2020届高考数学一轮复习模拟试卷及答案(共三套)

合集下载

(人教版)2020年高三数学模拟试卷及参考答案

(人教版)2020年高三数学模拟试卷及参考答案

(人教版)2020年高三数学模拟试卷及参考答案一、选择题(5×10=50分)1.已知集合{10}{lg(1)}M x x N x y x =+>==-,,则M N =I ( ) A .{11}x x -<< B .{1}x x > C .{11}x x -≤< D .{1}x x ≥-2.等比数列{}n a 中,44a =,则26a a ⋅等于( ) A .4 B .8 C .16D .323.已知:1231,:(3)0p x q x x -<-<-<, 则p 是q 的什么条件( )A .必要不充分B .充分不必要C .充要D .既不充分也不必要4.若点(cos ,sin )P αα在直线2y x =-上,则sin 22cos2αα+=( ) A .145- B .75- C .2-D .455.圆0222=++x y x 和0422=-+y y x 的公共弦所在直线方程为( ) A .02=-y x B .02=+y x C .02=-y x D .02=+y x 6. 已知函数()22xf x =-,则函数()y f x =的图象可能是( )7.函数()3cos 2sin 2f x x x =-的单调减区间为( )A .2[,]63k k ππππ++,k Z ∈ B .7[,]1212k k ππππ--,k Z ∈C .7[2,2]1212k k ππππ--,k Z ∈D .5[,]1212k k ππππ-+,k Z ∈8.设11321log 2,log 3,()2a b c ===0.3,则( )A .c b a <<B .b c a <<C .a c b <<D .c a b <<9.在复平面内,复数211)i (i-+对应的点位于( ) A .第一象限 B .第二象限 C .第三象限 D .第四象限10.已知某几何体的三视图如右图所示, 则该几何体的体积是( )A .21 B .61 C . 121 D . 181二、填空题(5×5=25分)11.向量b a ,的夹角为120°,|5|,3||,1||b a b a -==则= 12.不等式0)1)(3(1<+--x x x 的解集为13.已知圆C 的圆心是直线01=+-y x 与x 轴的交点,且圆C与直线03=++y x 相切.则圆C 的方程为14.已知0,0x y >>,且211x y+=,若222x y m m +>+恒成立,则实数m 的取值范围是______15.已知向量(,1)x =-a ,(3,)y =b ,其中x 随机选自集合{1,1,3}-,y 随机选自集合{1,3},那么⊥a b 的概率是_____.三、解答题(75分)16.设集合A ={x |x 2<4},B ={x |1<4x +3}(1)求集合B A I(2)若不等式022<++b ax x 的解集为B ,求a ,b 的值17.已知向量)2,(sin -=θa 与)cos ,1(θ=b 互相垂直,其中(0,)2πθ∈(1)求θsin 和θcos 的值(2)求函数x x x f sin 22cos )(+=的值域18. 将一颗均匀的四面分别标有1,2,3,4点的正四面体骰子先后抛掷2次,观察向上的点数,求:(1)两数之和为5的概率;(2)以第一次向上点数为横坐标x ,第二次向上的点数为纵坐标y 的点(),x y在区域Ω:0020x y x y >⎧⎪>⎨⎪-->⎩内的概率.19.已知数列{}n a 的前n 项和为22n n nS +=, (1)求数列{}n a 的通项公式 (2)求数列1{}n n a x -的前n 项和(其中0x >)20.如图,正三棱柱111C B A ABC -中,D AA AB ,3,21==为B C 1的中点,P 为AB 边上的动点.(1)当点P 为AB 边上的中点,证明DP //平面11A ACC (2)若,3PB AP =求三棱锥CDP B -的体积.21.若椭圆1C :)20( 14222<<=+b by x 的离心率等于23,抛物线2C :)0( 22>=p py x 的焦点在椭圆的顶点上。

2020届高考数学一轮复习综合检测二(标准卷)理(含解析)新人教A版

2020届高考数学一轮复习综合检测二(标准卷)理(含解析)新人教A版

综合检测二(标准卷)考生注意:1.本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分,共4页.2.答卷前,考生务必用蓝、黑色字迹的钢笔或圆珠笔将自己的姓名、班级、学号填写在相应位置上.3.本次考试时间120分钟,满分150分.4.请在密封线内作答,保持试卷清洁完整.第Ⅰ卷(选择题 共60分)一、选择题(本题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.设全集为R ,集合A =⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫x ⎪⎪⎪ 2-x x >0,B ={x |x ≥1},则A ∩B 等于( ) A .{x |0<x ≤1}B .{x |0<x <1}C .{x |1≤x <2}D .{x |0<x <2} 答案 C解析 由集合A =⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫x ⎪⎪⎪ 2-x x >0,可知0<x <2; 因为B ={x |x ≥1},所以A ∩B ={}x |1≤x <2,故选C.2.若复数z 满足(1+2i)z =1-i ,则复数z 为( )A.15+35i B .-15+35i C.15-35i D .-15-35i 答案 D解析 ∵(1+2i)z =1-i ,∴z =1-i 1+2i =(1-i )(1-2i )(1+2i )(1-2i )=-1-3i 5=-15-35i ,故选D. 3.设变量x ,y 满足约束条件⎩⎪⎨⎪⎧ y ≥0,x -y +1≥0,x +y -3≤0,,则z =2x -y 的最小值为( )A .-3B .-2C .-1D .2答案 B 解析 绘制不等式组表示的可行域(阴影部分包含边界),结合目标函数可得,目标函数在点A (-1,0) 处取得最小值z =2x -y =-2.4.如图,在△OAB 中,P 为线段AB 上的一点,OP →=xOA →+yOB →,且BP →=2PA →,则( )A .x =23,y =13B .x =13,y =23C .x =14,y =34D .x =34,y =14 答案 A解析 由题可知OP →=OB →+BP →,又BP →=2PA →,所以OP →=OB →+23B A →=OB →+23(OA →-OB →)=23O A →+13OB →,所以x =23,y =13,故选A. 5.(2x +x )4的展开式中x 3的系数是( )A .6B .12C .24D .48答案 C解析 (2x +x )4的展开式的通项公式为T k +1=C k 4(2x )4-k (x )k =C k 424-k 42k x -,令4-k 2=3解得k =2,故x 3的系数为C 2422=24,故选C.6.阅读如图所示的程序框图,运行相应的程序,则输出的S 值为( )A .15B .37C .83D .177答案 B解析 执行程序,可得S =0,i =1,不符合,返回循环;。

2020最新高考数学模拟测试含解答(20200404103106)

2020最新高考数学模拟测试含解答(20200404103106)

平面 PAD
∴ BG ∥ 平 面 PAD
∵ EF ∥ BG ∴ EF ∥ 平 面 PAD
(7 分)
(II)∵ BG⊥平面 PDC,EF∥BG ∴EF⊥平面 PDC
2
(B) cos
1
2
1 sin
2
(D) sin
1
2
( C)
(文)已知曲线 C 与 C′ 关于直线 x y 2 0对称,若 C 的方程为
, x2 y2 4x 4y 7 0
则 C′的方程为
()
(A ) x 2 y2 8x 8y 31 0
(B) x 2 y2 8x 8y 31 0
(C) x2 y 2 8x 8 y 31 0
又 CD=2a, DP=a,
CP CD 2 DP2 5a
△ PBC 中, G 为 PC 中点,∴ BG⊥PC
易得 BG 3 a, HG 1 a, BH a
2
2
∴ △ BGH 为直角三角形,且
BG ⊥ GH ∴ GB ⊥平面 PDC
(5 分)
∴GB⊥CD 又 CD⊥HB ∴CD⊥平面 BGH ∴平面 BGH ∥
( 12 )有一位同学写了这样一个不等式: x 2 1 c 1 c ( x R) ,他发现,
x2 c
c
当 c=1 ,2 ,
3 时,不等式对一切实数 x 都成立,由此他作出如下猜测:
①当 c 为所有自然数时,不等式对一切实数 x 都成立;
②只存在有限个自然数 c,对 x R不等式都成立;
③当 c 1时,不等式对一切 x R都成立;
已 知 z1=3+4 i , z2=65 cos i sin ) (
2
5
sin(

