z s f y s f z x yf x x y f y x y f z x y f x f y f z x y f x x yx y z x yx y x y ∑∑∑∑∑αβαβγγ+++++⎡⎤⎡⎤⎡⎤⎣⎦⎣⎦⎣⎦=+++++=+++++=-+++⎡⎤+⎣⎦=-+=+-⎡⎤--⎣⎦⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰d d 111212xyD x y==⨯⨯=⎰⎰⎰⎰(4)如图11-10所示:图11-10Σ=Σ1+Σ2+Σ3+Σ4.其方程分别为Σ1:z =0,Σ2:x =0,Σ3:y =0,Σ4:x +y +z =1,故()()123441100d d 000d d d d 11d d 124xyD xxz x yxz x yx x yx y x x y x y ∑∑∑∑∑∑-=+++=+++=--==--⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰由积分变元的轮换对称性可知.1d d dzd 24xy y z yz x ∑∑==⎰⎰⎰⎰因此.d d dyd d d 113248xz x y xy z yz z x ∑++=⨯=⎰⎰(5)记Σ所围成的立体为Ω,由高斯公式有:()()()()()()d d d d d d d d d 0d d d 0y z z x x yy z x y z x y z x y z x x y z x y z x y z ∑ΩΩ++---∂∂⎛⎫--∂-=++ ⎪∂∂∂⎝⎭==⎰⎰⎰⎰⎰⎰⎰⎰(6)记Σ所围的立方体为Ω, P =y (x -z ),Q =x 2,R =y 2+xz . 由高斯公式有()()()()()22200204d d d d d d d d d d d d d d d d d d 2d 2a aaaaaaay y z x z x x yyxz x z P Q R x y z x y z x y zx y x y z x y x a yx y y a x xy a a x ax a ∑ΩΩ+++-∂∂∂⎛⎫++= ⎪∂∂∂⎝⎭=+=+=+⎡⎤=+⎢⎥⎣⎦⎡⎤=+⎢⎥⎣⎦=⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰15.设某流体的流速V =(k ,y ,0),求单位时间内从球面x 2+y 2+z 2=4的内部流过球面的流量. 解:设球体为Ω,球面为Σ,则流量3d d d d d d d 432d d d π2π33k y z y z xP Q x y z x y x y z ∑ΩΩΦ=+∂∂⎛⎫+= ⎪∂∂⎝⎭==⋅=⎰⎰⎰⎰⎰⎰⎰⎰(由高斯公式)16.利用高斯公式,计算下列曲面积分:(1)222d d d d d d x y z y z x z x y ∑++⎰⎰,其中Σ为平面x =0,y =0,z =0,x =a ,y =a ,z =a 所围成的立体的表面的外侧;(2)333d d d d d d x y z y z x z x y ∑++⎰⎰,其中Σ为球面x 2+y 2+z 2=a 2的外侧; (3)()()2232d d d d d d 2xz y z z x x yxy z xy y z ∑++-+⎰⎰,其中Σ为上半球体x 2+y 2≤a 2,0z ≤的表面外侧;(4)d d d d d d x y z y z x z x y ∑++⎰⎰,其中Σ是界于z =0和z =3之间的圆柱体x 2+y 2=9的整个表面的外侧;解:(1)由高斯公式()()22204d d d d d d d 2222d 6d 6d d d 3aaax y z y z x z x yvx y z vx y z x v x x y za ∑ΩΩΩ++=++=++==⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰对称性(2)由高斯公式:()3332222ππ405d d d d d d d 3d 3d d sin d 12π5ax y z y z x z x yP Q R v x y z v x y z r ra ∑ΩΩθϕϕ++∂∂∂⎛⎫++= ⎪∂∂∂⎝⎭=++==⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰(3)由高斯公式得 ()()()2232222π2π222024π05d d d d d d 2d d d d sin d 2πsin d d 2π5aaxz y z z x x yxy z xy y z P Q R v x y z v z x y r r rr ra ∑ΩΩθϕϕϕϕ++-+∂∂∂⎛⎫++= ⎪∂∂∂⎝⎭=++=⋅==⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰(4)由高斯公式得: 2d d d d d d d 3d 3π3381πx y z y z x z x yP Q R v x y z v∑ΩΩ++∂∂∂⎛⎫++= ⎪∂∂∂⎝⎭==⋅⋅⋅=⎰⎰⎰⎰⎰⎰⎰⎰17.利用斯托克斯公式,计算下列曲线积分:(1)d d d y x z y x zΓ++⎰,其中Γ为圆周x 2+y 2+z 2=a 2,x +y +z =0,若从x 轴的正向看去,这圆周是取逆时针的方向;(2)()()()222222d d d x y zyz x y z x Γ++---⎰,其中Γ是用平面32x y z ++=截立方体:0≤x ≤1,0≤y ≤1,0≤z ≤1的表面所得的截痕,若从Ox 轴的正向看去,取逆时针方向; (3)23d d d y x xz y yz z Γ++⎰,其中Γ是圆周x 2+y 2=2z ,z =2,若从z 轴正向看去,这圆周是取逆时针方向;(4)22d 3d d +-⎰y x x y z zΓ,其中Γ是圆周x 2+y 2+z 2=9,z =0,若从z 轴正向看去,这圆周是取逆时针方向.解:(1)取Σ为平面x +y +z =0被Γ所围成部分的上侧,Σ的面积为πa 2(大圆面积),Σ的单位法向量为{}cos ,cos ,cos n αβγ==. 由斯托克斯公式22d d d cos cos cos d d πy x z y x zR Q Q P P R s y z x y z x ss a a Γ∑∑∑αβγ++⎡∂∂∂∂⎤⎛⎫⎛⎫∂∂⎛⎫--=++- ⎪⎢⎥ ⎪ ⎪∂∂∂∂∂∂⎝⎭⎝⎭⎝⎭⎣⎦====⎰⎰⎰⎰⎰⎰⎰(2)记为Σ为平面32x y z ++=被Γ所围成部分的上侧,可求得Σ的面积为(是一个边长为2的正六边形);Σ的单位法向量为{}cos ,cos ,cos αβγ==n .由斯托克斯公式()()()(((()222222d d d2222d22d3d23292x y zy z x yz xy z x y sz xsx y zsΓ∑∑∑++---⎡+----=--⎢⎣=++===-⎰⎰⎰⎰⎰(3)取Σ:z=2,D xy:x2+y2≤4的上侧,由斯托克斯公式得:()()()2223d d dd d0d d d d3d d35d d5π220π-+=++--+=-+=-=-⨯⨯=-⎰⎰⎰⎰⎰⎰⎰xyDy x xz y yz zy z z x x yzz xx yzx yΓ∑∑(4)圆周x2+y2+z2=9,z=0实际就是xOy面上的圆x2+y2=9,z=0,取Σ:z=0,D xy:x2+y2≤9由斯托克斯公式得:()()()222d3d dd d d d d d000032d dd dπ39π+-=++---===⋅=⎰⎰⎰⎰⎰⎰⎰xyDy x x y z zy z z x x yx yx yΓ∑∑18.把对坐标的曲线积分()()d d,,LP x Q yx y x y+⎰化成对弧长的曲线积分,其中L为:(1)在xOy面内沿直线从点(0,0)到点(1,1);(2)沿抛物线y=x2从点(0,0)到点(1,1);(3)沿上半圆周x2+y2=2x从点(0,0)到点(1,1).解:(1)L的方向余弦πcos cos cos42αβ===,故()()d d,,dLP x Q yx y x yP x Qs++=⎰⎰(2)曲线y =x 2上点(x ,y )处的切向量T ={1,2x }.其方向余弦为cos α=,cos β=故()()d d ,,d 2,,LP x Q yx y x y P x xQ x y x y s++=⎰⎰(3)上半圆周上任一点处的切向量为⎧⎨⎩其方向余弦为cos α=cos 1x β=-故()()()()()d d ,,d ,,1LLP x Q yx y x y s Q x y x y x +⎤=+-⎦⎰⎰ 19.设Γ为曲线x =t ,y =t 2,z =t 3上相应于t 从0变到1的曲线弧,把对坐标的曲线积分d d d P x Q y R z Γ++⎰化成对弧长的曲线积分.解:由x =t ,y =t 2,z =t 3得d x =d t ,d y =2t d t =2x d t ,d z =3t 2dt =3y d t ,d s t =.故d cos d d cos d d cos d x s y s z s αβγ======因而d d d P x Q x R x s ΓΓ++=⎰⎰20.把对坐标的曲面积分 ()()()d d d d d d ,,,,,,P y z Q z x R x y x y z x y z x y z ∑++⎰⎰化成对面积的曲面积分,其中:(1) Σ是平面326x y ++=在第Ⅰ封限的部分的上侧; (2) Σ是抛物面z =8-(x 2+y 2)在xOy 面上方的部分的上侧.解:(1)平面Σ:326x y ++=上侧的法向量为n ={3,2,,单位向量为n 0={35,25,},即方向余弦为3cos 5α=,2cos5β=,cos γ=.因此:()()()()d d d d d d ,,,,,,d cos cos cos 32d 555P y z Q z x R x y x y z x y z x y z sP Q R sP Q R ∑∑∑αβγ++=++⎛⎫=++ ⎪⎝⎭⎰⎰⎰⎰⎰⎰(2)Σ:F (x ,y ,z )=z +x 2+y 2-8=0,Σ上侧的法向量n ={ F x ,F y ,F z }={ 2x ,2y ,1}其方向余弦:cos α=cos β=cos γ=故()()()()d d d d d d ,,,,,,d cos cos cos P y z Q z x R x y x y z x y z x y z sP Q R s∑∑∑αβγ++=++=⎰⎰⎰⎰⎰⎰。
东华理工大学高等数学A练习册答案(下)(学生用)

