硝化反硝化

合集下载

硝化与反硝化

硝化与反硝化

3.7 硝化与反硝化废水中的氮常以合氮有机物、氨、硝酸盐及亚硝酸盐等形式存在。

生物处理把大多数有机氮转化为氨,然后可进一步转化为硝酸盐。

一、硝化与反硝化(一) 硝化在好氧条件下,通过亚硝酸盐菌和硝酸盐菌的作用,将氨氮氧化成亚硝酸盐氮和硝酸盐氮的过程,称为生物硝化作用。

反应过程如下:亚硝酸盐菌NH4++3/2O2 NO2-+2H++H2O-△E △E=278.42KJ 第二步亚硝酸盐转化为硝酸盐:硝酸盐菌NO-+1/2O2 NO3--△E △E=278.42KJ 这两个反应式都是释放能量的过程,氨氮转化为硝态氮并不是去除氮而是减少它的需氧量。

上诉两式合起来写成:NH4++2O2 NO3-+2H++H2O-△E △E=351KJ综合氨氧化和细胞体合成反应方程式如下:NH4+1.83O2+1.98HCO3- 0.02C5H7O2N+0.98 NO3-+1.04 H2O+1.88H2CO3 由上式可知:(1)在硝化过程中,1g氨氮转化为硝酸盐氮时需氧4.57g;(2)硝化过程中释放出H+,将消耗废水中的碱度,每氧化lg 氨氮,将消耗碱度(以CaCO3计) 7.lg。

影响硝化过程的主要因素有:(1)pH值当pH值为8.0~8.4时(20℃),硝化作用速度最快。

由于硝化过程中pH将下降,当废水碱度不足时,即需投加石灰,维持pH值在7.5以上;(2)温度温度高时,硝化速度快。

亚硝酸盐菌的最适宜水温为35℃,在15℃以下其活性急剧降低,故水温以不低于15℃为宜;(3)污泥停留时间硝化菌的增殖速度很小,其最大比生长速率为=0.3~0.5d-1(温度20℃,pH8.0~8.4)。

为了维持池内一定量的硝化菌群,污泥停留时间必须大于硝化菌的最小世代时间。

在实际运行中,一般应取>2 ;(4)溶解氧氧是生物硝化作用中的电子受体,其浓度太低将不利于硝化反应的进行。

一般,在活性污泥法曝气池中进行硝化,溶解氧应保持在2~3mg/L以上;(5)BOD负荷硝化菌是一类自养型菌,而BOD氧化菌是异养型菌。

污水处理—硝化与反硝化

污水处理—硝化与反硝化

污水硝化—反硝化脱氮处理是一种利用硝化细菌和反硝化细菌的污水微生物脱氮处理方法。

此法分为硝化和反硝化两个阶段,在好氧条件下利用污水中硝化细菌将含氮物质转化为硝酸盐,然后在缺氧条件下利用污水中反硝化细菌将硝酸盐还原成气态氮。

两段生物脱氮法是污水微生物脱氮的有效方法,作为标准生物脱氮法已得到较广泛应用。

硝化反应过程:在有氧条件下,氨氮被硝化细菌所氧化成为亚硝酸盐和硝酸盐。

他包括两个基本反应步骤:由亚硝酸菌( Nitrosomonas sp)参预将氨氮转化为亚硝酸盐的反应;硝酸菌(Nitrobacter sp)参预的将亚硝酸盐转化为硝酸盐的反应,亚硝酸菌和硝酸菌都是化能自养菌,它们利用 CO2、CO32-、HCO3-等做为碳源,通过NH3、NH4+、或者 NO2-的氧化还原反应获得能量。

硝化反应过程需要在好氧(Aerobic 或者 Oxic)条件下进行,并以氧做为电子受体,氮元素做为电子供体。

其相应的反应式为:1.亚硝化反应方程式: 55NH4++76O2+109HCO3-→C5H7O2N ﹢ 54NO2-+57H2O+10 4H2CO32.硝化反应方程式: 400NO2-+195O2+NH4++4H2CO3+HCO3-→C5H7O2N+400NO3- +3H2O3.硝化过程总反应式: NH4++1.83O2+1.98HCO3-→0.021C5H7O2N+0.98NO3-+1. 04H2O+1.884H2CO3通过上述反应过程的物料衡算可知,在硝化反应过程中,将1 克氨氮氧化为硝酸盐氮需好氧4.57 克(其中亚硝化反应需耗氧 3.43 克,硝化反应耗氧量为1.14 克),同时约需耗 7.14 克重碳酸盐(以 CaCO3 计)碱度。