2020年普通高等学校全国统一考试数学(模拟卷)(带答案解析)

2020年普通高等学校全国统一考试数学(模拟卷)(带答案解析)
3、试题开放性有所加强
数列第17题解答题中题干的条件让学生自由选择,很多题目不再拘泥于固定题型的固定解题思路,可以对一个问题从不同的思维角度进行一题多解,发散性较强,考查知识点的深度和广度都有所增加。
三、复习建议
重视基础是关键:本次模拟卷非常注重基础题的考查,比例达到了60%,中档题的比例增加,达到了30%,难题比例10%左右。整体难度介于全国高考文数和理数之间,符合新高考数学不分文理的要求。
又由 , ,且 ,得 .
因为 ,从而知 ,即
所以 .
又由于 ,
从而 .
故选:C.
【点睛】
本题考查棱锥体积的计算,考查线面垂直的证明,考查计算能力与推理能力,属于基础题.
6 . 已知点 为曲线 上的动点, 为圆 上的动点,则 的最小值是( )
A.3
B.4
C.
D.
【答案】A
【解析】
【分析】
设 ,并设点A到圆 的圆心C距离的平方为 ,利用导数求最值即可.
2020年普通高等学校招生全国统一考试(模拟卷)
数学试卷
一、整体分析:
本次山东模拟试卷考查全面,涵盖高中数学的重点内容,布局合理,难易得当,包含基础题,中档题,综合题及创新题,考查对基础知识、基本技能、基本运算的掌握。试题对高中数学课程的主干知识,如函数、导数、三角函数、数列、立体几何、解析几何、统计概率等内容,保持了较高比例的考查,其中在题型方面有较大的变化,增加了多选题,并且删除了选做题。
故选:A
【点睛】
本题考查两动点间距离的最值问题,考查利用导数求最值,考查转化思想与数形结合思想,属于中档题.
7 . 设命题 所有正方形都是平行四边形,则 为( )
A.所有正方形都不是平行四边形

2020届高考数学一轮复习第四篇三角函数与解三角形专题4.4三角函数的图像和性质练习(含解析)

2020届高考数学一轮复习第四篇三角函数与解三角形专题4.4三角函数的图像和性质练习(含解析)