第7章 微分方程§7.5 可降阶的高阶微分方程一、填空题答:1. 2121ln arctan C x C x x x y +++-= 2.22121C x x e C y x +--= 3.121C xy C e =+二、 y =C 1ln x +C 2 . 三、 22x x y -=.§7.6 高阶线性微分方程一、判断题1.( √ )2.( ╳ )3.( √ ) 二、选择题答:1.C 2.C 3.C 4.B§7.7 常系数齐次线性微分方程一、判断题1.( √ )2.( ╳ )3.( ╳ ) 二、填空题1、y =C 1e x +C 2e-2x2、 t t e C e C x 252251t +=, 3、 y =e -3x (C 1cos2x +C 2sin2x ).4、 y =C 1+C 2x +C 3e x +C 4xe x5、y =e 2x sin3x三、选择题答:1.B 2.B 3.A 4.C 5.B四、求下列微分方程(1) y =C 1+C 2e 4x . (2) y =e 2x (C 1cos x +C 2sin x ). (3) y =C 1+C 2x +C 3e x +C 4xe x . (4))2(21x e y x+=-.§7.8 常系数非齐次线性微分方程一、填空题 答:1、x x xe e C e C y ++=-2211,2、x xe x C x C e y x x 2cos 41)2sin 2cos (21-+=.3、x x x y 2sin 31sin 31cos +-+-= 4、x xx y cos 2sin 21+= 二、选择题答:1.D 2.B 3.A 4.C 5.D 6.D三、)323(2221x x e e C e C y x x x -++=--- 四、 2527521++-=x x e e y . 第12章 无穷级数§12.1 常数项级数的概念与性质一、判断题答:1. √2. √ 3. ×4. ×5. √ 6. √ 二、填空题答:1. 1/2、3/8 、5/16 2. [(-1)^(n-1)]*[(n+1)/n] 3. [x^(n/2)]*(1/2*n!) 4. 0 三、选择题答:1.C 2.A 3.C 4.C四、判定下列级数的收敛性(1)级数收敛. (2) 该级数发散. (3) 级数发散.§12.2 常数项级数的审敛法一、判断题答:1. √ 2. × 3. √4.√ 5√6. ×7. √8. √9.√ 二、填空题答:1.P>1 2. {}n s 有界 3. 绝对收敛 4. 收敛5.1lim 0n nn u u u +=⎧⎨>⎩三、选择题答:1. D 2.C 3.D 4.A 5.C四、用比较审敛法或极限形式的比较审敛法判定下列级数的收敛性: (1) 级数发散. (4) 级数收敛.五、用比值审敛法判定下列级数的收敛性: (1) 级数发散. (2) 级数收敛.六、用根值审敛法判定下列级数的收敛性:(1) 级数收敛; (2) 当b <a 时级数收敛, 当b >a 时级数发散. 七、 (1) 此级数是收敛的. 条件收敛的. (2) 级数收敛, 并且绝对收敛.§12.3 幂级数一、判断题答:1. √ 2. √ 3. √ 4. √ 5. × 二、填空题答:1.[-1/2、1/2] 2. [-1,5) 3. (-1,1) ,11ln21xx+- 4. 绝对收敛三、选择题 答:1.D 2.B 3 D四、求下列幂级数的收敛域:(1) 收敛域为(-1, 1). (2) 收敛域为[-1, 1]. 五、利用逐项求导或逐项积分, 求下列级数的和函数: (1) ()S x 21(11)(1)x x =-<<-. (2) ()S x 11ln (11)21x x x+=-<<- . 提示: 由)0()()(0S x S dx x S x-='⎰得⎰'+=xdx x S S x S 0)()0()(.§12.4 函数展开成幂级数一、判断题答:1. √2. × 3. × 二、填空题 1. 答:1.11ln 2(1)2nn nn x n ∞-=+-∑ ,(-2,2 ] 2. 1111()(4)23nn n n x ∞++=-+∑ ,(-6,-2) 3.)( ])3()!12(3)3()!2(1[)1(211202+∞<<-∞++++-+∞=∑x x n x n n n n nππ 三、选择题答:1.B 2.C 3.C四、(1) 210sh (21)!n n x x n -∞==-∑, x ∈(-∞, +∞). (2) 212212sin (1)(2)!n n n n x x n -∞=⋅=-∑ x ∈(-∞, +∞). 五、∑=<<--=n n n n x x x 0)60( )33()1(311.§12.5 函数的幂级数展开式的应用一、填空题答:1.3. ; 2、)( !4cos2cos 02+∞<<-∞=∑∞=x x n n x e n n nx π.§12.7 傅立叶级数一、判断题 答:1. × 2. √3.√4.√二、填空题 1.5 2. ,n n a b - 3. nx nx f n sin 1)(1∑∞==(0<x ≤π), 级数在x =0处收敛于0. 三、选择题答:1.A 2.C 3.B 4A 5.B四、∑∞=+--+=121cos 141)1(422cos n n nx n x ππ(-π≤x ≤π). 五、正弦级数为nx n n nx f n n sin ]2)2()1[(4)(1323∑∞=---=ππ(0≤x <π), 级数在x =0处收敛于0.余弦级数为 nx nx f n n cos )1(832)(122∑∞=-+=π(0≤x ≤π).§12.8 一般周期函数的傅里叶级数一、 ∑∞=+-+=12122cos )1(11211)(n n x n n x f ππ, x ∈(-∞, +∞).二、正弦级数13218(1)2[(1)1]{}sin2n n n n xn n πππ+∞=---+∑, x ∈[0, 2). 余弦级数:221416(1)cos 32n n n xn ππ∞=-+∑, x ∈[0, 2].第8章 空间解析几何与向量代数§8.1 向量及其线性运算一、判断题。
华理高数下答案

第9章(之1) (总第44次)教学内容:§9.1微分方程基本概念*1. 微分方程7359)(2xy y y y =''''-''的阶数是 ( ) (A )3; (B )4; (C )6; (D )7. 答案(A )解 微分方程的阶数是未知函数导数的最高阶的阶数.*2. 下列函数中的C 、α、λ及k 都是任意常数,这些函数中是微分方程04=+''y y 的通解的函数是 ( ) (A )x C x C y 2sin )2912(2cos 3-+=; (B ))2sin 1(2cos x x C y λ+=; (C )x C k x kC y 2sin 12cos 22++=; (D ))2cos(α+=x C y . 答案 (D )解 二阶微分方程的通解中应该有两个独立的任意常数. (A )中的函数只有一个任意常数C ;(B )中的函数虽然有两个独立的任意常数,但经验算它不是方程的解;(C )中的函数从表面上看来也有两个任意常数C 及k ,但当令kC C =时,函数就变成了x C x C y 2sin 12cos 2++=,实质上只有一个任意常数;(D )中的函数确实有两个独立的任意常数,而且经验算它也确实是方程的解.*3.在曲线族 xx e c e c y -+=21中,求出与直线x y =相切于坐标原点的曲线.解 根据题意条件可归结出条件1)0(,0)0(='=y y , 由xxe c e c y -+=21, xxe c e c y --='21,可得1,02121=-=+c c c c ,故21,2121-==c c ,这样就得到所求曲线为)(21x x e e y --=,即x y sinh =.*4.证明:函数y e x x =-2333212sin 是初值问题⎪⎪⎩⎪⎪⎨⎧===++==1d d ,00d d d d 0022x x x y y y x yx y 的解.证明 '=-+--y e x e x x x 3332321212s i n c o s ,''=----y e x e x x x 3332321212sin cos ,代入方程得''+'+=y y y 0, 此外,,1)0(0)0(='=y y故y e x x =-2333212sin 是初始值问题的解.*5.验证y e e t Ce xt xx=+⎰2d (其中C 为任意常数)是方程'-=+y ye x x 2的通解.证明 '=+⋅+⎰y ee t e e Ce xt xx x x22d =++ye x x 2, 即 2x x e y y +=-',说明函数确实给定方程的解.另一方面函数y ee t Ce xt x x=+⎰2d 含有一任意常数C ,所以它是方程的通解.**6.求以下列函数为通解的微分方程: (1)31+=Cx y ;解 将等式31+=Cx y 改写为13+=Cx y ,再在其两边同时对x 求导,得C y y ='23,代入上式,即可得到所求之微分方程为1332-='y y xy . (2)xC x C y 21+=. 解 因为给定通解的函数式中有两个独立的任意常数,所以所求方程一定是二阶方程,在方程等式两边同时对x 求两次导数,得221x C C y -=',322xC y =''. 从以上三个式子中消去任意常数1C 和2C ,即可得到所求之微分方程为02=-'+''y y x y x .**7.建立共焦抛物线族)(42C x C y +=(其中C 为任意常数)所满足的微分方程[这里的共焦抛物线族是以x 轴为对称轴,坐标原点为焦点的抛物线].解 在方程)(42C x C y +=两边对x 求导有C y y 42=',从这两式中消去常数所求方程为)2(y y x y y '+'=.**8.求微分方程,使它的积分曲线族中的每一条曲线)(x y y =上任一点处的法线都经过坐标原点.解 任取)(x y y =上的点 ),(y x ,曲线在该点处的切线斜率为 y '=dxdy . 所以过点),(y x 的法线斜率为y '-1, 法线方程为y Y -=y '-1)(x X -, 因为法线过原点,所以=-y 0y '-1)0(x -从而可得所求微分方程为0='+y y x .第9章(之2)(总第45次)教学内容:§9.2 .1可分离变量的方程; §9.2 .2一阶线性方程**1.求下列微分方程的通解:(1)21)1(x y x y +-=';解: 分离变量21d 1d x x x y y +=-,两边积分⎰⎰+=-21d 1d x xx y y , 得C x y ln )1ln(21)1ln(2-+=--,即211xC y +-=.(2)222y x e yx y -='; 解:分离变量x xe y ye x y d d 222=,两边积分就得到了通解)d (21222x e xe e x x y ⎰-=c e xe x x +-=)21(2122.(3)042)12(=-+'+y y e y e x .解: 12d 42d +-=-x xe y e yy , C x e y ln 21)12ln(21)2ln(21++-=-, 即 ()()e x C y-+=221.**2.试用两种不同的解法求微分方程xy y x y +--='1的通解.解法一 (可分离变量方程的分离变量法)这是一个一阶可分离变量方程,同时也是一个一阶线性非齐次方程,这时一般作为可分离变量方程求解较为容易. 分离变量,)1)(1(y x y --=',x x yyd )1(1d -=-,并积分 x x y yd )1(1d -=-⎰⎰得c x x y +-=--221)1ln(,所求通解为 x x ce y -+=2211.解法二 (线性方程的常数变易法)将原方程改写为x y x y -=-+'1)1(,这是一个一阶线性非齐次方程.对应的齐次方程为0)1(=-+'y x y ,其通解为○1x x e C y -=221.代入原非齐次方程得x e C x x -='-1221,解得○2C e C x x +=-221,○2代入○1即可得原方程的通解xx Cey -+=2211.*3.求解下列初值问题:(1)21x yy -=',6)21(πe y -=.解: y '=21xy -,∴21d d xxy y -=(0≠y ), 21d d xx yy-=⎰⎰,∴C x y +=arcsin ln , ∴ x Ce y arcsin =,π6)21(e y -=,∴21arcsin 6Cee =-π,∴1-=C , ∴ x e y arcsin -=.(2)22x e xy y -=+',1)0(=y ;解: 22x e xy y -=+', x x p 2)(=∴,2)(x e x q -=,=∴)(x y ⎰-xx ed 2⎥⎦⎤⎢⎣⎡+⎰⎰-C dx e e x x x d 222x e -=⎥⎦⎤⎢⎣⎡+⎰⎰-C dx e e x x x d 2222x x Ce xe --+=, 1)0(=y , 101=⇒+=∴c c , 2)1(x e x y -+=∴.(3)x e x y y cos cot =+',1)2(=πy ;解: x e x y y cos cot =+', ∴x x P c o t )(=,x e x Q cos )(=.