在硝化反应过程中,氮元素的转化经历了以下几个过程:氨离子 NH4-→羟胺NH2OH→硝酰基NOH→亚硝酸盐 NO2-→硝酸盐 NO3-。

反硝化反应过程:在缺氧条件下,利用反硝化菌将亚硝酸盐和硝酸盐还原为氮气而从无水中逸出,从而达到除氮的目的。

同步硝化反硝化原理

同步硝化反硝化原理

同步硝化反硝化原理同步硝化反硝化是一种重要的废水处理技术,它通过微生物的代谢作用将废水中的氨氮和硝酸盐氮转化为氮气释放到大气中,从而达到净化水质的目的。

这种技术在污水处理中得到了广泛的应用,下面我们就来详细了解一下同步硝化反硝化的原理。

首先,我们来介绍一下硝化反应和反硝化反应的基本过程。

硝化反应是指氨氮在微生物的作用下被氧化成亚硝酸盐,然后再被氧化成硝酸盐的过程。

而反硝化反应则是指硝酸盐被还原成氮气或氮氧化物的过程。

这两种反应是废水处理中常见的氮素转化过程。

在同步硝化反硝化中,硝化和反硝化两种反应同时进行。

这是通过控制氧气的供应来实现的。

在废水处理系统中,通常会设置好氧区和缺氧区,氨氮在好氧区被氧化成亚硝酸盐和硝酸盐,然后在缺氧区被还原成氮气或氮氧化物。

这样就实现了硝化和反硝化两种反应的同步进行。

同步硝化反硝化的原理是基于微生物的代谢特点。

在好氧条件下,氨氮被氧化成亚硝酸盐和硝酸盐,而在缺氧条件下,硝酸盐被还原成氮气或氮氧化物。

这种技术不仅能够高效地去除废水中的氨氮和硝酸盐氮,还能够减少化学药剂的使用,降低处理成本。

此外,同步硝化反硝化还具有一定的适用性。

它适用于有机负荷较高、氨氮负荷较高的废水处理系统,能够有效地提高氮素的去除效率。

而且,同步硝化反硝化技术还能够适应废水水质和流量的波动,具有一定的抗冲击负荷能力。

总的来说,同步硝化反硝化是一种高效、经济的废水处理技术,它通过控制好氧和缺氧条件下微生物的代谢过程,实现了氨氮和硝酸盐氮的同步转化,达到了净化水质的目的。

这种技术不仅能够高效去除氮污染物,还能够降低处理成本,具有一定的适用性和稳定性。

因此,在废水处理领域具有广阔的应用前景。

污水处理中的硝化与反硝化过程

污水处理中的硝化与反硝化过程
污水处理中的硝化与反硝化应用
污水处理厂的硝化与反硝化应用
污水处理厂是硝化与反硝化过程的重要应用场所,通过硝化反应将有机 氮转化为硝酸盐,再通过反硝化反应将硝酸盐转化为氮气,从而达到去 除氮污染物的目的。
硝化反应通常在好氧条件下进行,由硝化细菌将氨氮氧化成硝酸盐;反 硝化反应则在缺氧条件下进行,由反硝化细菌将硝酸盐还原成氮气。
THANKS
THANK YOU FOR YOUR WATCHING
硝化反应的微生物学基础
硝化细菌是一类好氧性细菌,能够将氨氮氧化成硝酸盐。
硝化细菌主要包括亚硝化Байду номын сангаас菌和硝化细菌两类,分别负责亚硝化和硝化两个阶段 。
硝化反应的影响因素
溶解氧
硝化反应是好氧反应,充足的溶解氧是保证硝化 反应顺利进行的关键。
pH值
硝化细菌适宜的pH值范围为7.5-8.5。
ABCD
温度
硝化细菌对温度较为敏感,适宜的温度范围为 20-30℃。
应对气候变化
资源回收利用
探索污水处理过程中资源的回收利用,如能源、肥 料等,提高污水处理的经济效益和社会效益。
随着气候变化加剧,污水处理系统需应对极 端天气和自然灾害的挑战,保障硝化与反硝 化过程的稳定运行。
国际合作与交流
加强国际合作与交流,引进先进技术与管理 经验,推动硝化与反硝化技术的创新发展。
害。
城市污水处理中的硝化与反硝化应用
城市污水中的氮污染物主要来源于生活污水和部分工业废水,硝化与反硝化过程在 城市污水处理中具有重要作用。
城市污水处理厂通常采用生物反应器进行硝化与反硝化反应,通过合理控制反应条 件,提高脱氮效率。
城市污水处理中的硝化与反硝化应用可以有效降低水体中氮污染物含量,改善城市 水环境质量。