专题4.4 三角函数的图象与性质【考试要求】1.能画出三角函数y =sin x ,y =cos x ,y =tan x 的图象,了解三角函数的周期性、单调性、奇偶性、最大(小)值;2.借助图象理解正弦函数、余弦函数在[0,2π]上,正切函数在⎝ ⎛⎭⎪⎫-π2,π2上的性质. 【知识梳理】1.用五点法作正弦函数和余弦函数的简图(1)正弦函数y =sin x ,x ∈[0,2π]的图象中,五个关键点是:(0,0),⎝ ⎛⎭⎪⎫π2,1,(π,0),⎝ ⎛⎭⎪⎫3π2,-1,(2π,0).(2)余弦函数y =cos x ,x ∈[0,2π]的图象中,五个关键点是:(0,1),⎝ ⎛⎭⎪⎫π2,0,(π,-1),⎝ ⎛⎭⎪⎫3π2,0,(2π,1).2.正弦、余弦、正切函数的图象与性质(下表中k ∈Z )【微点提醒】 1.对称与周期(1)正弦曲线、余弦曲线相邻两对称中心、相邻两对称轴之间的距离是半个周期,相邻的对称中心与对称轴之间的距离是14个周期.(2)正切曲线相邻两对称中心之间的距离是半个周期.2.对于y =tan x 不能认为其在定义域上为增函数,而是在每个区间⎝ ⎛⎭⎪⎫k π-π2,k π+π2(k ∈Z )内为增函数. 【疑误辨析】1.判断下列结论正误(在括号内打“√”或“×”) (1)余弦函数y =cos x 的对称轴是y 轴.( ) (2)正切函数y =tan x 在定义域内是增函数.( ) (3)已知y =k sin x +1,x ∈R ,则y 的最大值为k +1.( ) (4)y =sin|x |是偶函数.( )【答案】 (1)× (2)× (3)× (4)√【解析】 (1)余弦函数y =cos x 的对称轴有无穷多条,y 轴只是其中的一条.(2)正切函数y =tan x 在每一个区间⎝ ⎛⎭⎪⎫k π-π2,k π+π2(k ∈Z )上都是增函数,但在定义域内不是单调函数,故不是增函数.(3)当k >0时,y max =k +1;当k <0时,y max =-k +1. 【教材衍化】2.(必修4P46A2,3改编)若函数y =2sin 2x -1的最小正周期为T ,最大值为A ,则( ) A.T =π,A =1 B.T =2π,A =1 C.T =π,A =2D.T =2π,A =2【答案】 A【解析】 最小正周期T =2π2=π,最大值A =2-1=1.故选A. 3.(必修4P47B2改编)函数y =-tan ⎝⎛⎭⎪⎫2x -3π4的单调递减区间为________. 【答案】 ⎝ ⎛⎭⎪⎫π8+k π2,5π8+k π2(k ∈Z )【解析】 由-π2+k π<2x -3π4<π2+k π(k ∈Z ),得π8+k π2<x <5π8+k π2(k ∈Z ), 所以y =-tan ⎝⎛⎭⎪⎫2x -3π4的单调递减区间为⎝⎛⎭⎪⎫π8+k π2,5π8+k π2(k ∈Z ). 【真题体验】4.(2017·全国Ⅱ卷)函数f (x )=sin ⎝ ⎛⎭⎪⎫2x +π3的最小正周期为( )A.4πB.2πC.πD.π2【答案】 C【解析】 由题意T =2π2=π.5.(2017·全国Ⅲ卷)函数f (x )=15sin ⎝ ⎛⎭⎪⎫x +π3+cos ⎝ ⎛⎭⎪⎫x -π6的最大值为( )A.65 B.1C.35D.15【答案】 A【解析】 cos ⎝ ⎛⎭⎪⎫x -π6=cos ⎣⎢⎡⎦⎥⎤π2-⎝ ⎛⎭⎪⎫x +π3=sin ⎝ ⎛⎭⎪⎫x +π3,则f (x )=15sin ⎝ ⎛⎭⎪⎫x +π3+sin ⎝ ⎛⎭⎪⎫x +π3=65sin ⎝⎛⎭⎪⎫x +π3,函数的最大值为65.6.(2018·江苏卷)已知函数y =sin(2x +φ)⎝ ⎛⎭⎪⎫-π2<φ<π2 的图象关于直线x =π3对称,则φ的值是________. 【答案】 -π6【解析】 由函数y =sin(2x +φ)⎝ ⎛⎭⎪⎫-π2<φ<π2的图象关于直线x =π3对称,得sin ⎝ ⎛⎭⎪⎫2π3+φ=±1.所以2π3+φ=π2+k π(k ∈Z ),所以φ=-π6+k π(k ∈Z ),又-π2<φ<π2,所以φ=-π6. 【考点聚焦】考点一 三角函数的定义域【例1】 (1)函数f (x )=-2tan ⎝⎛⎭⎪⎫2x +π6的定义域是( )A.⎩⎨⎧⎭⎬⎫x |x ≠π6B.⎩⎨⎧⎭⎬⎫x |x ≠-π12C.⎩⎨⎧⎭⎬⎫x |x ≠k π+π6(k ∈Z )D.⎩⎨⎧⎭⎬⎫x |x ≠k π2+π6(k ∈Z ) (2)不等式3+2cos x ≥0的解集是________.(3)函数f (x )=64-x 2+log 2(2sin x -1)的定义域是________. 【答案】(1)D (2)⎩⎨⎧⎭⎬⎫x |-56π+2k π≤x ≤56π+2k π,k ∈Z (3)⎝ ⎛⎭⎪⎫-116π,-76π∪⎝ ⎛⎭⎪⎫π6,56π∪⎝ ⎛⎦⎥⎤13π6,8【解析】 (1)由2x +π6≠k π+π2(k ∈Z ),得x ≠k π2+π6(k ∈Z ).(2)由3+2cos x ≥0,得cos x ≥-32,由余弦函数的图象,得在一个周期[-π,π]上,不等式cos x ≥-32的解集为⎩⎨⎧⎭⎬⎫x |-5π6≤x ≤56π,故原不等式的解集为⎩⎨⎧⎭⎬⎫x |-56π+2k π≤x ≤56π+2k π,k ∈Z .(3)由题意,得⎩⎪⎨⎪⎧64-x 2≥0,①2sin x -1>0,②由①得-8≤x ≤8,由②得sin x >12,由正弦曲线得π6+2k π<x <56π+2k π(k ∈Z ).所以不等式组的解集为⎝ ⎛⎭⎪⎫-116π,-76π∪⎝ ⎛⎭⎪⎫π6,56π∪⎝ ⎛⎦⎥⎤13π6,8. 【规律方法】1.三角函数定义域的求法(1)以正切函数为例,应用正切函数y =tan x 的定义域求函数y =A tan(ωx +φ)的定义域转化为求解简单的三角不等式.(2)求复杂函数的定义域转化为求解简单的三角不等式. 2.简单三角不等式的解法 (1)利用三角函数线求解. (2)利用三角函数的图象求解.【训练1】 (1)函数y =sin x -cos x 的定义域为________. (2)函数y =lg(sin x )+cos x -12的定义域为______.【答案】 (1)⎩⎨⎧⎭⎬⎫x |π4+2k π≤x ≤54π+2k π,k ∈Z 【解析】 (1)要使函数有意义,必须使sin x -cos x ≥0.利用图象,在同一坐标系中画出[0,2π]上y =sin x 和y =cos x 的图象,如图所示.在[0,2π]上,满足sin x =cos x 的x 为π4,5π4再结合正弦、余弦函数的周期是2π,所以原函数的定义域为⎩⎨⎧⎭⎬⎫x |π4+2k π≤x ≤54π+2k π,k ∈Z .(2)要使函数有意义必须有⎩⎪⎨⎪⎧sin x >0,cos x -12≥0, 即⎩⎪⎨⎪⎧sin x >0,cos x ≥12,解得⎩⎪⎨⎪⎧2k π<x <π+2k π,-π3+2k π≤x ≤π3+2k π(k ∈Z ), 所以2k π<x ≤π3+2k π(k ∈Z ),所以函数的定义域为⎩⎨⎧⎭⎬⎫x |2k π<x ≤π3+2k π,k ∈Z .(2)⎩⎨⎧⎭⎬⎫x |2k π<x ≤π3+2k π,k ∈Z考点二 三角函数的值域与最值【例2】 (1)y =3sin ⎝ ⎛⎭⎪⎫2x -π6在区间⎣⎢⎡⎦⎥⎤0,π2上的值域是________.(2)(2017·全国Ⅱ卷)函数f (x )=sin 2x +3cos x -34⎝ ⎛⎭⎪⎫x ∈⎣⎢⎡⎦⎥⎤0,π2的最大值是________.(3)函数y =sin x -cos x +sin x cos x 的值域为________.【答案】 (1)⎣⎢⎡⎦⎥⎤-32,3 (2)1 (3)⎣⎢⎡⎦⎥⎤-12-2,1【解析】 (1)当x ∈⎣⎢⎡⎦⎥⎤0,π2时,2x -π6∈⎣⎢⎡⎦⎥⎤-π6,5π6,sin ⎝ ⎛⎭⎪⎫2x -π6∈⎣⎢⎡⎦⎥⎤-12,1,故3sin ⎝ ⎛⎭⎪⎫2x -π6∈⎣⎢⎡⎦⎥⎤-32,3,即y =3sin ⎝ ⎛⎭⎪⎫2x -π6的值域为⎣⎢⎡⎦⎥⎤-32,3.(2)由题意可得f (x )=-cos 2x +3cos x +14=-(cos x -32)2+1.