∴ ⎥⎦⎤⎢⎣⎡⎰+⎰=⎰-x C y xx x x x d e e e d c o t c o s d c o t )d e e (e sin ln cos sin ln ⎰+=-x C x x x)d sin e(csc cos ⎰+=x x C x xx C x csc )e (cos -=, 由1)2(=πy , 可确定 2=C ,所以x y x csc )e 2(cos -=.(4)0d )12(d 2=+-+x x xy y x ,01==x y .解: 方程变形为 2112xx y x y -=+',是一阶线性非齐次方程,其通解为⎥⎦⎤⎢⎣⎡⎰-+⎰=⎰-dx ex x c e y dx x dx x 222)11( ⎥⎦⎤⎢⎣⎡-+=⎰dx x x x c x 222)11(1⎥⎦⎤⎢⎣⎡-+=x x c x 22211x xc 1212-+= 由 0)1(=y , 得 21=c , 所以特解为:x xy 121212-+=.**4.求微分方程 0d )ln (d ln =-+y y x x y y 的通解(提示将x 看作是y 的函数). 解:将x 看作是y 的函数,原方程可化为yx y y dy dx 1ln 1=+,这是一阶线性方程,将其中yy Q y y y P 1)( ,ln 1)(==代入一阶线性方程求解公式,得通解 1e 1)ln(ln )ln(ln ln 1ln 1⎥⎦⎤⎢⎣⎡+=⎥⎥⎦⎤⎢⎢⎣⎡⎰+⎰=⎰⎰--dy e y c dy ey c e x y y dy y y dy y y y y c dy y y c y ln 21ln ln ln 1+=⎥⎦⎤⎢⎣⎡+=⎰.**5.求满足关系式)(d )(22x y x u u uy x +=⎰的可导函数)(x y .解:这是一个积分方程,在方程等式两边同对x 求导,可得微分方程xy x x yx()d d =+2,即 d d y x xy x -=-2,分离变量得d d yy x x -=2,积分得y Ce x=+222, 在原方程两边以2=x 代入,可得初试条件22-==x y.据此可得14--=e C ,所以原方程的解为 24122+-=-x e y .**6.设降落伞自塔顶自由下落,已知阻力与速度成正比(比例系数为k ),求降落伞的下落速度与时间的函数关系. 解:根据牛顿运动第二定理有kv mg tvm -=d d .这是一个可分离变量方程,分离变量并积分得--=+1k mg kv tmC ln(). 由初始条件0)0(=v , 得)ln(1mg k C -=,即得 v mg k e kmt =-⎛⎝ ⎫⎭⎪-1.**7.求一曲线,已知曲线过点)1,0(,且其上任一点),(y x 的法线在x 轴上的截距为kx . 解:曲线在点(,)x y 处的法线斜率为y '-1,所以法线方程为Y y y X x -=-'-1().只要令0=Y ,就可以得到法线在x 轴上的截距为 y y x X '+= .据题意可得微分方程x yy kx +'=,即x k y y )1(-='.这是一个可分离变量方程,分离变量并积分得所求曲线C x k y =-+22)1(,由于曲线过点)1,0(,所以1=C ,所以所求曲线方程为 y k x 2211+-=().***8.求与抛物线族2Cx y =(C 是常数)中任一抛物线都正交的曲线(族)的方程.解:在给定曲线2cx y =上任意一点),(y x 处切线斜率为cx y k 20='=,从上面两式中消去c 得x y y k 20='=,这样就得到了给定曲线族所满足的微分方程xy y 2='. 设所求曲线方程为 )(x y y =,在同一点),(y x 处切线斜率为y k '=,则根据正交要求有10-=k k ,这样就得到了所求曲线族应该满足的微分方程yx y 2-='. 这是一个可分离变量方程,分离变量xdx ydy -=2,积分得所求曲线族c x y +-=2221,即椭圆族c x y =+2221. ***9.作适当变换,求微分方程 1224+-='-x e y y的通解. 解 原方程可化为4122=++'y ye x y e ,在换元y e z =下方程可化为4122=++'x zz ,这是一个一阶线性方程,其通解为⎭⎬⎫⎩⎨⎧+=⎰+⎰+-⎰x eC ez x xx xd 412d 212d 2}44{1212x x C x +++=.***10.作适当变换,求微分方程d d tan y x y x y y x =+⎛⎝ ⎫⎭⎪2122的通解. 解:令ux y =2,代入方程整理得 x x u u d tan d =,积分得 Cx u =sin ,以 xy u 2= 代入上式,即得原方程的通解: Cx xy =2sin .第9章 (之3) (总第46次)教学内容:§9.2 .3齐次型方程;9.2.4伯努利方程.**1.求下列微分方程的通解:(1) )ln ln 1(d d x y xyx y -+=; 解: )ln ln 1(d d x y x y x y -+=, ∴ dx dy =x y (1+xy ln ),这是一个一阶齐次型方程.令 xyu =,则 ux y =,即u x u y '+=',于是原方程可化为u u u x ln ='.这是一个可分离变量方程.分离变量x dx u u du =ln ,并积分⎰⎰=xdxu u du ln ,得c x u ln ln ln ln +=,即cx e u =. 以 xy u =代入,得所求的通解为cxxe y =.(2)()arctan xy y yxx '-=. 解:方程可化为xy xy y arctan1+=',这是一个一阶齐次型方程.令 xy u =,则 ux y =,即u x u y '+=',于是原方程可化为u x u x arctan 1d d =,这是一个可分离变量方程.分离变量后积分得 x u Ce u u 12+=arctan .以 xy u =代入上式得原方程的通解:x y Ce yxyx 22+=arctan . **2.求解下列初值问题:(1)0d )2(d 22=+-y y x x xy 满足初始条件 1)2(=y 的特解. 解: 0d )2(d 22=+-y y x x xy ,dy dx =x y y x +2, 令 yxu = , 则 u u dy du yu 12+=+, u u du 1+=y dy , ∴⎰+uu du 1=⎰y dy,c y u ln ln )1ln(212+=+∴, cy u =+∴12, 即 2221y c u =+ , 代回即得22yx +1=22y c , 1)2(=y , ∴52=c , 因此 22y x +=54y .(2)⎩⎨⎧==-++=.0,0d )(d )(0x y y y x x y x解:原方程可表为11d d -+=-+=xy x yx y y x x y ,令 x y u =,u x u y '+=', 代入方程,有 11-+='+u uu x u ,即 121d d 2--+=u u u x u x , 分离变量x x u u u u d 1d 2112=-+-,积分得 C x u u ln ln )21ln(212-=-+- ⇒通解 C y xy x =-+222,令 0,0==y x ,得 0=C .所以初值问题的解为 0222=-+y xy x .***3.试证明:当1221b a b a ≠时,总能找到适当的常数h ,k ,使一阶微分方程)(222111c y b x a c y b x a f y ++++='在变换k y s -=,h x t -=之下,可化为一阶齐次型方程)(d d 2211sb t a s b t a f t s++=. 并求方程 0d )32(d )12(=++++y y x x y x 的解.证明:令⎩⎨⎧+=+++=++s b t a c y b x a sb t ac y b x a 2222211111 1221b a b a ≠ ,∴可解得:⎪⎪⎩⎪⎪⎨⎧---=---=1221122112212112b a b a c b c b x t b a b a c a c a y s 因此可取:⎪⎪⎩⎪⎪⎨⎧--=--=1221122112212112b a b a c b c b h b a b a c a c a k解:0)32()12(=++++dy y x dx y x ,令⎩⎨⎧-=+=32x t y s ⎩⎨⎧==⇒x t ys d d d d[][]0)2(3)3(21)2(23=-++++-++∴ds s t dt s t ,()0)32(2=+++ds s t dt s t ,ts t sdt ds dtdst s t s 32210)32(21++-=⇒=+++⇒, 令dt du t u dt ds t s u +=⇒=, 23)1)(13(3221+++-=⇒++-=+∴u u u dt du t u u dt du t u ,⎰⎰-=⎥⎦⎤⎢⎣⎡+++∴-=+++⇒t dtdu u u t dt du u u u )13(23)1(21,)1)(13()23(, c t u u ln ln )13)(1ln(21+-=++即,c tst s t c t u u =++⇒=⋅++∴)13)(1()13)(1(,c x xy x y c x y x y x 243)3631)(321()3(22=+++⇒=-++-++-∴.**4.求下列微分方程的通解(1)0ln 2=+-'x y y y x ;解: 0ln '2=+-x y y xy xxy x y y ln 1'12-=-∴-- 令x x t x dx dt y t ln 11=+⇒=-, ,ln )Q( ,1)(xx x x x P ==∴ln 1 d ln )(d 1d 1⎥⎦⎤⎢⎣⎡⋅+=⎥⎦⎤⎢⎣⎡⎰+⎰=∴⎰⎰-xdx x x C x x e x x C e x t x x x x1ln C )ln (C 11-+=-+=---x x x x x x x x , 111ln --+-=Cx x y .(2)0d d )2(=+-y x x xy y .解: 0d d )2(=+-y x x xy y , x y d d +y x 1=212y x, y y '-21+211y x =x 2, 21y u =,x u d d +x 21x u 1=, ∴x x P 21)(=,xx Q 1)(.∴⎥⎦⎤⎢⎣⎡⎰+⎰=⎰-x e x C e x u x x x x d 1)(d 21d 2121-=x ⎥⎦⎤⎢⎣⎡+⎰x x x C d 121[]x C x +=-21, ∴ []x C xy +=-2121, ∴xC x y +=.(3)'=-y y xy x 3222()解一:令u y =2,原方程化为: d d u x u x u x =⎛⎝ ⎫⎭⎪⎛⎝ ⎫⎭⎪-21,解此方程得 u Ce u x =, 以u y =2代入上式,原方程通解为 y Ce y x22=.解二:原方程写成d d x y y x yx -=-2232, 令xz -=1,则方程化为:322d d yz y y z =+, 则通解 z eC y ey yy y y=+⎡⎣⎢⎢⎤⎦⎥⎥-⎰⎰⎰2322d d d ]ln 2[12y C y+= , 故原方程通解:1122x yC y =+[ln ]. **5.求下列伯努力方程满足初始条件的特解:yxy y 2-=',1)0(=y . 解:x y yy', xy y y 22'21-=-∴-=- ,令 x t dxdty t 42 2-=-⇒=, x x Q x P 4)( ,2)(-=-=∴, []12010211)0(1212 )]2[ d 4 d )4()(2022222222d 2d 2+=∴=⇒++⨯=∴=++=∴++=++=-=⎥⎦⎤⎢⎣⎡⎰-+⎰=∴----⎰⎰x y C Ce y Ce x y x Ce e xe C e xxe C e x e x C e x t xx x x x x x x x,****6.