硝化反硝化池流程

硝化反硝化池流程

硝化反硝化池流程
硝化反硝化池的工艺流程主要包括进水、曝气、硝化、沉淀、反硝化等几个阶段。

下面我们将详细介绍硝化反硝化池的工艺流程。

一、进水阶段
在进水阶段,废水首先经过预处理工艺去除污水中的大颗粒杂质,然后进入硝化反硝化系统。

污水在硝化反硝化系统进水口经过进水平整器均匀分布到硝化反硝化系统中,以便后面的处理步骤能够更加均匀地进行。

二、曝气阶段
在曝气阶段,污水中的有机物被氧化成二氧化碳和水,同时氨氮被氧化为硝态氮。

这一阶段主要通过曝气装置将空气吹入水中,利用曝气池来提供氧气,促进细菌的活动和生长,加速有机物的降解和氨氮的氧化。

三、硝化阶段
在硝化阶段,硝化细菌利用氨氮进行氧化,将其转化为亚硝酸盐和硝酸盐。

这一阶段需要控制曝气量和污水的进水量,以保证硝化细菌有足够的氧气和氨氮来进行反应。

四、沉淀阶段
在沉淀阶段,硝化后的液体经过沉淀池,使得活性污泥与水分离,进而去除污水中的悬浮物和胶体物质。

这一阶段的沉淀过程非常重要,其效果将直接影响后续的处理效果。

五、反硝化阶段
在反硝化阶段,亚硝酸盐和硝酸盐被反硝化细菌还原成氮气,从而实现对氮的去除。

这一阶段需要控制曝气量和氧气的供应,以保证反硝化细菌能够正常进行反应。

总结:
硝化反硝化池的工艺流程是一个复杂的系统工程,需要对各项操作参数进行精确控制,以确保处理效果。

同时,硝化反硝化池是一个生物处理工艺,对污水中的微生物有一定的要求,要求操作人员对污水的特性、微生物的种类和数量等有一定的了解,才能更好地控制整个处理过程。

希望本文对您有所帮助。

硝化反应和反硝化反应

硝化反应和反硝化反应

一、硝化反应在好氧条件下,通过亚硝酸盐菌和硝酸盐菌的作用,将氨氮氧化成亚硝酸盐氮和硝酸盐氮的过程,称为生物硝化作用。

硝化反应包括亚硝化和硝化两个步骤:NH4++1.5O2NO2-+H2O+2H+NO2-+0.5O2NO3-硝化反应总方程式:NH3+1.86O2+1.98HCO3-0.02C5H7NO2+1.04H2O+0.98NO3--+1.88H2CO3若不考虑硝化过程硝化菌的增殖,其反应式可简化为NH4++2O2NO3-+H2O+2H+从以上反应可知:1)1gNH4+-N氧化为NO3-需要消耗2*50/14=7.14g碱(以CaCO3计)2)将1gNH4+-N氧化为NO2--N需要3.43gO2,氧化1gNO2--N需要1.14gO2,所以氧化1gNH4+-N需要4.57gO2。