∵x ∈⎣⎢⎡⎦⎥⎤0,π2,∴cos x ∈[0,1].∴当cos x =32,即x =π6时,f (x )max =1. (3)设t =sin x -cos x ,则t 2=sin 2x +cos 2x -2sin x cos x , sin x cos x =1-t22,且-2≤t ≤2,所以y =-t 22+t +12=-12(t -1)2+1.当t =1时,y max =1;当t =-2时,y min =-12- 2.所以函数的值域为⎣⎢⎡⎦⎥⎤-12-2,1. 【规律方法】 求解三角函数的值域(最值)常见三种类型:(1)形如y =a sin x +b cos x +c 的三角函数化为y =A sin(ωx +φ)+c 的形式,再求值域(最值); (2)形如y =a sin 2x +b sin x +c 的三角函数,可先设sin x =t ,化为关于t 的二次函数求值域(最值); (3)形如y =a sin x cos x +b (sin x ±cos x )+c 的三角函数,可先设t =sin x ±cos x ,化为关于t 的二次函数求值域(最值).【训练2】 (1)函数f (x )=cos 2x +6cos ⎝ ⎛⎭⎪⎫π2-x 的最大值为( ) A.4 B.5 C.6 D.7(2)(2019·临沂模拟)已知函数f (x )=sin ⎝ ⎛⎭⎪⎫x +π6,其中x ∈⎣⎢⎡⎦⎥⎤-π3,a ,若f (x )的值域是⎣⎢⎡⎦⎥⎤-12,1,则实数a 的取值范围是________.【答案】 (1)B (2)⎣⎢⎡⎦⎥⎤π3,π【解析】 (1)由f (x )=cos 2x +6cos ⎝ ⎛⎭⎪⎫π2-x =1-2sin 2x +6sin x =-2⎝ ⎛⎭⎪⎫sin x -322+112,又sin x ∈[-1,1],所以当sin x =1时函数的最大值为5.(2)由x ∈⎣⎢⎡⎦⎥⎤-π3,a ,知x +π6∈⎣⎢⎡⎦⎥⎤-π6,a +π6.因为x +π6∈⎣⎢⎡⎦⎥⎤-π6,π2时,f (x )的值域为⎣⎢⎡⎦⎥⎤-12,1,所以由函数的图象知π2≤a +π6≤7π6,所以π3≤a ≤π.考点三 三角函数的单调性 角度1 求三角函数的单调区间【例3-1】 (1)函数f (x )=tan ⎝ ⎛⎭⎪⎫2x -π3的单调递增区间是( )A.⎣⎢⎡⎦⎥⎤k π12-π12,k π2+5π12(k ∈Z )B.⎝⎛⎭⎪⎫k π12-π12,k π2+5π12(k ∈Z ) C.⎝⎛⎭⎪⎫k π+π6,k π+2π3(k ∈Z )D.⎝⎛⎭⎪⎫k π-π12,k π+5π12(k ∈Z ) (2)函数y =sin ⎝ ⎛⎭⎪⎫-2x +π3的单调递减区间为________.【答案】 (1)B (2)⎣⎢⎡⎦⎥⎤k π-π12,k π+5π12,k ∈Z【解析】 (1)由k π-π2<2x -π3<k π+π2(k ∈Z ),得k π2-π12<x <k π2+5π12(k ∈Z ),所以函数f (x )=tan ⎝ ⎛⎭⎪⎫2x -π3的单调递增区间为⎝ ⎛⎭⎪⎫k π2-π12,k π2+5π12(k ∈Z ).(2)y =-sin ⎝ ⎛⎭⎪⎫2x -π3,它的减区间是y =sin ⎝ ⎛⎭⎪⎫2x -π3的增区间.令2k π-π2≤2x -π3≤2k π+π2,k ∈Z ,得k π-π12≤x ≤k π+5π12,k ∈Z .故其单调递减区间为⎣⎢⎡⎦⎥⎤k π-π12,k π+5π12,k ∈Z .角度2 利用单调性比较大小【例3-2】 已知函数f (x )=2cos ⎝ ⎛⎭⎪⎫x +π6,设a =f ⎝ ⎛⎭⎪⎫π7,b =f ⎝ ⎛⎭⎪⎫π6,c =f ⎝ ⎛⎭⎪⎫π4,则a ,b ,c 的大小关系是( ) A.a >b >c B.a >c >b C.c >a >bD.b >a >c【答案】 A【解析】 令2k π≤x +π6≤2k π+π,k ∈Z ,解得2k π-π6≤x ≤2k π+5π6,k ∈Z ,∴函数f (x )=2cos ⎝⎛⎭⎪⎫x +π6在⎣⎢⎡⎦⎥⎤-π6,5π6上是减函数,∵-π6<π7<π6<π4<5π6,∴f ⎝ ⎛⎭⎪⎫π7>f ⎝ ⎛⎭⎪⎫π6>f ⎝ ⎛⎭⎪⎫π4. 角度3 利用单调性求参数【例3-3】 (2018·全国Ⅱ卷)若f (x )=cos x -sin x 在[-a ,a ]是减函数,则a 的最大值是( ) A.π4B.π2C.3π4D.π【答案】 A【解析】 f (x )=cos x -sin x =2cos ⎝⎛⎭⎪⎫x +π4,由题意得a >0,故-a +π4<π4,因为f (x )=2cos ⎝⎛⎭⎪⎫x +π4在[-a ,a ]是减函数,所以⎩⎪⎨⎪⎧-a +π4≥0,a +π4≤π,a >0,解得0<a ≤π4,所以a 的最大值是π4.【规律方法】1.已知三角函数解析式求单调区间:(1)求函数的单调区间应遵循简单化原则,将解析式先化简,并注意复合函数单调性规律“同增异减”;(2)求形如y =A sin(ωx +φ)或y =A cos(ωx +φ)(其中ω>0)的单调区间时,要视“ωx +φ”为一个整体,通过解不等式求解.但如果ω<0,那么一定先借助诱导公式将ω化为正数,防止把单调性弄错.2.对于已知函数的单调区间的某一部分确定参数ω的范围的问题,首先,明确已知的单调区间应为函数的单调区间的子集,其次,要确定已知函数的单调区间,从而利用它们之间的关系可求解,另外,若是选择题利用特值验证排除法求解更为简捷.【训练3】 (1)设函数f (x )=sin ⎝ ⎛⎭⎪⎫2x -π3,x ∈⎣⎢⎡⎦⎥⎤-π2,π,则以下结论正确的是( ) A.函数f (x )在⎣⎢⎡⎦⎥⎤-π2,0上单调递减B.函数f (x )在⎣⎢⎡⎦⎥⎤0,π2上单调递增C.函数f (x )在⎣⎢⎡⎦⎥⎤π2,5π6上单调递减 D.函数f (x )在⎣⎢⎡⎦⎥⎤5π6,π上单调递增 (2)cos 23°,sin 68°,cos 97°的大小关系是________.(3)(一题多解)若函数f (x )=sin ωx (ω>0)在⎣⎢⎡⎦⎥⎤0,π3上单调递增,在区间⎣⎢⎡⎦⎥⎤π3,π2上单调递减,则ω=________.【答案】 (1)C (2)sin 68°>cos 23°>cos 97° (3)32【解析】 (1)由x ∈⎣⎢⎡⎦⎥⎤-π2,0,得2x -π3∈⎣⎢⎡⎦⎥⎤-4π3,-π3,此时函数f (x )先减后增;由x ∈⎣⎢⎡⎦⎥⎤0,π2,得2x -π3∈⎣⎢⎡⎦⎥⎤-π3,2π3,此时函数f (x )先增后减;由x ∈⎣⎢⎡⎦⎥⎤π2,5π6,得2x -π3∈⎣⎢⎡⎦⎥⎤2π3,4π3,此时函数f (x )单调递减;由x ∈⎣⎢⎡⎦⎥⎤5π6,π,得2x -π3∈⎣⎢⎡⎦⎥⎤4π3,5π3,此时函数f (x )先减后增.(2)sin 68°=cos 22°,又y =cos x 在[0°,180°]上是减函数, ∴sin 68°>cos 23°>cos 97°.(3)法一 由于函数f (x )=sin ωx (ω>0)的图象经过坐标原点,由已知并结合正弦函数的图象可知,π3为函数f (x )的14周期,故2πω=4π3,解得ω=32.法二 由题意,得f (x )max =f ⎝ ⎛⎭⎪⎫π3=sin π3ω=1.由已知并结合正弦函数图象可知,π3ω=π2+2k π(k ∈Z ),解得ω=32+6k (k ∈Z ),所以当k =0时,ω=32. 考点四 三角函数的周期性、奇偶性、对称性 角度1 三角函数奇偶性、周期性【例4-1】 (1)(2018·全国Ⅰ卷)已知函数f (x )=2cos 2x -sin 2x +2,则( ) A.f (x )的最小正周期为π,最大值为3 B.f (x )的最小正周期为π,最大值为4 C.f (x )的最小正周期为2π,最大值为3 D.f (x )的最小正周期为2π,最大值为4(2)(2019·杭州调研)设函数f (x )=sin ⎝ ⎛⎭⎪⎫12x +θ-3cos ⎝ ⎛⎭⎪⎫12x +θ⎝ ⎛⎭⎪⎫|θ|<π2的图象关于y 轴对称,则θ=( )A.-π6B.π6C.-π3D.