作适当的变换求方程12222212+⋅'=++x y y x y e x sin sin 的通解.解:原方程化为:12222212+=++x yxx y e x d sin d sin ,令z y =sin 2,得d d z x x x ze x x -+=++21122122,故 ⎪⎭⎪⎬⎫⎪⎩⎪⎨⎧++=⎰⎰+-+⎰+x exeC ez xx x x x x x d 1d 12212d 12222)1ln(2121222x x e Ce x x +++=++原方程的通解为 sin ln()221212221y Ce e x x x x =+++++.***7.已知)(2d )(1)(2202x y x y y x+='+⎰ξξξ,求y x ().解:两边关于x 求导得 212yy y '-=-,解得 y Ce x 21=+,由yx ==00,求得 C =-1,故原方程的解为:y e x 21=-.***8.曲线过点(,)11,其上任一点与原点的距离平方等于该点横坐标与该点的曲线的法线在x 轴上的截距乘积的两倍,求曲线方程. 解:x y x x yy y 22211+=+'=(),(), 212yy xy x '-=- 令y z 2=,解得 z y x C x ==-2()由y ()11=, 得 C =2, 曲线方程为: x y x 222+=.***9.根据托里斥利定律,液体从容器小孔中流出的速度为 gh A v 2α=,其中 g 为重力加速度,h 为液面与底部孔口之间的距离,A 为孔口面积,α为孔口收缩系数,实验确定其取值为 62.0=α.现有一直径为1m ,高为2m 的直立圆柱形容器,其中盛满的水从底部直径为1=d cm 的圆孔流出,要多长时间容器内的水才会完全流尽?解:设在时刻t 时, 容器中液面高度)(t h ,则经过t ∆后液面高度为)(t t h ∆+, 于是有t t gh A t t h t h r ∆=∆+-)(2))()((2απ,即 22)()(rghA t t h t t h πα=∆-∆+-, 令0→∆t , 得⎪⎩⎪⎨⎧==-200)0(2d d 2h gh r At h πα解得200222+=t g rAh πα, 代入0=h , 980=g , 50=r , 4π=A , 62.0=α, 得10304=t (秒).第9章 (之4)(总第47次)教学内容:§9.3可降阶的高阶微分方程**1.解下列问题:(1).微分方程'+''=''y y xy 满足条件'==y y (),()2121的解是 ( ) (A )y x =-()12(B )y x =+-()122142(C )y x =-+121122()(D )y x =--()12542解:(C )(2).微分方程''-'=y yy 203满足条件'=-=y y (),()0101的解是 ( )(A )y x 3313=+(B )x y 331=- (C )y x 3313=-+(D )x y 331=-+ 解:(C )**2.求下列微分方程的通解. (1)0='+''y y x ;解: 0='+''y y x 是一不显含因变量y 的二阶方程, 令 y p '= ⇒ y ''x p d d =∴0=+'p p x , ⇒pp d =x x d -,⇒⎰⎰-=x xp p d d ⇒ 1ln ln ln C x p +-= ⇒xC p 1=, ∴=x y d d x C 1, x x C y d d 1=, ⎰⎰=x xC y d d 1 ,21ln C x C y +=. (2)()1212+''+'=x y xy ; 解:''++'=+y x x y x 211122,'=++y x x C 1121(), y x C x C =+++121212ln()arctan .(3)()02='+''y y y ;解:∵()02='+''y y y , 令 y p '=, 则 yppy d d ='',代入方程有 0d d 2=+⋅⋅p ypp y , 0)d d (=+⋅⇒p ypy p , 因为求通解,所以 p 满足 0d d =+⋅p ypy . 由⎰⎰-=⇒-=y yp p yy p p d d d d , y C p C y p 11ln ln ln '=⇒+-=⇒, ⎰⎰'=⇒'=⇒'=⇒x C y y x C y y yC x y d d d d d d 111212C x C y +=⇒. ∴ 通解:212C x C y +=. (4)()1222+''='y y yy解:令:'=''='y p y y pp (),,得()1222+⋅'=y p p p y , 即d d p p yy y =+212, 得 p C y =+121(),所以 d d yyC x 121+=,通解为:arctan y C x C =+12.第9章 (之5)(总第48次)教学内容:§9 .4 .1二阶线性方程和解的存在性;§9 .4 .2二阶线性方程解的结构**1.若21,y y 是方程)()()(x R y x Q y x P y =+'+''的两个解,试证12y y - 必是其对应齐次方程0)()(=+'+''y x Q y x P y 的解.证明:因为21,y y 是方程)()()(x R y x Q y x P y =+'+''的解. 所以成立下式:)2()()()()1()()()(222111x R y x Q y x P y x R y x Q y x P y =+'+''=+'+''将 (1)、(2) 两式相减,得)3(0))(())(()(212121=-+'-'+''-''y y x Q y y x P y y(2) 式可写为0))(())(()(212121=-+'-+''-y y x Q y y x P y y ,所以 21y y - 是齐次方程 0)()(=+'+''y x Q y x P y 的解.***2.已知23211,1,1x y x y y +=+==是方程22222xy x y x y =+'-''的三个特解,问能否求出该方程得通解?若能则求出通解来.解:按(1)证明可知 21312,x y y x y y =-=- 分别是其对应齐次方程0222=+'-''y xy x y 的解,并且线性无关,所以221x C x C + 为齐次方程的通解. 所以原方程的通解可以表示为:1221++=x C x C y .*3.验证:22,t t e e -是微分方程''-'-=x tx t x 1402的两个线性无关特解,并求此方程的通解.证明:因为()()222241t t t e t e te -'-"0421********=-⨯-+=t t t t e t te t e t e ,()()2222"41t t t e t e te ----'-=-+-⨯--=--241240222222e t e t te t e t t t t (),故22,t t e e -是方程的解,且≠=-2222t t t e ee 常数.于是22,t t e e -是方程线性无关的解(构成基本解组),故方程的通解为2221t t e C e C x -+=,其中21,C C 为任意常数.*4.已知函数 x y e y x ==21, 是方程 0)1(=-'+''-y y x y x 的两解,试求该方程满足初始条件 0)0(,1)0(='=y y 的特解.解:方程的通解为 x c e c y x 21+=,将初始条件代入,有:,,0)0('1)0(21211=+=+===c c c e c y c y x解得21,c c 为: 1,121-==c c ,所以特解为:x e y x -=.**5.设x t 1()是非齐次线性方程''+'+=x t a t x t a t x t f t ()()()()()()()1211的解.x t 2()是方程''+'+=x t a t x t a t x t f t ()()()()()()()1222的解.试证明 x x t x t =+12()()是方程''+'+=+x t a t x t a t x t f t f t ()()()()()()()()12123的解.解:因为)(2),(1t x t x 分别为方程(1)和方程(2)的解,所以)1()()()()()()(112111'≡+'+''t f t x t a t x t a t x''+'+≡'x t a t x t a t x t f t 2122222()()()()()()()()()12'+'得:()()())()()()()()()()()()(2121221121t f t f t x t x t a t x t x t a t x t x +='++'++"+即 x x t x t =+12()() 是方程(3)的解.第9章 (之6)(总第49次)教学内容:§9 .4 .3二阶线性常系数方程的解法**1.解下列问题:(1)方程08=+''y y 的通解为=y _______________.解:x c x c y 22sin 22cos 21+=.(2)方程025'6"=++y y y 的通解为=y _______________. 解:)4sin 4cos (213x c x c e y x +=-.(3)方程0158=+'-''y y y 的通解为=y _______________. 解:x x C C y 5231e e +=.(4)方程031525=+'+''y y y 的通解为=y _______________. 解:)(21515C x C e y x +=-.(3)方程06=+'+''py y y 的通解为)2sin 2cos (e 21x C x C y kx +=,则=p ___,=k _____. 解:11,3-.**2.求解下列初值问题:(1)0)1(,)1(,01684='==+'-''y e y y y y ;解:∵0)4(16822=-=+-λλλ, ∴421=,λ, 通解为:xe x c c y 421)(+=.将初始条件代入,有 4421)()1(e e c c y =+=,04)(4)(4)1('4424214242142=+=++=++=e e c e c c e c e x c c e c y x x得到:4521-==c c ,所以特解为:xex y 4)45(-=.(2)3)2(,1)2(,0294='==+'+''ππy y y y y ;解:02942=++λλ, i i5221042116164±-=±-=-±-=λ,通解为:)5sin 5cos (212x c x c ey x+=-.代入初始条件有: πππe c c ey =⇒=+=-221)0()2(,)5c o s 55s i n 5()5s i n 5c o s (2)2(212212x c x c e x c x c ey x x+-++-='--π,得:πe c -=1. 特解为:)5sin 5cos (2x x e y x +-=-π.(3)10)0(,6)0(,034='==+'+''y y y y y ;解: 0342=++λλ, 0)3)(1(=++λλ, 所以通解为 x x e c e c y 321--+=. 代入初始条件有:6)0(21=+=c c y ,1033)0('21321=--=--=--c c e c e c y x x ,特解为:x x e e y 3814---=.**3.求解初值问题'++==⎧⎨⎪⎩⎪≥⎰y y y x y x x210100d () 解:将原方程对x 求导得''+'+=y y y 201()且有'=-=-y y ()()01201微分方程(1)的通解为:y e C x C x =+-()12,代入初始条件1)0(,1)0(-='=y y ,得1,021==C C , 故所求问题的解为:xe y -=.***4.设函数)(x ϕ二阶连续可微,且满足方程⎰-+=xu u u x x 0d )()(1)(ϕϕ,求函数ϕ()x .