硝化细菌所需的环境条件主要包括以下几方面:a.DO:DO应保持在2-3mg/L。

当溶解氧的浓度低于0.5mg/L时,硝化反应过程将受到限制。

b.PH和碱度:PH7.0-8.0,其中亚硝化菌6.0-7.5,硝化菌7.0-8.5。

最适合PH为8.0-8.4。

碱度维持在70mg/L以上。

碱度不够时,应补充碱c.温度:亚硝酸菌最佳生长温度为35℃,硝酸菌的最佳生长温度为35~42℃。

15℃以下时,硝化反应速度急剧下降;5℃时完全停止。

d.污泥龄:硝化菌的增殖速度很小,其最大比生长速率为0.3~0.5d-1(温度20℃,pH8.0~8.4)。

为了维持池内一定量的硝化菌群,污泥停留时间必须大于硝化菌的最小世代时间。

对于实际应用中,活性污泥法脱氮,污泥龄一般11~23d。

e.污泥负荷:负荷不应过高,负荷宜0.05-0.15kgBOD/(kgMLSS·d)。

因为硝化菌是自养菌,有机物浓度高,将使异养菌成为优势菌种。

总氮负荷应≤0.35kgTN/(m3硝化段·d),当负荷>0.43kg/(m3硝化段·d)时,硝化效率急剧下降。

同步硝化反硝化和短程硝化反硝化

同步硝化反硝化和短程硝化反硝化

同步硝化反硝化和短程硝化反硝化随着人类对环境保护意识的提高,对水体生态系统的关注愈发增加。

其中,氮循环作为生态环境中的重要一环,也备受关注。

在氮循环中,“同步硝化反硝化”和“短程硝化反硝化”是两个重要的过程,对于水体的氮素转化和利用具有重要的作用。

以下将从深度和广度的角度进行全面评估,以便更好地了解这两个过程。

1. 同步硝化反硝化的概念同步硝化反硝化是指在同一微生物体内,氨氮直接转化为硝酸盐,然后直接再被还原为氮气的过程。

这一过程通常由单一微生物完成,也被称为全硝化或类全硝化反应。

在自然界中,同步硝化反硝化主要由厌氧异养细菌完成,这些细菌具有很强的氨氧化和硝化能力,能够将氨氮快速氧化为亚硝酸盐,然后在厌氧条件下迅速还原为氮气,从而将氨氮转化为无害的氮气释放到大气中。

2. 短程硝化反硝化的概念短程硝化反硝化指的是在很短的时间和空间内,氨氮被氧化为硝酸盐然后迅速还原为氮气的过程。

这一过程通常发生在水体底泥或水体微缝隙中,因此被称为短程硝化反硝化。

在水体中,短程硝化反硝化通常由微生物和底泥中的细菌完成,底泥中的微生物可以迅速氧化水体中的氨氮为硝酸盐,然后水体中的细菌则可以迅速还原硝酸盐为氮气,从而在水体中形成短程硝化反硝化过程。

3. 两者的联系和区别同步硝化反硝化和短程硝化反硝化虽然是两种不同的氮素转化过程,但它们之间也存在着联系和区别。

联系在于,两者都是对氨氮进行氧化和还原的过程,最终都将氨氮转化为无害的氮气释放到大气中。

而区别在于,同步硝化反硝化主要发生在水体中的微生物体内,而短程硝化反硝化则主要发生在水体底泥和微缝隙中,两者的位置和速率都存在较大差异。

在我们对同步硝化反硝化和短程硝化反硝化进行全面评估之后,可以发现两者在氮素转化和利用过程中都起着非常重要的作用,对于维护水体生态系统的健康具有重要意义。

总结回顾:通过全面的评估和深入的探讨,我们对同步硝化反硝化和短程硝化反硝化有了更深入的理解。

也了解到两者在水体氮素转化中的重要性和作用。

硝化作用及反硝化作用

硝化作用及反硝化作用

硝化作用及反硝化作用
硝化作用(nitrification)氨基酸脱下的氨,在有氧的条件下,经亚硝酸细菌和硝酸细菌的作用转化为硝酸的过程。

氨转化为硝酸的氧化必须有O2参与,通常发生在通气良好的土壤、厩肥、堆肥和活性污泥中。

硝化细菌,先是亚硝化细菌将铵根(NH4+)氧化为亚硝酸根(N02-);然后硝化细菌再将亚硝酸根氧化为硝酸根(N03-)。

硝化作用所产生的硝酸盐(NO3-),因其自身的负电性而不容易被固定在正离子交换点(主要是腐殖质)多于负离子的土壤中。

反硝化作用,是指在厌氧条件下,微生物将硝酸盐及亚硝酸盐还原为气态氮化物和氮气的过程。

是活性氮以氮气形式返回大气的主要生物过程。

反硝化作用不仅在土壤中进行,还可在江河湖泊和海洋中进行。

发生反硝化作用的条件是:①反硝化微生物;②合适的电子供体,如有机碳化物、还原态硫
化物;③厌氧条件;④氮的氧化物。

土壤中已知能进行反硝化作用的微生物种类有24个属性。

绝大多数反硝化细菌是异养型细菌,亦有少数自养型细菌如反硝化硫杆菌。

影响反硝化作用的因素包括:①氧的供应,当氧的供应受到限制时发生反硝化作用;②碳的供应,如土壤有机质、根分泌物等;③硝酸盐的供应;④pH,在酸性土壤中,反硝化作用受到抑制。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