π3【答案】 (1)B (2)A【解析】 (1)易知f (x )=2cos 2x -sin 2x +2=3cos 2x +1=3cos 2x +12+1=32cos 2x +52,则f (x )的最小正周期为π,当2x =2k π,即x =k π(k ∈Z )时,f (x )取得最大值,最大值为4.(2)f (x )=sin ⎝ ⎛⎭⎪⎫12x +θ-3cos ⎝ ⎛⎭⎪⎫12x +θ=2sin ⎝ ⎛⎭⎪⎫12x +θ-π3,由题意可得f (0)=2sin ⎝ ⎛⎭⎪⎫θ-π3=±2,即sin ⎝ ⎛⎭⎪⎫θ-π3=±1,∴θ-π3=π2+k π(k ∈Z ),∴θ=5π6+k π(k ∈Z ).∵|θ|<π2,∴k =-1时,θ=-π6.【规律方法】 1.若f (x )=A sin(ωx +φ)(A ,ω≠0),则 (1)f (x )为偶函数的充要条件是φ=π2+k π(k ∈Z );(2)f (x )为奇函数的充要条件是φ=k π(k ∈Z ).2.函数y =A sin(ωx +φ)与y =A cos(ωx +φ)的最小正周期T =2π|ω|,y =A tan(ωx +φ)的最小正周期T=π|ω|.角度2 三角函数图象的对称性【例4-2】 (1)已知函数f (x )=a sin x +cos x (a 为常数,x ∈R )的图象关于直线x =π6对称,则函数g (x )=sin x +a cos x 的图象( )A.关于点⎝ ⎛⎭⎪⎫π3,0对称 B.关于点⎝⎛⎭⎪⎫2π3,0对称C.关于直线x =π3对称D.关于直线x =π6对称(2)已知函数f (x )=sin(ωx +φ)⎝ ⎛⎭⎪⎫ω>0,|φ|≤π2,x =-π4为f (x )的零点,x =π4为y =f (x )图象的对称轴,且f (x )在⎝⎛⎭⎪⎫π18,5π36上单调,则ω的最大值为( )A.11B.9C.7D.5 【答案】 (1)C (2)B【解析】 (1)因为函数f (x )=a sin x +cos x (a 为常数,x ∈R )的图象关于直线x =π6对称,所以f (0)=f ⎝ ⎛⎭⎪⎫π3,所以1=32a +12,a =33, 所以g (x )=sin x +33cos x =233sin ⎝⎛⎭⎪⎫x +π6,函数g (x )的对称轴方程为x +π6=k π+π2(k ∈Z ),即x =k π+π3(k ∈Z ),当k =0时,对称轴为直线x =π3,所以g (x )=sin x +a cos x 的图象关于直线x =π3对称. (2)因为x =-π4为f (x )的零点,x =π4为f (x )的图象的对称轴,所以π4-⎝ ⎛⎭⎪⎫-π4=T 4+kT 2,即π2=2k +14T =2k +14·2πω(k ∈Z ),所以ω=2k +1(k ∈Z ). 又因为f (x )在⎝ ⎛⎭⎪⎫π18,5π36上单调,所以5π36-π18=π12≤T 2=2π2ω,即ω≤12,ω=11验证不成立(此时求得f (x )=sin ⎝ ⎛⎭⎪⎫11x -π4在⎝ ⎛⎭⎪⎫π18,3π44上单调递增,在⎝ ⎛⎭⎪⎫3π44,5π36上单调递减),ω=9满足条件,由此得ω的最大值为9. 【规律方法】1.对于可化为f (x )=A sin(ωx +φ)形式的函数,如果求f (x )的对称轴,只需令ωx +φ=π2+k π(k ∈Z ),求x 即可;如果求f (x )的对称中心的横坐标,只需令ωx +φ=k π(k ∈Z ),求x 即可.2.对于可化为f (x )=A cos(ωx +φ)形式的函数,如果求f (x )的对称轴,只需令ωx +φ=k π(k ∈Z ),求x ;如果求f (x )的对称中心的横坐标,只需令ωx +φ=π2+k π(k ∈Z ),求x 即可.【训练4】 (1)(2018·全国Ⅲ卷)函数f (x )=tan x 1+tan 2x的最小正周期为( ) A.π4 B.π2 C.π D.2π(2)设函数f (x )=cos ⎝⎛⎭⎪⎫x +π3,则下列结论错误的是( ) A.f (x )的一个周期为-2πB.y =f (x )的图象关于直线x =8π3对称 C.f (x +π)的一个零点为x =π6D.f (x )在⎝ ⎛⎭⎪⎫π2,π单调递减 【答案】 (1)C (2)D【解析】 (1)f (x )的定义域为⎩⎨⎧⎭⎬⎫x |x ≠k π+π2,k ∈Z . f (x )=sin x cos x1+⎝ ⎛⎭⎪⎫sin x cos x 2=sin x ·cos x =12sin 2x , ∴f (x )的最小正周期T =2π2=π. (2)A 项,因为f (x )的周期为2k π(k ∈Z 且k ≠0),所以f (x )的一个周期为-2π,A 项正确.B 项,因为f (x )图象的对称轴为直线x =k π-π3(k ∈Z ),当k =3时,直线x =8π3是其对称轴,B 项正确. C 项,f (x +π)=cos ⎝ ⎛⎭⎪⎫x +4π3,将x =π6代入得到f ⎝ ⎛⎭⎪⎫7π6=cos 3π2=0,所以x =π6是f (x +π)的一个零点,C 项正确.D 项,因为f (x )=cos ⎝ ⎛⎭⎪⎫x +π3的递减区间为⎣⎢⎡⎦⎥⎤2k π-π3,2k π+2π3 (k ∈Z ),递增区间为⎣⎢⎡⎦⎥⎤2k π+2π3,2k π+5π3 (k ∈Z ),所以⎝ ⎛⎭⎪⎫π2,2π3是减区间,⎣⎢⎡⎭⎪⎫2π3,π是增区间,D 项错误.【反思与感悟】1.讨论三角函数性质,应先把函数式化成y =A sin(ωx +φ)(ω>0)的形式.2.对于函数的性质(定义域、值域、单调性、对称性、最值等)可以通过换元的方法令t =ωx +φ,将其转化为研究y =sin t (或y =cos t )的性质.3.数形结合是本节的重要数学思想.【易错防范】1.闭区间上最值或值域问题,首先要在定义域基础上分析单调性;含参数的最值问题,要讨论参数对最值的影响.2.要注意求函数y =A sin(ωx +φ)的单调区间时A 和ω的符号,尽量化成ω>0时情况,避免出现增减区间的混淆.3.求三角函数的单调区间时,当单调区间有无穷多个时,别忘了注明k ∈Z .【分层训练】【基础巩固题组】(建议用时:40分钟)一、选择题1.(2017·山东卷)函数y =3sin 2x +cos 2x 的最小正周期为( )A.π2B.2π3C.πD.2π【答案】 C【解析】 ∵y =2⎝⎛⎭⎪⎫32sin 2x +12cos 2x =2sin ⎝ ⎛⎭⎪⎫2x +π6, ∴T =2π2=π. 2.(2019·石家庄检测)若⎝⎛⎭⎪⎫π8,0是函数f (x )=sin ωx +cos ωx 图象的一个对称中心,则ω的一个取值是( )A.2B.4C.6D.8 【答案】 C【解析】 因为f (x )=sin ωx +cos ωx =2sin ⎝ ⎛⎭⎪⎫ωx +π4,由题意,知f ⎝ ⎛⎭⎪⎫π8=2sin ⎝ ⎛⎭⎪⎫ωπ8+π4=0,所以ωπ8+π4=k π(k ∈Z ),即ω=8k -2(k ∈Z ),当k =1时,ω=6. 3.已知函数f (x )=2sin ωx (ω>0)在区间⎣⎢⎡⎦⎥⎤-π3,π4上的最小值是-2,则ω的最小值等于( ) A.23B.32C.2D.3【答案】 B【解析】 ∵ω>0,-π3≤x ≤π4,∴-ωπ3≤ωx ≤ωπ4.由已知条件知-ωπ3≤-π2,∴ω≥32. 4.(2019·湖南十四校联考)已知函数f (x )=2sin ωx -cos ωx (ω>0),若f (x )的两个零点x 1,x 2满足|x 1-x 2|min =2,则f (1)的值为( ) A.102 B.-102 C.2 D.-2【答案】 C【解析】 依题意可得函数的最小正周期为2πω=2|x 1-x 2|min =2×2=4,即ω=π2,所以f (1)=2sin π2-cos π2=2. 5.若f (x )为偶函数,且在⎝⎛⎭⎪⎫0,π2上满足:对任意x 1<x 2,都有f (x 1)-f (x 2)x 1-x 2>0,则f (x )可以为( ) A.f (x )=cos ⎝⎛⎭⎪⎫x +5π2 B.f (x )=|sin(π+x )| C.f (x )=-tan xD.f (x )=1-2cos 22x 【答案】 B 【解析】 ∵f (x )=cos ⎝⎛⎭⎪⎫x +5π2=-sin x 为奇函数,∴排除A ;f (x )=-tan x 为奇函数,∴排除C ;f (x )=1-2cos 22x =-cos 4x 为偶函数,且单调增区间为⎣⎢⎡⎦⎥⎤k π2,k π2+π4(k ∈Z ),排除D ;f (x )=|sin(π+x )|=|sin x |为偶函数,且在⎝⎛⎭⎪⎫0,π2上单调递增. 