解:原方程关于x 求导得⎰⎰=-+='xxu u x x x x u u x 0d )()()(d )()(ϕϕϕϕϕ,0)0(='ϕ,再求导得: )()(x x ϕϕ='', 且由原方程还有:1)0(=ϕ,微分方程的通解为:x x e C e C x -+=21)(ϕ,代入条件0)0(,1)0(='=ϕϕ,得2121==C C , 故所求函数为: x e e x x xch )(21)(=+=-ϕ.***5.长为100cm 的链条从桌面上由静止状态开始无摩擦地沿桌子边缘下滑.设运动开始时,链条已有20cm 垂于桌面下,试求链条全部从桌子边缘滑下需多少时间.解:设链条单位长度的质量为ρ,则链条的质量为ρ100.再设当时刻 t 时,链条的下端距桌面的距离为)(t x ,则根据牛顿第二定律有:gx dt x d ρρ=22100, 即 010022=-x gdtx d . 又据题意知:20)0(=x , 0)0(='x ,所以 )(t x 满足下列初值问题:⎪⎩⎪⎨⎧='==-0)0(20)0(010022x x x gdt x d , 解得方程的通解为:tg tgec ec x 102101-+=.又因为有初始条件: ()()⎩⎨⎧==⇒⎩⎨⎧==1010020021'c c x x所以 tg tgeex 10101010-+=.又当链条全部从桌子边缘滑下时,100=x ,求解t ,得:tg tg e e 10101010100-+=,即: 510=t gch, 510arch gt =.***6.设弹簧的上端固定,下端挂一个质量为2千克的物体,使弹簧伸长2厘米达到平衡,现将物体稍下拉,然后放手使弹簧由静止开始运动,试求由此所产生的振动的周期. 解:取物体的平衡位置为坐标原点,x 轴竖直向下,设t 时刻物体m 位于x t ()处,由牛顿第二定律:22222d d ()xtg g x gx =-+=- , 其中g =980厘米/秒2 其解为:x C g t C g t =+1222cossin , 振动周期为 T g ==≈222490028ππ..第9章 (之7)(总第50次)教学内容:§9.4.3二阶线性常系数方程的解法; §9.4.4高阶线性常系数微分方程 **1.微分方程x x y y sin =+''的一个特解应具有形式 ( )(A )()sin Ax B x +(B )x Ax B x x Cx D x ()sin ()cos +++ (C )x Ax B x x ()(cos sin )++ (D )x Ax B C x D x ()(sin cos )++ 解:(B )**2.设A B C D ,,,是待定常数,则微分方程''+=+y y x x cos 的一个特解应具有形式 ( )(A )Ax B C x ++cos(B )Ax B C x D x +++cos sin(C )Ax B x C x D x +++(cos sin ) (D )Ax B Cx x ++cos 答:(C )**3.求下列非齐次方程的一个解 (1)122+=-'-''x y y y ; 解:∵ 022=--λλ, ∴1,22,1-=λ, 0 不是特征根.设 01b x b y p +=, 代入原方程,得:1222011+=---x b x b b ,有:1,010-=b b ,特解为:x y -=.(2)xe y y y -=+'+''2. 解: ∵ 1- 是二重特征根, ∴ 设 02b e x y xp -=, 0202b e x b xe y xxp ---=',02002022b e x b xe b e x b e y x x x x p----+--='', 代入 xe y y y -=++'2'', 解得:210=b ,特解为:xe x y -=221.**4.求微分方程''-'+=y y y xe x 32满足条件y y ()()000='=的特解. 解:特征方程0232=+-r r 的根为2,121==r r ,相应齐次方程的通解为x x h e C e C y 221+=,设特解为x p e B Ax x y )(+=,代入方程得: 1,21-=-=B A . 故方程的通解为xxx e x x eC e C y ⎪⎪⎭⎫ ⎝⎛+-+=22221,代入条件0)0()0(='=y y ,得1,121=-=C C ,因此所求特解为 x xe x x e y ⎪⎪⎭⎫ ⎝⎛++-=1222.**5. 求下列非齐次方程的通解:)(2x f y y ='+''x x f e x f x x f x cos )()3,)()2,14)()12==+=;解:特征方程:022=+λλ, 特征根:2,021-==λλ,所以方程0'2=+''y y 的通解为 x h e c c y 221-+=.1)对于方程14'2+=+''x y y , 由于0是特征方程的单根,故设其特解为:x b x b y p )(10+=,代入方程有:14242100+=++x b x b b ,解得 21110-==b b , 所以特解为:x x y p 212-=. 所以方程的通解为:x x e c c y y y xp h 212221-++=+=-.2)对于方程xe y y 2'2=+''',由于2不是特征方程的根,故设其特解为:02b e y xp =, 代入方程有:810=b , xp e y 281=, 所以方程的通解为:x xp h e ec c y y y 222181++=+=-.3)对于方程:x y y cos '2=+''',由于i ±不是特征方程的根,故设其特解为: x b x b y p sin cos 10+=, 代入方程有:x b x b y p cos sin '10+-=, x b x b y p sin cos "10--=,x x b x b x b x b cos cos sin 2sin cos 1010=+---, 得:525120=-=b b , x x y p sin 52cos 51+-=,所以方程的通解为:x x e c c y y y xp h sin 52cos 51221+-+=+=-.**6.求微分方程''-'+=y y y e x x 6925sin 的通解.解:特征方程r r 2690-+=的根为r 123,=,相应齐次方程的通解为x h e x C C y 321)(+=设特解为y e A x B x p x=+(cos sin ),代入方程得:A B ==43,故方程的通解为 y C C x e e x x x x =+++()(cos sin )12343***7.已知曲线y y x x =≥()()0过原点,位于x 轴上方,且曲线上任一点),(00y x M =处切线斜率数值上等于此曲线与x 轴,直线x x =0所围成的面积与该点横坐标的和,求此曲线方程.解:由已知y ()00=,且'=+'=⎰y y x x y xd ,()000,将此方程关于x 求导得''=+y y 1其通解为: y C e C exx=+--121 ,代入初始条件y y (),()0000='=,得 C C 1212==, 故所求曲线方程为:y e e x xx =+-=--1211()ch .***8.设一物体质量为m ,以初速v 0从一斜面滑下,若斜面与水平面成θ角,斜面摩擦系数为μμθ(tan )0<<,试求物体滑下的距离与时间的关系.解:设t 时刻物体滑过的距离为S ,由牛顿第二定律m Stmg mg d d sin cos 22=-θμθ 且 S S v (),()0000='=方程的通解为S gt C t C =-++12212(sin cos )θμθ 代入初始条件得C v C 1020==,,故物体滑下的距离与时间的关系为S gt v t =-+1220(sin cos )θμθ***9.设弹簧的上端固定,下端挂一质量为m 的物体,开始时用手托住重物,使弹簧既不伸长也不缩短,然后突然放手使物体开始运动,弹簧的弹性系数为k ,求物体的运动规律.解:取物体未发生运动时的位置为坐标原点,x 轴垂直向下,设t 时刻物体位于x t ()处,由牛顿第二定律: m xtkx mg d d 22+=, 且 0)0(0)0(='=x x ,. 方程的通解为: x C k m t C k m t m kg =++12cos sin , 代入初始条件得C mkg C 120=-=,,故物体的运动规律为x mg k k m t =-⎛⎝ ⎫⎭⎪1cos .***10. 求下列方程的通解: (1)02)4(=''+'''-y y y;解: 02234=+-λλλ,0)12(22=+-λλλ, 0)1(22=-λλ,所以通解为 x e x c c x c c y )(4321+++=.(2)0365)4(=-''+y y y .解:036524=-+λλ, 0)9)(2)(2(2=++-λλλ,所以通解为 x c x c e c e c y x x 3sin 3cos 432221+++=-.****11* 试证明,当以 x t ln =为新的自变量时,变系数线性方程(其中a,b,c 为常数,这是欧拉方程))('"2x f cy bxy y ax =++可化为常系数线性方程)()(22t e f cy dt dya b dty d a =+-+并求下列方程通解:(1)022=-''y y x ; (2)x x y y x y x ln 22=+'-''. 证明:令 x t ln =, t e x =,dtdy x dx dt dt dy dx dy 1==,⎪⎪⎭⎫ ⎝⎛-=⎪⎭⎫ ⎝⎛+-=dt dy dt y d x dt dy dx d x dt dy x dx y d 222222111, 将y y ''',代入方程有:()()te f cy dt dy a b dt y d a cy dt dy b dt dy dt y d a cy y bx y ax =+-+=++⎪⎪⎭⎫ ⎝⎛-=+'+''22222, 得证.(1)令 x t ln =, te x =,原方程化为:0222=--y dt dydty d . 其通解为t t e c e c y -+=221.将x 代入,得:xc x c y 221+=. (2) 令 x t ln =, te x =,原方程化为:tte y dt dy dty d =+-2222, 上述方程的相应其次方程的通解为:()t c t c e y t h sin cos 21+=.令上述方程一个特解为:()10b t b e y t p +=,代入方程得:0,110==b b , 即:t e y t p =.原方程得通解为:()t t c t c e y t ++=sin cos 21,即:()()[]x x c x c x y ln ln sin ln cos 21++=.***12.一质量为m 的潜水艇在水面从静止状态开始下降,所受阻力与下降速度成正比(比例系数为k >0),浮力为常数B ,求潜水艇下降深度x 与时间t 之间的函数关系. 解: ma B F F =--阻重, a 为加速度, ma B kv mg =--, v 为下降速度,因为 22,dt x d dt dv a dt dx v ===, 所以 22dtxd m B dt dx k mg =--,即 m B g dt dx m k dtx d -=+22 , 其特征方程为: 02=+λλmk , 解得特征根为 m k-==21,0λλ.所以对应的齐次方程的通解为:21c e c x t mkh +=-.由于0是特征方程的单根,故设其特解为:t b x 01=, 代入方程有:m B g b m k -=0, 得 kB mg b -=0. 所以微分方程的通解为:t kBmg c e c x t mk-++=-21, 因为初始位置为0,初始速度为0,所以有初始条件 ()()00,00'==x x ,代入微分方程有: ⎪⎩⎪⎨⎧=-+-=++000121k Bmg c m k c c 求得:222221,kgm Bm c k Bm g m c -=-=, 所以x 与t 的关系可表示为: t k B m g e k g m Bm x t m k-+⎪⎪⎭⎫ ⎝⎛--=-122.