A、硝化反应过程:在有氧条件下,氨氮被硝化细菌所氧化成为亚硝酸盐和硝酸盐。

他包括两个基本反应步骤:由亚硝酸菌(Nitrosomonas sp)参与将氨氮转化为亚硝酸盐的反应;硝酸菌(Nitrobacter sp)参与的将亚硝酸盐转化为硝酸盐的反应,亚硝酸菌和硝酸菌都是化能自养菌,它们利用CO2、CO32-、HCO3-等做为碳源,通过NH3、NH4+、或NO2-的氧化还原反应获得能量。

硝化反应过程需要在好氧(Aerobic或Oxic)条件下进行,并以氧做为电子受体,氮元素做为电子供体。

其相应的反应式为:亚硝化反应方程式:55NH4++76O2+109HCO3→C5H7O2N﹢54NO2-+57H2O+104H2CO3硝化反应方程式:400NO2-+195O2+NH4-+4H2CO3+HCO3-→C5H7O2N+400NO3-+3H2O硝化过程总反应式:NH4-+1.83O2+1.98HCO3→0.021C5H7O2N+0.98NO3-+1.04H2O+1.884H2CO3通过上述反应过程的物料衡算可知,在硝化反应过程中,将1克氨氮氧化为硝酸盐氮需好氧4.57克(其中亚硝化反应需耗氧3.43克,硝化反应耗氧量为1.14克),同时约需耗7.14克重碳酸盐(以CaCO3计)碱度。

在硝化反应过程中,氮元素的转化经历了以下几个过程:氨离子NH4-→羟胺NH2OH→硝酰基NOH→亚硝酸盐NO2-→硝酸盐NO3-。

B、反硝化反应过程:在缺氧条件下,利用反硝化菌将亚硝酸盐和硝酸盐还原为氮气而从无水中逸出,从而达到除氮的目的。

反硝化是将硝化反应过程中产生的硝酸盐和亚硝酸盐还原成氮气的过程,反硝化菌是一类化能异养兼性缺氧型微生物。

当有分子态氧存在时,反硝化菌氧化分解有机物,利用分子氧作为最终电子受体,当无分子态氧存在时,反硝化细菌利用硝酸盐和亚硝酸盐中的N3+和N5+做为电子受体,O2-作为受氢体生成水和OH-碱度,有机物则作为碳源提供电子供体提供能量并得到氧化稳定,由此可知反硝化反应须在缺氧条件下进行。

从NO3-还原为N2的过程如下:NO3-→NO2-→NO→N2O→N2反硝化过程中,反硝化菌需要有机碳源(如碳水化合物、醇类、有机酸类)作为电子供体,利用NO3-中的氧进行缺氧呼吸。

其反应过程可以简单用下式表示:NO3-+4H(电子供体有机物)→ 1/2N2+H2O+2OH-NO2-+3H(电子供体有机物)→ 1/2N2+H2O+OH-污水中含碳有机物做为反硝化反应过程中的电子供体。

由上式可知,每转化1gNO2-为N2时,需有机物(以BOD表示)1.71g;每转化1gNO3-为N2时,需有机物(以BOD表示)2.86g。

同时产生3.57g重碳酸盐碱度(以CaCO3计)。

如果污水中含有溶解氧,为使反硝化完全,所需碳源有机物(以BOD表示)用下式计算:C=2.86Ni+1.71N0+DO0其中:C为反硝化过程有机物需要量(以BOD表示),mg/l;Ni为初始硝酸盐氮浓度(mg/l)N0为初始亚硝酸盐氮浓度(mg/l)DO0为初始溶解氧浓度(mg/l)如果污水中碳源有机物浓度不足时,应补充投加易于生物降解的碳源有机物(甲醇、乙醇或糖类)。

以甲醇为例,则NO3-+1.08CH3OH+0.24H2CO3→0.056C5H7O2N+0.47N2↑+1.68H2O+HCO3-如果水中有NO2-,则会发生下述反应:NO2-+0.67CH3OH+0.53H2CO3→0.04C5H7O2N+0.48N2↑+1.23H2O+HCO3-由上式可见,每还原1gNO2-和1gNO3-分别需要消耗甲醇1.53g和2.47g。