二、填空题6.(2019·烟台检测)若函数f (x )=cos ⎝⎛⎭⎪⎫2x +φ-π3(0<φ<π)是奇函数,则φ=________. 【答案】 5π6【解析】 因为f (x )为奇函数,所以φ-π3=π2+k π(k ∈Z ),φ=5π6+k π,k ∈Z .又因为0<φ<π,故φ=5π6. 7.函数y =cos ⎝ ⎛⎭⎪⎫π4-2x 的单调递减区间为________. 【答案】 ⎣⎢⎡⎦⎥⎤k π+π8,k π+5π8(k ∈Z ) 【解析】 由y =cos ⎝ ⎛⎭⎪⎫π4-2x =cos ⎝⎛⎭⎪⎫2x -π4, 得2k π≤2x -π4≤2k π+π(k ∈Z ),解得k π+π8≤x ≤k π+5π8(k ∈Z ), 所以函数的单调递减区间为⎣⎢⎡⎦⎥⎤k π+π8,k π+5π8(k ∈Z ). 8.(2018·北京卷)设函数f (x )=cos ⎝ ⎛⎭⎪⎫ωx -π6(ω>0).若f (x )≤f ⎝ ⎛⎭⎪⎫π4对任意的实数x 都成立,则ω的最小值为________.【答案】 23【解析】 由于对任意的实数都有f (x )≤f ⎝ ⎛⎭⎪⎫π4成立,故当x =π4时,函数f (x )有最大值,故f ⎝ ⎛⎭⎪⎫π4=1,πω4-π6=2k π(k ∈Z ),∴ω=8k +23(k ∈Z ).又ω>0,∴ωmin =23. 三、解答题9.(2018·北京卷)已知函数f (x )=sin 2x +3sin x cos x .(1)求f (x )的最小正周期;(2)若f (x )在区间⎣⎢⎡⎦⎥⎤-π3,m 上的最大值为32,求m 的最小值. 【答案】见解析【解析】(1)f (x )=12-12cos 2x +32sin 2x =sin ⎝⎛⎭⎪⎫2x -π6+12. 所以f (x )的最小正周期为T =2π2=π. (2)由(1)知f (x )=sin ⎝⎛⎭⎪⎫2x -π6+12. 由题意知-π3≤x ≤m , 所以-5π6≤2x -π6≤2m -π6. 要使得f (x )在⎣⎢⎡⎦⎥⎤-π3,m 上的最大值为32, 即sin ⎝ ⎛⎭⎪⎫2x -π6在⎣⎢⎡⎦⎥⎤-π3,m 上的最大值为1. 所以2m -π6≥π2,即m ≥π3. 故实数m 的最小值为π3. 10.(2019·北京通州区质检)已知函数f (x )=sin ωx -cos ωx (ω>0)的最小正周期为π.(1)求函数y =f (x )图象的对称轴方程;(2)讨论函数f (x )在⎣⎢⎡⎦⎥⎤0,π2上的单调性. 【答案】见解析【解析】(1)∵f (x )=sin ωx -cos ωx =2sin ⎝ ⎛⎭⎪⎫ωx -π4,且T =π,∴ω=2,于是f (x )=2sin ⎝ ⎛⎭⎪⎫2x -π4.令2x -π4=k π+π2(k ∈Z ),得x =k π2+3π8(k ∈Z ).即函数f (x )图象的对称轴方程为x =k π2+3π8(k ∈Z ).(2)令2k π-π2≤2x -π4≤2k π+π2(k ∈Z ),得函数f (x )的单调递增区间为⎣⎢⎡⎦⎥⎤k π-π8,k π+3π8(k ∈Z ).注意到x ∈⎣⎢⎡⎦⎥⎤0,π2,所以令k =0,得函数f (x )在⎣⎢⎡⎦⎥⎤0,π2上的单调递增区间为⎣⎢⎡⎦⎥⎤0,3π8;同理,其单调递减区间为⎣⎢⎡⎦⎥⎤3π8,π2.【能力提升题组】(建议用时:20分钟)11.若对于任意x ∈R 都有f (x )+2f (-x )=3cos x -sin x ,则函数f (2x )图象的对称中心为() A.⎝ ⎛⎭⎪⎫k π-π4,0(k ∈Z ) B.⎝ ⎛⎭⎪⎫k π-π8,0(k ∈Z )C.⎝ ⎛⎭⎪⎫k π2-π4,0(k ∈Z )D.⎝ ⎛⎭⎪⎫k π2-π8,0(k ∈Z )【答案】 D【解析】 因为f (x )+2f (-x )=3cos x -sin x ,所以f (-x )+2f (x )=3cos x +sin x .解得f (x )=cos x +sin x =2sin ⎝ ⎛⎭⎪⎫x +π4,所以f (2x )=2sin ⎝ ⎛⎭⎪⎫2x +π4.令2x +π4=k π(k ∈Z ),得x =k π2-π8(k ∈Z ).所以f (2x )图象的对称中心为⎝ ⎛⎭⎪⎫k π2-π8,0(k ∈Z ).12.(2017·天津卷)设函数f (x )=2sin(ωx +φ),x ∈R ,其中ω>0,|φ|<π.若f ⎝⎛⎭⎪⎫5π8=2,f ⎝ ⎛⎭⎪⎫11π8=0,且f (x )的最小正周期大于2π,则( )A.ω=23,φ=π12B.ω=23,φ=-11π12C.ω=13,φ=-11π24D.ω=13,φ=7π24 【答案】 A【解析】 ∵f ⎝ ⎛⎭⎪⎫5π8=2,f ⎝ ⎛⎭⎪⎫11π8=0,且f (x )的最小正周期大于2π, ∴f (x )的最小正周期为4⎝ ⎛⎭⎪⎫11π8-5π8=3π, ∴ω=2π3π=23,∴f (x )=2sin ⎝ ⎛⎭⎪⎫23x +φ. ∴2sin ⎝ ⎛⎭⎪⎫23×5π8+φ=2,得φ=2k π+π12(k ∈Z ), 又|φ|<π,∴取k =0,得φ=π12. 13.已知x 0=π3是函数f (x )=sin(2x +φ)的一个极大值点,则f (x )的单调递减区间是________. 【答案】 ⎣⎢⎡⎦⎥⎤k π+π3,k π+56π(k ∈Z ) 【解析】 因为x 0=π3是函数f (x )=sin(2x +φ)的一个极大值点, 所以sin ⎝ ⎛⎭⎪⎫2×π3+φ=1,解得φ=2k π-π6(k ∈Z ). 不妨取φ=-π6,此时f (x )=sin ⎝⎛⎭⎪⎫2x -π6, 令2k π+π2≤2x -π6≤2k π+3π2(k ∈Z ), 得f (x )的单调递减区间是⎣⎢⎡⎦⎥⎤k π+π3,k π+56π(k ∈Z ). 14.已知函数f (x )=sin ⎝ ⎛⎭⎪⎫π2-x sin x -3cos 2x +32. (1)求f (x )的最大值及取得最大值时x 的值;(2)若方程f (x )=23在(0,π)上的解为x 1,x 2,求cos(x 1-x 2)的值. 【答案】见解析【解析】(1)f (x )=cos x sin x -32(2cos 2x -1) =12sin 2x -32cos 2x =sin ⎝⎛⎭⎪⎫2x -π3.当2x -π3=π2+2k π(k ∈Z ),即x =512π+k π(k ∈Z )时,函数f (x )取最大值,且最大值为1. (2)由(1)知,函数f (x )图象的对称轴为x =512π+k π(k ∈Z ),∴当x ∈(0,π)时,对称轴为x =512π. 又方程f (x )=23在(0,π)上的解为x 1,x 2. ∴x 1+x 2=56π,则x 1=56π-x 2, ∴cos(x 1-x 2)=cos ⎝ ⎛⎭⎪⎫56π-2x 2=sin ⎝⎛⎭⎪⎫2x 2-π3, 又f (x 2)=sin ⎝⎛⎭⎪⎫2x 2-π3=23, 故cos(x 1-x 2)=23. 【新高考创新预测】15.(思维创新)已知函数f (x )=sin ⎝ ⎛⎭⎪⎫x -π6,若对任意的实数α∈⎣⎢⎡⎦⎥⎤-5π6,-π2,都存在唯一的实数β∈[0,m ],使f (α)+f (β)=0,则实数m 的最小值是________.【答案】 π2【解析】 因为α∈⎣⎢⎡⎦⎥⎤-5π6,-π2,所以α-π6∈⎣⎢⎡⎦⎥⎤-π,-2π3,则f (α)=sin ⎝ ⎛⎭⎪⎫α-π6∈⎣⎢⎡⎦⎥⎤-32,0,因为对任意的实数α∈⎣⎢⎡⎦⎥⎤-5π6,-π2,都存在唯一的实数β∈[0,m ],使f (α)+f (β)=0,所以f (β)在[0,m ]上单调,且f (β)∈⎣⎢⎡⎦⎥⎤0,32,则sin ⎝ ⎛⎭⎪⎫β-π6∈⎣⎢⎡⎦⎥⎤0,32,则β-π6∈⎣⎢⎡⎦⎥⎤0,π3,所以β∈⎣⎢⎡⎦⎥⎤π6,π2,即实数m 的最小值是π2.。