***13.证明:若有方程'=-f x f x ()()1,则必有''+=f x f x ()()0,并求解此方程. 证明:由于'=-f x f x ()()1,两边关于x 求导得''=-'-=---=-f x f x f x f x ()()[()]()111故得''+=f x f x ()()0(1)解方程(1)得通解为 f x C x C x ()cos sin =+12(2)'=-+f x C x C x ()sin cos 12 (3) '='=f f f f ()(),()()0110,将此代入(2),(3)得C C C C C C 1221211111cos sin sin cos +=-+=⎧⎨⎩ 解得:C C 21111=+sin cos所以原方程的解为: f x C x x ()cos sin cos sin =++⎛⎝⎫⎭⎪1111.第9章 (之8) (总第51次)教学内容:§9.6 微分方程应用举例 (机动)第9章 (之9) (总第52次)教学内容:§9.7 差分方程1. 已知t t e y 3=是二阶差分方程t t t e ay y =+-+11的一个特解,求a . 解: )31(3e ea -=.2. 求下列差分方程的一般解: (1) 0721=+-t t y y ; 解:tt C y )27(-=(2) 431-=--t t y y ; 解:23+=t t C y(3) 051021=-++t y y t t ; 解:)61(125)5(-+-=t C y tt (4) t t t y y 2124=-+; 解:144-+=t t t t C y (5) t t t t y y 21⋅=-+. 解:t t t C y 2)2(-+=3. 写出下列差分方程的一个特解形式: (1) t y y t t sin 1=-+; 解:t B t B Y t cos sin 21+=(2) t y y t t πcos 31-=++. 解:)sin cos (21t B t B t Y t ππ+=4. 设t y 为第t 期国民收入,t C 为第t 期消费,I 为每期投资(I 为常数).已知t y ,t C ,I 之间有关系 I C y t t +=,βα+=-1t t y C ,其中10<<α,0>β,试求t y ,t C . 解:t y 满足:βα+=--I y y t t 1,解得 αβα-++=1I C y tt , 从而 =-=I y C t t ααβα-++1I C t.5. 已知差分方程t t t cy y by a =++1)(,其中a ,b ,c 为正的常数.设初始条件0)0(0>=y y ,证明:(1) 对任意 ,2,1=t ,有0>t y ;(2) 在变换tt y u 1=之下,原差分方程可化为有关t u 的线性差分方程,写出该线性差分方程并求其一般解;(3) 求方程t t t y y y =++1)21(的满足初始条件20=y 的解. 解:(1)归纳法证明. (2)令 t t y u 1=,即t t u y 1=,111++=t t u y , 则原方程化为线性差分方程 b au cu t t =-+1, 其一般解为 a c ≠时, ac bcaC u tt -+=)( ; a c =时, b C u t +=. (3)令 tt y u 1=,原方程化为 21=-+t t u u ,一般解为 2+=C u t , 所以原方程的一般解为 t t u y 1=21+=C ,代入 20=y ,得 23-=C ,所以 特解为 2=t y .第 10 章 (之1)(总第53次)教学内容:§10.1向量及其运算* 1. 设 a b a b ==+=2232,,,则(,)a b ∧= .答:65π. ** 2.设向量 a 与 b 不平行,c a b =+,则(,)(,) a c b c ∧∧=的充分必要条件为 .答:||||b a =.** 3.设直线L 经过点0P 且平行于向量a , 点0P 的径向量为0r ,设P 是直线L 的任意一点,试用向量0r ,a 表示点P 的径向量r . 解:∵a P ||0, ∴a t P=0, 而P r r 00+=,∴a t r r+=0∴P 点的径向量为 a t r+0.** 4.设 3,2==b a ,a 与b 的夹角等于π32,求:(1)b a ⋅; (2))2()23(b a b a +⋅-; (3)b a )(; (4)b a 23-.解:(1)〉〈=⋅b a b a a ,cos b 332cos 32-=⨯⨯=π.(2)()()b a b a223+⋅-b a b a 44322+-=()3634342322-=-⨯+⨯-⨯=.(3)()133-=-=⋅=bb a a b.(4)()()b a b a b a 2323232-⋅-=-b a b a124922-+=()108312342922=-⨯-⨯+⨯=,3610823==-b a.** 5.设5,4==b a ,a 与b 的夹角等于π31,求:(1)b a b a -+)(; (2)b a 25+与b a -的夹角.解:(1)()()b a ba b a--=-⋅2b a b a 222-+=213cos 5425422=⨯⨯-+=π,∴21=-b a,()()()b a b a b a ba ba--+=+⋅-2122b a -=215422-=7213-=. (2)()()b a ba-+⋅25b a b a 32522--=03cos543524522=⨯⨯-⨯-⨯=π,∴向量b a b a-+,25垂直.** 6. 若a ,b 为非零向量,且b a b a -=+,试证b a ⊥.解:b a b a -=+,∴ 22b a b a -=+,∴()()()()b a ba b a ba --=++⋅⋅,∴b a b a b a b a222222-+=++, ∴0=⋅b a , ∴b a ⊥.***7.用向量的方法证明半圆的圆周角必是直角. 解:如图所示,AC 为直径,B 为圆周上任一点, =→--OA →---OC , ||→--OB ==→--||OA ||→--OC ,则有 →--AB →--=OB →---OA ,→--CB →--=OB →---OC →--=OB →--+OA ,→--AB →--⋅CB →--=OB (⋅→---)OA →--OB ()→--+OA 0||||22=-=→--→--OA OB ,∴ 半圆的圆周角必为直角.第 10 章(之2)(总第54次)教学内容:§10.2空间直角坐标系与向量代数1.填空题*(1) 点A (2,-3,-1)关于点M (3,1,-2)的对称点是______ .答:(4,5,3-)**(2) 设平行四边形ABCD 的三个顶点为A B C (,,),(,,),(,,)231243313----,则 D 点为______ . 答:(5,8,7--)**(3) 已知{}{}a b z =-=-45314,,,,,,且a b a b +=-,则z =______ . 答:8-**2. A,B 两点的坐标分别为)1,3,(),,5,2(--q p ,线段AB 与y 轴相交且被y 轴平分,求qp ,之值及交点坐标.B。
高数下册第11章复习题与答案

高数下册第11章复习题与答案第十一章-无穷级数练习题(一). 基本概念1.设∑∞=1n n U 为正项级数,下列四个命题(1)若,0lim =∞→n n U 则∑∞=1n n U 收敛;(2)若∑∞=1n n U 收敛,则∑∞=+1100n n U 收敛;(3)若,1lim 1>+∞→nn n U U 则∑∞=1n n U 发散;(4)若∑∞=1n n U 收敛,则1lim 1<+∞→nn n U U .中, 正确的是( ) A .(1)与(2); B .(2)与(3);C .(3)与(4);D .(4)与(1).2.下列级数中,收敛的是(). A .∑∞=11n n ; B .∑∞=+112n n n ; C . +++3001.0001.0001.0; D . + +??? ??+??? ??+43243434343. 3.在下列级数中,发散的是(). A .∑∞=-11)1(n n n ;B .∑∞=+11n n n; C .∑∞=131n nn;D . +-+-44332243434343.4.条件()满足时,任意项级数1nn u∞=∑一定收敛.A. 级数1||n n u ∞=∑收敛;B. 极限lim 0n n u →∞=;C .极限1lim1n n nu r u +→∞=<;D. 部分和数列1n n k k S u ==∑有界.5.下列级数中条件收敛的是().A . ∑∞=11cos n n ; B. ∑∞=11n n ;C. ∑∞=-11)1(n n n ; D. ∑∞=-11)1(n n n n .6.下列级数中绝对收敛的是().A . ∑∞=-11)1(n n n ; B. ∑∞=-121)1(n n n ; C. ∑∞=+-11)1(n n n n ; D. ∑∞=11sin n n .(二). 求等比级数的和或和函数。
提示:注意首项 7.幂级数 1021+∞=∑n n n x 在)2,2(-上的和函数=)(x s . 8.幂级数∑∞=-04)1(n n nnx 在)4,4(-上的和函数=)(x s .9.无穷级数1n n ∞=∑的和S = .(三). 判定正项级数的敛散性。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第 11章(之1)(总第59次)教材内容:§11. 1 多元函数1.解下列各题:** ( 1) . 函数 f (x, y) ln( x2 y 2 ).1 连续区域是答: x2 y 2 1函数 f (x, y) xyy2x2 y 2 0** ( 2) . x 2x 2 y 2 ,则()0 0(A) 处处连续(B) 处处有极限,但不连续(C) 仅在( 0,0 )点连续(D) 除( 0,0 )点外处处连续答:( A)**2. 画出下列二元函数的定义域:(1)u x y ;解:定义域为:( x, y) y x ,见图示阴影部分:(2)f ( x, y)ln(1 xy) ;解: (x, y) xy 1 ,第二象限双曲线xy 1 的上方,第四象限双曲线x y 1 的下方(不包括边界,双曲线xy 1 用虚线表示).(3)zx yx .y解:xy 0 x y x y 0 x y .x y x y 0 xy*** 3. 求出满足 f x y,yx 2y 2 的函数 f x, y .xsx yxs1 t解:令y ,∴sttxy1 t∴ f s,ts 2 s 2t 2 s 2 1 t , 即 f x, y x 2 1 y .1 t2 1 t1 y*** 4.求极限: lim0 ,01 xy 21 .x, yx 2 y1 xy 1 xy1 x2 y 2 解: 02x 2y 21 xy 1 x 2y 21 xy 1 x 2y 2x 2y 2( x, y0,0 )2 1 xy 1∴lim1 xy 1 0 .22x, y0,0x y** 5. 说明极限limx 2 y 2 不存在.x 2 y 2x, y0, 0解:我们证明 x, y 沿不同的路径趋于 0,0 时,极限不同.首先, x0 时,极限为limx 2 y 2y 21,x 2y 2y 2xx, y 0,0其次, y 0 时,极限为limx 2 y 2 x 21 ,x 2y 2x 2yx, y 0,0故极限limx 2 y 2 不存在.x, y0, 0x 2y 2** 6.设f ( x, y)ysin 2x ,试问极限 lim f (x, y) 是否存在?