当水中有溶解氧存在时,氧消耗甲醇的反应式为:O2+0.93CH3OH+0.056NO3-→0.056C5H7O2N+1.64H2O+0.056HCO3-+0.59H2CO3综上所述,可得反硝化过程需要有机碳源(甲醇)的投加量公式为:Cm=2.47Ni+1.53N0+DO0其中:Cm为反硝化过程中需要的甲醇浓度(mg/l)其余符号同上综上所述,硝化反应每氧化1g氨氮耗氧4.57g,消耗碱度7.14g,表现为PH值下降,在反硝化过程中,去除硝酸盐氮的同时去除碳源,这部分碳源折合DO2.6g,另外,反硝化过程中补偿碱度3.57g。

1.传统的生物脱氮工艺传统的生物脱氮工艺是由巴茨( Barth)开创的所谓三级活性污泥法流程,它是以氨化、硝化和反硝化三项反应过程为基础建立的。

传统的生物脱氮工艺是单独进行硝化和反硝化的工艺系统,每一部分都有自己的沉淀池和各自独立的污泥回流系统,使除碳、硝化和反硝化在各自的反应器中进行,并分别控制在适宜的条件下运行。

第一级曝气池为一般的二级处理曝气池,其主要功能是去除有机物,使有机氮转化为氨氮。

经过沉淀后,废水进入第二级硝化曝气池。

在第二级硝化曝气池进行硝化反应,使氨氮转化为硝态氮。

在第二段硝化过程中要消耗一定的碱度,使 PH值下降,进而会降低硝化反应的速度,因此,需要投加碱补充碱度。

第三级为反硝化池,需要维持缺氧条件,不进行曝气,只采用搅拌机械使污泥处于悬浮状态并与污水充分混合,硝态氮还原为氮气,反硝化过程所需要的碳源不足,需要外加碳源。

这种流程的优点是好氧菌、硝化菌和反硝化菌分别生长在不同的构筑物中,均可在各自适宜的环境条件下生长繁殖,所以反应速度较快,可以得去除和脱氮效果。

缺点是流程长、处理构筑物多、附属设备多,到较好的 BOD5基建费用高、需要补充碱度和外加碳源因而运转费用较高。

2. A/O脱氮工艺A/O 工艺是一种有回流的前置反硝化生物脱氮流程,其中前置反硝化在缺氧池中进行,硝化在好氧池中进行。

原污水先进入缺氧池,并将好氧池的混合液与沉淀池的污泥同时回流到缺氧池。

污泥和好氧池混合液的回流保证了缺氧池和好氧池有足够数量的微生物,并使缺氧池得到好氧池中硝化所产生的硝酸盐。

而原污水和混合液的直接进入又为缺氧池反硝化提供了充足的碳源有机物,使反硝化反应能在缺氧池中进行,反硝化反应的出水又可在好氧池中进行BOD5的降解。

A/0 与传统的生物脱氮工艺相比,其特点有:流程简单,构筑物少,费用小,占地少;以原污水中的含碳有机物和内源代谢产物为碳源,节省外加碳源的费用;好氧池在缺氧池后,可进一步去除反硝化残留的有机污染物,改善出水水质;缺氧池在好氧池之前,由于反硝化消耗了一部分碳源有机物,可减轻好氧池的有机负荷,并且反硝化过程产生的碱度可以补偿硝化过程对碱度的消耗。

其缺点是:三种不同作用的微生物同在一个系统中,经常改变条件,则存在不断改变环境、不断适应环境的过程,微生物有适应期、闲置期,未能发挥最佳作用。

随着水体富营养化问题的日益突出、水质指标系统不断严格化,使废水脱氮问题成为了水污染控制中广泛关注的热点。

而传统多级分设备的生物脱氮工艺以及序批式活性污泥工艺等,虽然在废水脱氮方面起着重要的作用,但仍然存在着以下问题:( 1)硝化反应和反硝化反应所需要的条件不同,需要序批式进行,且 HRT 较长,反应池占地面积大;( 2)污泥产生量大,剩余污泥处理费用高,污泥不易沉降,而且容易发生污泥膨胀;( 3)耐水质、水量冲击负荷能力差,运行不够稳定;( 4)中和硝化过程中产生的酸度,需要加碱中和,增加了处理费用;( 5)曝气池中的生物浓度低,曝气池氧的传质效率低。