2020年高考理科数学模拟试题含答案及解析5套)

2020年高考理科数学模拟试题含答案及解析5套)

绝密 ★ 启用前2020年高考模拟试题(一)理科数学时间:120分钟 分值:150分注意事项:1、本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分。

答题前,考生务必将自己的姓名、考生号填写在答题卡上。

2、回答第Ⅰ卷时,选出每小题的答案后,用铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其他答案标号。

写在试卷上无效。

3、回答第Ⅱ卷时,将答案填写在答题卡上,写在试卷上无效。

4、考试结束,将本试卷和答题卡一并交回。

第Ⅰ卷(选择题 共60分)一、选择题:本大题共12个小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.已知a ,b 都是实数,那么“22a b >”是“22a b >”的( ) A .充分不必要条件 B .必要不充分条件 C .充要条件 D .既不充分也不必要条件2.抛物线22(0)x py p =>的焦点坐标为( )A .,02p ⎛⎫⎪⎝⎭B .1,08p ⎛⎫⎪⎝⎭C .0,2p ⎛⎫ ⎪⎝⎭D .10,8p ⎛⎫ ⎪⎝⎭3.十字路口来往的车辆,如果不允许掉头,则行车路线共有( )A .24种B .16种C .12种D .10种4.设x ,y 满足约束条件36020 0,0x y x y x y ⎧⎪⎨⎪+⎩---≤≥≥≥,则目标函数2z x y =-+的最小值为( )A .4-B .2-C .0D .2 5.《九章算术》是我国古代内容极为丰富的数学名著,系统地总结了战国、秦、汉时期的数学成就.书中将底面为长方形且有一条侧棱与底面垂直的四棱锥称之为“阳马”,若某“阳马”的三视图如图所示(网格纸上小正方形的边长为1),则该“阳马”最长的棱长为( )A .5B .34C .41D .526. ()()()()sin ,00,xf x x x=∈-ππ大致的图象是( )A .B .C .D .此卷只装订不密封班级 姓名 准考证号 考场号 座位号7.函数()sin cos (0)f x x x ωωω=->ω的取值不可能为( ) A .14B .15C .12D .348.运行如图所示的程序框图,设输出数据构成的集合为A ,从集合A 中任取一个元素a ,则函数ay x =,()0,x ∈+∞是增函数的概率为( ) A .35B .45C .34D .37开始输出y结束是否3x =-3x ≤22y x x=+1x x =+9.已知A ,B 是函数2xy =的图象上的相异两点,若点A ,B 到直线12y =的距离相等,则点A ,B 的横坐标之和的取值范围是( ) A .(),1-∞-B .(),2-∞-C .(),3-∞-D .(),4-∞-10.在四面体ABCD 中,若AB CD ==,2AC BD ==,AD BC ==体ABCD 的外接球的表面积为( ) A .2π B .4πC .6πD .8π11.设1x =是函数()()32121n n n f x a x a x a x n +++=--+∈N 的极值点,数列{}n a 满足11a =,22a =,21log n n b a +=,若[]x 表示不超过x 的最大整数,则122320182019201820182018b b b b b b ⎡⎤+++⎢⎥⎣⎦=( )A .2017B .2018C .2019D .202012.[]0,1上单调递增,则实数a 的取值范围( ) A .()1,1- B .()1,-+∞C .[]1,1-D .(]0,+∞第Ⅱ卷(非选择题 共90分)二、填空题:本大题共4个小题,每小题5分,共20分.13.命题“00x ∃>,20020x mx +->”的否定是__________.14.在ABC △中,角B2π3C =,BC =,则AB =__________.15.抛物线24y x =的焦点为F ,过F 的直线与抛物线交于A ,B 两点,且满足4AFBF =,点O 为原点,则AOF △的面积为__________.16.已知函数()()2cos2cos0222xxxf x ωωωω=+>的周期为2π3,当π03x ⎡⎤∈⎢⎥⎣⎦,时,函数()()g x f x m=+恰有两个不同的零点,则实数m 的取值范围是__________.三、解答题:共70分。

2020年高考数学模拟试题附参考答案解析(各省市模拟题汇编)(9)

2020年高考数学模拟试题附参考答案解析(各省市模拟题汇编)(9)

A. 8
B. 6
C. 4
D. 2
第Ⅱ卷
二、填空题:本大题共
4 小题,每小题 5 分.
13. [2019 ·平罗中学 ] 某中学为调查在校学生的视力情况,拟采用分层抽样的方法,从该校三个年
级中抽取一个容量为 30 的样本进行调查, 已知该校高一、 高二、高三年级的学生人数之比为 4:5: 6 ,
则应从高三年级学生中抽取 ______名学生.