为什么?xy 1 1 ( x, y) ( 0,0)解 : 不 存 在 , 因 为 不 符 合 极 限 存 在 的 前 提 , 在 (0,0) 点 的 任 一 去 心 邻 域 内 函 数ysin 2x 并不总有定义的, x 轴与 y 轴上的点处函数 f ( x, y) 就没有定义.f ( x, y)xy 11*** 7. 试讨论函数 zarctanx y的连续性.1 xy解:由于 arctanx y是初等函数,所以除xy 1 以外的点都连续,但在xy 1 上的点处1 xy不连续.** 8. 试求函数 f ( x, y)xy的间断点.sin 2 x sin 2y解:显然当 ( x, y) (m,n) m, n Z 时, f ( x, y) 没定义,故不连续.又 f ( x, y)xy是初等函数.x sin 2sin 2 y所以除点 (m, n) (其中 m,nZ )以外处处连续.第 11 章(之 2) (总第 60 次)教材内容: § 11.2 偏导数 [ § 11.2.1]** 1. 解下列各题:(1)函数 f (x, y)x 23( )y 在 (0,0) 点处(A ) f x (0,0) 和 f y (0,0) 都存在; ( B ) f x (0,0) 和 f y (0,0) 都不存在;(C ) f x (0,0) 存在,但 f y (0,0) 不存在; ( D ) f x (0,0) 不存在,但 f y (0,0) 存在.答:( D ).(2) 设 zx ( y 2) arcsinx,那么 z()yy(!,2 )(A) 0 ;(B) 1 ;(C); (D).2 4答: (D) .(3)设 f x, y xy ,则 f x ' (0,0) ______, f y ' (0,0) __________ .解:由于 f ( x,0)0 ,f x ' (0,0) 0 ,同理 f y '( 0,0) 0 .** 2. 设 z x2 yln x 2 y 2e xyz x , z y .3 , 求解: z x1xy 2 3ye xy ,z y2yy 23xe xy .x 2x 2** 3. 求函数 zarctan y对各自变量的偏导数 .x解: z xy2 , z yx2.x 2 y x 2 y** 4. 设 f ( x, y)x 2 ln( x 2y 2)x 2y 20 0,求 f x (0,0), f y (0,0) .x 2y 2解: f x ( 0,0) lim x 2ln x20 , f y ( 0,0)lim0 00 .x 0xyy*** 5. 求曲线z x 2 xy y 2在 1,1,1 点处切线与 y 轴的夹角.x1解:由于曲线在平面x 1内,故由zy 1,1x 2 y 1,1 1,得切线与 y 轴的夹角为 arctan1. [ 也可求出切向量为 0,1,1 ]4∴夹角 =arccos0,1,1 0,1,0 arccos 2 .12 12 122 4*** 6. 设函数( x, y) 在点 (0,0) 连续,已知函数 f (x, y) xy(x, y) 在点 (0,0) 偏导数f x (0,0) 存在,(1)证明(0,0) 0 ; (2)证明 f y (0,0) 也一定存在.解:( 1) limf ( x,0) f (0,0)x ( x,0)lim,xxx 0x因为 f x (0,0) 存在,所以 limx ( x,0) x ( x,0)x limxx 0 x即(0,0)( 0,0) , 故( 0,0) 0 .(2)由于( x, y) 在点 (0,0) 连续,且 ( 0,0) 0 ,所以 y0 时, (0, y) 是无穷小量,yf (0, y)f (0,0)y (0, y) ,即 f y (0,0) 0 .而是有界量,所以 limlimyy 0yx 0y第 11 章(之 3) (总第 61 次)教材内容: § 11.2 偏导数 [ § 11.2.2 ~ 11.2.4]**1. 求函数 f x, y, zxchz yshx 的全微分,并求出其在点P 0,1,ln 2 处的梯度向量.解: df x, y, z d xchz d yshxchzdx xshzdz shxdy ychxdxchz ychx dx shxdyxshzdz∴ df x, y, z0,1,ln 21dx ,f x, y, z0,1,ln 21,0,0 .44**2. 求函数 zarctanxy的全微分:1 xy解: dzd arctanxy d (arctan x arctan y)1 xyd(arctan x) d(arctan y)dx dyx 21 y 21**3. 设 zsec 2 ( xy) ,求 d z .ln( xy 1)解: d z[ln( xy 1)] d[sec 2 ( xy)] sec 2 (xy) d[ln( xy1)][ln( xy 1)]212sec 2 ( xy)[ln( xy 1)] 2 [ln( xy 1)2 sec ( xy) tan(xy)( y d x x d y)xy 1( y d x x d y)][ 2ln( xy 1) tan( xy)( xy 1) 1]( ydx xdy) .( xy 1) cos 2 (xy ) ln 2 ( xy 1)**4. 利用f df ,可推出近似公式: f xx, y y f x, y df x, y ,并利用上式计算 2.98 24.03 2 的近似值.解:由于 f xx, yyf x, ydf x, y ,设 fx, yx 2 y 2 , x 3, y 4, x0.02, y0.03 ,于是df x, yxdx ydy x x y yx 2y 2 x 2y 2 ,f xx, y yf x, y x x y yx 2,y 2∴2.98 24.03 23242 30.02 4 0.035.012 .32 42***5 .已知圆扇形的中心角为60,半径为r 20cm,如果 增加了 1,r 减少了 1cm,试用全微分计算面积改变量的近似值. 解: S1 r2 180 ,2dS(2( dr r 2d )) ,360∴S dS( 2 20 60 ( 1)(20) 2 1) 17.4533(cm 2 ) .360 360***6. 计算函数 f x, y, zln x2 y 3z 在点 P1,2,0 处沿给定方向 l 2i j k的方向导数f .lP解: f x1,f y2 , f z3,x 2y 3zx 2 y 3zx 2y 3ze l2 1 16 , , , 6 6ff e l1 2 3 21 1 1∴l P, 5 , , , 65 .5 56 66***7.函数 zarctan 1 x在( 0,0)点处沿哪个方向的方向导数最大,并求此方向导数1 y的值.解:z111x (0, 0)21 y ( 0,0 ),1 21x1 yz11 x1y(0,0)2 (1 y) 2(0, 0),121 x1 yz 1cos(1)sin1 1, 1 cos ,sin2cos ,l2222其中为 lcos ,sin与 g1 , 1 的夹角,2 2所以0 时,即 l 与 g 同向时,方向导数取最大值z 2 .l2**8. 对函数 f ( x, y, z) exyz求出 f ( x, y, z) 以及 f (1,2,3) .解:fyze xyz , xze xyz , xye xyz , f (1,2,3) e 6 6,3,2 .1(e 1 , e1 , 1) 处的梯度. **9. 求函数 f ( x, y, z)(x y) z 在点 P222111解:f 11 11( x y) zln( xy) ,( xy)z, ( xy)z,z 2zzf (e1 , e 1 , 1 ) 2e,2e, 4e2 .2 2 2***10. 讨论函数 f ( x, y)x 2 y 2 sin 1 y 2 ,x 2 y 2 0x 2 x 2 y 2在点( 0, 0)处的连0,续性,可导性和可微性.解:因为limf ( ,y) limx 2 y 2sin 12 0 f( , )x 0 x x 0 x 2 y 0 0 ,y 0 y 0所以 f (x, y) 在点(0,0)连续.因为 lim f (0 x,0) f (0,0) limx sin 1,0xx 0 x x( x 2 )极限不存在, f ( x, y) 在(0,0)处不可导,从而在(0, 0)处不可微.第 11章(之4)(总第62次)教材内容:§11.3 复合函数微分法;§11.4隐函数微分法**1. 解下列各题:(1)若函数f (u, v)可微,且有 f ( x, x2 ) x4 2x3 x 及 f u ( x, x 2 ) 2x2 2x 1,则f v ( x, x 2 ) = ( )(A) 2x2 2x 1 (B) 2x2 3x 12x(C) 2x2 2x 1 (D) 2x2 3x 1答: (A)(2)设函数z z( x, y) 由方程xy2z x y z所确定,则z =_________.y答:2xyz 1.1 xy 2z zx 3 y , v 3x y 下,可得新方程为_______.(3)方程 3 ,在变量代换 ux y答:z.0 u** 2. 设u x2 y 2 z2 , x r cos sin , y r sin sin , z r cos 求u,u,u.r解:u2x cos sin2 y sin sin2zcos2r ,ru) sin ] 2 y(r cos sin) 0,2x[ r ( sinu2 y(r sin cos ) 2zr sin.2x(r cos cos ) ** 3. 一直圆锥的底半径以 3 cm/ s 的速率增加, 高 h 以 5 cm/ s 的速率增加, 试求 r=15 cm ,h=25 cm 时其体积的增加速率. 解: V1r 2 h ,3dV V dr V dh 2rhdr1 r2 dhdtr dt h dt3 dt3dtdV r 15 1125 cm 3 / sdth 25* 4. 设 ze x3y , 而 x sin t, yt 4 ,求 dz.dt3解:dzz x dx z y dy e x cost4t 2 .dt dt dt3y 3** 5. 若 zxy,证明: xy 2zx 2 y zx 2 zy 2 z .f ( x 2 y 2 )xy解: z xyf2x 2yf , z y xf 2xy 2 f ,f 2f 2则xy 2 z xx 2 yz yxy( x 2 y 2 ) x 2 z y 2 z .f** 6. 设 uf ( xe y , ye x , xy cos 2 x) ,求 u , u,du .x y解:u e y f 1 ye x f 2 ( y cos 2 x xy sin 2x) f 3 ,xu xe y f 1e xf 2 x cos 2 xf 3 ,ydue yf 1ye x f 2 ( y cos 2 x xy sin 2x) f 3 dx xe y f 1 e x f 2 x cos 2 xf 3 dy .** 7. 求由方程xlnz所确定的函数 z z( x, y) 的偏导数z , z .z y x y1 1z2解: z x Fx z z , zyFy y.Fz x y x Fz x 1 xyz yz z2 yz z2 z** 8. 设 F ( xy, y z, xz) 0, 试求z , z, dz .x y解: F ( xy, y z, xz) 0, 两边对 x 求导,得yF1 z x F2 F3 ( z xz x ) 0 ,解得z x yF1 zF3 ,F2 xF3两边对 y 求导,得xF1 F2 (1 z y ) F3 xz y 0 .解得 z y xF1 F2 ,所以 dz yF1 zF3 dx xF1F2 dy .F2 xF3 F2 xF3 F2 xF3*** 9. 函数 z z( x, y) 由方程 F (x, x y z,z xy) 1 所确定,其中 F 具有连续一阶偏导数, F2 F3 0 ,求z 和 z .x y解: F1 d x (d x d y d z)F2 (d z y d x x d y) F3 0,d z ( F1 F2 yF3 ) d x ( F2 xF3 ) d y ,F2 F3z F1 F2 yF3 ,zF2xF3.x F2 F3 y F2 F3*** 10. 