与此相比,单级生物脱氮工艺在生物脱氮过程当中展现出更多的优势。

硝化反应耗氧、耗碱度、但不消耗碳源,而反硝化过程不需氧、产生碱度、消耗大量碳源,两者在多方面表现为互补。

如果硝化和反硝化反应能在同一处理系统中连续实现,硝化反应的产物可直接成为反硝化反应的底物,避免了硝化过程中的-的积累对硝化反应的抑制,加快硝化反应的速度,还可以有效利用废水中有NO2机碳源进行反硝化;而且也不需外加动力进行硝化液循环;反硝化反应增加的碱度补充硝化反应减少的碱度,使系统内的 pH值相对稳定;另外,硝化反应和反硝化反应可在相同的条件和系统中进行,简化了操作的难度。

3.新型的脱氮工艺:1)短程硝化反硝化工艺短程硝化反硝化工艺(Single reactor High activity Ammonia Removal OverNitrite )是一种新型的脱氮工艺。

其基本原理是将氨氮氧化控制在亚硝化阶段,然后通过反硝化作用将亚硝酸氮还原为氮气,是经 NH4+-N→ NO2--N→ N2这样的途径完成,整个过程较全程硝化反硝化大大缩短。

短程硝化的标志是有稳定且较高的 NO2--N积累,即亚硝酸氮积累率较高。

与传统的生物脱氮工艺相比,该工艺具有以下优点:硝化与反硝化两个阶段在同一反应器中完成,可以简化工艺流程;可节省反硝化过程所需要的外加碳源,同时硝化产生的酸度可部分地由反硝化产生的碱度中和,减少了处理费用;可以缩短水力停留时间,减少反应器体积和占地面积;只需要将氨氮氧化成亚硝酸盐,可减少25% 左右的供气量,降低能耗。

2)厌氧氨氧化工艺厌氧氨氧化工艺(Anaerobic AMMonium Oxidation )是由荷兰Delft大学于 1990年提出的。

该工艺的特点是:在厌氧条件下,微生物直接以硝酸盐或亚硝酸盐为电子受体,以氨氮作为电子供体,将氨氮氧化生成氮气,硝酸盐和亚硝酸盐还原为氮气。

厌氧氨氧化是 Mulder和 Graaf对一个使用硫化物做电子供体的流化床反应器自养菌反硝化运行工况仔细观测和研究发现的。

该工艺中亚硝酸盐是一个关键的电子受体。

与硝化作用相比,它以亚硝酸盐取代氧,改变了电子受体;与反硝化作用相比,它以氨取代有机物作为电子供体。

从这一反应中所产生的吉布斯( Gibbs)自由能甚至比好氧氨氧化(硝化)所产生的能量还要高,所以能够支持自养菌生长。

这表明在这一工艺中发生的反硝化反应中不需外加碳源。

厌氧氨氧化工艺特别适宜在温度高于20℃和自营养系统中运行。

这种工艺多用于处理工业废水,也可用于处理其他废液,如污泥消化池上清液。

厌氧池(区)指非充氧池(区),溶解氧浓度一般小于0.2mg/L。

微生物在该池(区)吸收有机物并释放磷。

缺氧池(区)指非充氧池(区),溶解氧浓度一般为0.2~0.5mg/L。

当存在大量硝酸盐、亚硝酸盐和充足的有机物时,可在该池(区)内进行反硝化脱氮反应。

好氧池(区)指充氧池(区),溶解氧浓度一般不小于2mg/L,主要功能是降解有机物和进行硝化反应。

当以除磷为主时,应采用厌氧/好氧工艺,基本工艺流程如下:当以除氮为主时,宜采用缺氧/好氧工艺,基本工艺流程如下:需要同时脱氮除磷时,应采用厌氧/缺氧/好氧(A/A/O)工艺,基本工艺流程如下:VFA(挥发性脂肪酸),PHA(聚羟基脂肪酸),PO(磷酸盐),PP(多聚磷酸盐)厌氧条件下,PAOs吸收VFA转化为PHA,这一过程PP高能键断裂为这一过程释放能量,同时释放出磷酸盐,而磷酸盐浓度升高,恰恰是我们说的能够利于PAOs生长繁殖好氧条件下,正好与其相反,吸收Po形成PP,而此时的能源则是PHA,如厌氧过程所说,PP是吸收PO所需要的能量物质,也就等于是为下一次代谢周期做准备,与此同时,PAOs分裂生成新的细胞,但是由于,PO含量降低,将会限制它的生存繁殖,所以必须通过人为过程使PO含量升高,完成一个完整的周期。

相关文档
最新文档