求由方程z3 xyz a 3( a0) 所确定的隐函数z z( x, y) 在坐标原点处沿由向3量 a 1, 2 所确定的方向的方向导数.解:当 x 0, y 0 时,z0 a 0 .z yz0, z xz0 ,z 0 .( 0.0 )2 xy( 0,0 )(0 .0)z 2xy(0 ,0) ax z y*** 11. 设xu yv 0, yu xv 1,( x2 y2 0) 求u , v , u , v .x x y yu x uyvu xu yv x x x x 2 y 2解:u v v xv yu v y x 0x x x x2 y2x uv yvu yu xv y y y x 2 y2类似地u v v xu yvu y x 0y y y x 2 y2第 11章(之5)(总第63次)教材内容:§11.5多元函数微分法在几何上的应用**1.曲面 x2 2 y 2z2xyz 4x 2z 6 在点A(0,1,2) 处的切平面方程为()(A)3(x 1) 2( y 2) 3z 11 0 ( B)3x 2 y 3z 4(C) x y 1 z 2 0 (D) x y 1 z 23 2 3 3 2 3答: (A) .**2. 设函数 F ( x, y, z) 可微,曲面 F ( x, y, z) 0 过点M (2, 1,0) ,且F x (2, 1,0) 5, F y (2, 1,0) 2, F z (2, 10,) 3 .过点 M 作曲面的一个法向量n ,已知 n 与x 轴正向的夹角为钝角,则n 与 z 轴正向的夹角=______ .答:.3***3. 设曲线 x 2t 1 y 3t 2 1 z t 3 2在 t 1 对应点处的法平面为S ,则点, ,P ( 2,4,1) 到S的距离d ______ .答: 2.**4.求曲线L : x a cost, y bsin t , z ct 在点 M 0(a,0,2 c) 处的切线和法平面方程.解:dxt 0a sin t t 0 dtdyt 0b cost t 0 dt∴切线方程为:x a0,b,dzc .t 0dty 0 z 2 cx ay z 2 c,b cb c法平面方程为:by c(z 2 c)0 .***5. 求曲线 L : xy yz zx 11, xyz 6 在点 M 0 (1,2,3) 处的切线和法平面方程.解:设 F ( x, y, z) xy yz zx 11 , G (x, y, z) xyz 6 ,( F ,G) y z x z xz( y z) yz(x z) z2 ( y x) ,yz xz(x, y)( F , G) x z y xxy(x z) xz( x y) x 2 ( y z) ,( y, z) zx xy( F ,G) x y y z zy(x y) xy( y z) y 2 ( z x) .xy zy( z, x)∴ ( F ,G ) M 0 9, (F , G ) M 0 1, ( F , G) M 0 8 ,( x, y) ( y, z) (z, x)∴切线方程为x 1 y 2 z 3 ,1 8 9法平面方程为x 1 1 y 2 8 z 4 9 0,即x 8 y 9 z 12 0 .***6.求曲面 4x2y24z216 在点 P (1,2 2, 1)处的法线在yOz 平面上投影方程.解:曲面在点P (1,2 2, 1)处的法线方向向量n8,4 2 , 8 4 2, 2, 2 ,法线方程为:x 1 y 2 2 z 1 .2 22 法线在 yOz 平面上投影方程为xy 2 2 z 1 .2 2***7. 求 曲 线 x t 3, y 2 t 2 , z t3 上 的 点 , 使 曲 线 在 该 点 处 的 切 线 平 行 于 平 面 x 2 y z 1 .解:设所求的点对应于 t t 0 ,则对应的切线方向向量为:s 3 2 ,4 ,3 .t 0 t 0因为 s 垂直于平面法向量 n 1,2, 1 ,所以 s n 3t 02 8t 03 0 ,解得: t 01 和 t 0 3 .所求点为:1 , 2,1 和 ( 2718,, 9) .327 96**8 .求曲面 z上平行于平面 6x 3 y 2z 6 0.的切平面方程.xy解: z6 , z 6 , xxyy xy 266kx 2 y x 16∴由条件,得:3ky 2 y 2 xz312k∴切平面方程为: 6( x 1) 3( y 2) 2( z 3) 0,即 6 x 3 y2z 18 0 .22***9. 求函数 z e x y 在点 M 0(x 0 , y 0 ) 沿过该点的等值线的外法线方向的方向导数.解:等值线方程为x 2 y 2 x 02y 02 ,在 M 0(x 0 , y 0 ) 处的法线斜率为 ky 0,即法线方向向量为 n {1 ,y 0} 或 { x 0 , y 0 } ,x 0x 0方向余弦为: cosx0cosy0, x02 y02 x02 y02z x02 y2 x0 e x02 y02 y0 x02 y02 2 2.e 2 x0x02 y02 2 y0x02 y022e x0 y0n***10. 求函数z y sin x 在P ,1 点沿a方向的方向导数,其中a为曲线2x 2 sin t , y cos2t 在t 处的切向量(指向t 增大的方向).6解:d y 2 sin 2t,tand x t 6 2 cost t 6cos 1, sin ,2 1 2 1z cosx ,zx ,1 2 y sin x ,1 y ,12 2 2所以z1)1a( (22 1 2 212 y sin x)12 2,1221,2 2.1x f ( y, z)z0点处的切线方***11. 设f ( y, z), g(z)都是可微函数,求曲线在对应于 zy g( z)程和法平面方程.解: z z0对应点 f [ g( z0 ), z0 ], g(z0 ), z0,对应的切线方向向量:S f y [ g(z0 ), z0 ]g ( z0 ) f z [ g( z0 ), z0 ], g (z0 ),1 .切线方程:x f [ g( z0 ), z0 ] y g( z0 ),f y [ g( z0 ), z0 ]g ( z0 ) f z [ g( z0 ), z0 ]z z0g (z0 )法平面方程:f g z z g z f g z z x f g z z y [ ( 0 ), 0 ] ( 0 ) z [ ( 0 ), 0 ] [ ( 0 ), 0 ]g (z0 )[ y g(z0 )] ( z z0 )0 .****12.在函数 u 1 1的等值线中哪些曲线与椭圆x28 y216 相切?解:对等值线1 1dx dy 0 , 即dy y 2 ,u 0 两边微分得x 2y 2 dxx 2xy同样对 x 2 8 y2 16 两边微分,有dyx ,dx8yy 2x 2 y ,令,得 xx 28y代入 x 28y 216 ,得x4 , y 2 ,33∴u 0 1 13 3x y.4***13.试证明曲面 xyza 3 上任一点处的切平面在三个坐标轴上截距之积为定值.解:由 xyz a 3, 得za 3,xy∴在点 ( x 0 , y 0, z 0 ) 处法向量为:a3a 3x 0,y 0 ,1 ,2 y 0 2 x 0∴切平面为:a 3( x x 0 )a 3( y y 0 ) z z 0 0 ,x 0 22y 0 x 0 y 0又 ∵ x 0 y 0 z 0a 3 ,∴ 切平面方程化为:xy z1 ,3x 03y 0 3z 0∴ 截距之积为:27x 0 y 0 z 0 27a 3 (定值).***14. 证明曲面 Fxa , yb 0的所有切平面都通过一个定点,这里F ( u,v) 具有一z c z c阶连续偏导数.解:曲面上点 ( x 0 , y 0 ,z 0 ) 处的切平面法向量:F 1 F 2 ,1,1( z 0 c)F 1 ,( z 0 c) F 2 , ( x 0 a) F 1 ( y 0 b) F 2 .(z 0c) 2切平面方程为:( z 0 c) F 1 ( x x 0 ) (z 0 c) F 2 ( y y 0 )( x 0 a) F 1 ( y 0 b) F 2 (z z 0 ) 0 .易知 xa, yb, z c 满足上述方程,即曲面的所有切平面都通过定点( a,b, c) .第 11 章 (之 6)(总第 64 次)教学内容: § 11.6 泰勒展开1.填空:* ( 1)设 uxyy,则2u=________ .xx 2答:2y .x 3* ( 2)设 ux ln xy ,则2u= _________ .x y答:1 .y* ( 3)设 ux 2 sin y y 2 cosx ,则2u= _________ .x y答: 2x cos y 2 y sin x .* ( 4)设 uarctanx y,则2u=_______ .1 xyx y答: 0 .** ( 5)设 ze xsin y e xcos y ,则 2z2zx 2y 2 = _________ .答: 0.**2 .设 zf ( x,u) 具有连续的二阶偏导数,而u xy ,求2z .x 2解: z x f x yf u , z xx f xx 2 yf xuy 2 f uu .**3 .设 zx ln( xy) ,求3z.x 2 y解一:z yx , z yx1 , z yx 20 .yy解二: z xln( xy) 1 ,z x21z yx20 .,x**4 .设 zy 2 f (xy 2 ) xf ( x 3 y 4), 求 z xy ( 1,2) .2解: z x y4f '( xy 2 ) f ( x 3 y 4 ) 3x 3 y 4 f ( x 3 y 4 ) ,zxy4 y 3 f ' (xy 2 ) y 4 f " ( xy 2 ) 2 yx f ' ( x 3 y 4 ) 4 y 3 x 312 x 3 y 3 f '( x 3 y 4 ) 3x 3 y 4 f " (x 3 y 4 ) 4x 3 y 3 ,∴z xy ( 1,2) 32 f '( 2) 32 f " (2) 4 f ' (2) 12 f ' (2) 24 f "( 2)248 f ' (2) 56 f " (2) .**5 .函数 yy( x) 由方程 x 2 2xy y 2 1所确定,求 d 2y .d x 2解:d y2x2y x y , d x2x 2yy xd 2y (1 y )( y x) ( y 1)( x y)d x 2( y x) 22( x 2 2xy y 2 )2( y x)3(x y) 3.***6 .求方程xze y z所确定的函数 z z(x, y) z=z(x,y)的所有的二阶偏导数 .解: 1z e y zz , ∴z 1 .2ze y zz e y zxx 2 (e y z 1)2(e y z1)3,因为z e y z(1z ) ,∴ z e y z1 1 .yyy 1 e y z1 e y z2z ey z (z1)e y z则yy 2(1 e y z ) 2,(1 e y z ) 32ze y z ( z 1)e y zy 3 ,x y (1 y z) 2(1 y z) ee2ze y zz e y zx. y x(1 e y z ) 2(e y z 1)32z***7 .对于由方程F (x, y, z) 0 确定的隐函数 z (x, y) ,试求.解:由公式z F x 两边对 x 求偏导数,得xF zzz2z( F xxFxzx ) F zF x ( F zxFzz x)x 2F z2F x (F zxF zzF x) ( F xxF xzF x) F zF zF z2F zF x F z F zxF zz (F x )2( F z )2 F xx F xz F x F zF z32F x F z F xz (F x ) 2 F zz(F z ) 2F xx(一般约定 F xz F zx ) 。