A.
B.
C.
D.
5.[2019 ·南昌外国语 ] 右边程序框图的算法思路源于我国古代数学名著《九章算术》中的“更相减 损术”.执行该程序框图,若输入的 a , b 分别为 16,20,则输出的 a ( )
A. 0
B. 2
C. 4
D. 1
6. [2019 ·广州测试 ] 已知 sin cos 1 ,其中 5
绘制了他在 26 岁 35 岁( 2009 年 2018 年)
注:年龄代码 1 10 分别对应年龄 26 35 岁.
( 1)由散点图知, 可用回归模型 y bln x a 拟合 y 与 x 的关系, 试根据有关数据建立 y 关于 x 的回
归方程;
( 2)如果该 IT 从业者在个税新政下的专项附加扣除为 3000 元/ 月,试利用( 1)的结果,将月平均
2
19.(12 分) [2019 ·福建毕业 ] “工资条里显红利,个税新政入民心”.随着
2019 年新年钟声的
敲响, 我国自 1980 年以来, 力度最大的一次个人所得 R(简称个税) 改革迎来了全面实施的阶段. 某
IT 从业者为了解自己在个税新政下能享受多少税收红利, 之间各年的月平均收入 y (单位:千元)的散点图:

2020年普通高等学校招生考试全国统一考试(数学模拟卷)及其参考答案(山东)

2020年普通高等学校招生考试全国统一考试(数学模拟卷)及其参考答案(山东)

A. 210
B. 120
C. 120
D. 210
4.B 【解析 】由二项 展开式, 知其通项 为 Tr1
C1r0
(
1 x
)10r
(
x)r
(1)r C1r0 x2r10
,令
2r 10 4 ,解得 r 7 .所以 x4 的系数为 (1)7 C170 120. 选 B.
5.已知三棱锥 S ABC 中, SAB ABC π , SB 4, SC 2 13, AB 2, BC 6 , 2
,得
x
2.
由 0 x 2 时, g(x) 0 , g(x) 单调递闰;
当 x 2 时, g(x) 0 , g(x) 单调递增.
从 而 g(x) 在 x 2 时 取 得 最 小 值 为 g(2) 16 , 从 而 点 A 到 圆 心 C 的 最 小 值 为
g(2) 16 4 ,所以| AB | 的最小值为 4 1 3. 选 A.
C. {(1,1), (2, 4)}
D.
x y 2
x 1
1.C【解析】
首先注意到集合 A 与集合 B 均为点集,联立 y
x2
,解得
y
1
,或
x 2
y
4
பைடு நூலகம்
,从而集合
A
B
{(1,1),
(2,
4)}
,选
C.
2.已知 a bi(a, b R) 是 1 i 的共轭复数,则 a b 1 i
A. 1
2
2
SA AC
.所以
SA
平面
ABC
.又由于
SABC
1 26 2
6
,从而
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2020届高考数学一轮复习模拟试卷及答案(共三套) 2020届高考数学一轮复习模拟试卷及答案(一)满分:150分 考试时间: 120分钟一、选择题(每小题有且只有一个答案正确,每小题5分,共60分) 1.集合A={-1,0,1},B={y|y=cosx ,x ∈R},则A B= ( ) A .{0} B .{1} C .{0,1} D .{-1,0,1} 2.已知a =(2,1), 10a b =,52a b +=,则b = ( ) A. 5 B.10 C .5 D .253.下列函数中,既是偶函数,又在(0,1)上单调递增的函数是( )A. x y 3log =B. 3x y =C. x e y =D. x y cos =4.把函数)6sin(π+=x y 图象上各点的横坐标缩短到原来的21倍(纵坐标不变),再将图象向右平移3π个单位,那么所得图象的一条对称轴方程为( )A.2π-=x B.4π-=x C.8π=x D.4π=x5.设0a >且1a ≠,则“函数()x f x a =在R 上是减函数 ”,是“函数3()(2)g x a x =-在R 上是增函数”的 ( ) A 充分不必要条件 B 必要不充分条件 C 充分必要条件 D 既不充分也不必要条件6.函数f (x )=ln x +2x -1零点的个数为 ( ) A .4 B .3 C . 2 D .1 7.如图,有一条长为a 的斜坡AB ,它的坡角∠ABC=45°,现保持坡高AC 不变,将坡角改为∠ADC=30°, 则斜坡AD 的长为 A .a B .2aC .3aD .2a8.有四个关于三角函数的命题:1:,sin cos 2P x R x x ∃∈+=2:,s i n 2s i nP x R x x ∃∈=31cos 2:[,],cos 222xP x x ππ+∀∈-=4:(0,),in cos P x s x x π∀∈>其中真命题是( ) A .P 1,P 4 B .P 2,P 4 C .P 2,P 3 D .P 3,P 4 9.已知函数23)(23+-+=x x ax x f 在R 上是减函数,则a 的取值范围是( ) A .)3,(--∞ B ]3,(--∞ C .)0,3(- D .)0,3[-10.若△ABC 的三个内角满足sinA :sinB :sinC=5:11:13,则△ABC ( ) A .一定是锐角三角形 B .一定是直角三角形 C .一定是钝角三角形 D .可能是锐角三角形,也可能是钝角三角形11.在R 上定义运算⊗:x ⊗)1(y x y -=.若不等式)(a x -⊗1)(<+a x 对任意实数x 恒成立,则a 的取值区间是 ( )A .(1,1)-B .(0,2)C .13(,)22-D .31(,)22-12.若定义在正整数有序对集合上的二元函数f 满足:①f (x ,x )=x ,②f (x ,y )=f (y ,x ) ③(x +y )f (x ,y )=yf (x ,x +y ),则f (12,16)的值是( )A. 12B. 16 C .24 D. 48二、填空题(每小题4分,共16分)13. 已知sin2α=34,32ππα<<,则sin α+cos α的值为 。

14.函数y =A sin(ωx +φ)+k (A >0,ω>0,|φ|<π2,x ∈R)的部分图象如图所示,则该函数表达式为 。

15.下列命题中:①()f x 的图像与()f x -关于y 轴对称。

②()f x 的图像与()f x --的图像关于原点对称。

③lg y x =与lg y x =的定义域相同,它们都只有一个零点。

④二次函数()f x 满足(2)(2)f x f x -=+并且有最小值,则(0)(5)f f <。

⑤若定义在R 上的奇函数()f x ,有(3)()f x f x +=-,则(2010)0f = 其中所有正确命题的序号是16.对于三次函数d cx bx ax x f +++=23)((0≠a ),定义:设)(x f ''是函数y =f (x )的导数y =)(x f '的导数,若方程)(x f ''=0有实数解x 0,则称点(x 0,f (x 0))为函数y =f (x )的“拐点”.有同学发现“任何一个三次函数都有‘拐点’;任何一个三次函数都有对称中心;且‘拐点’就是对称中心.”请你将这一发现为条件,函数3231()324f x x x x =-+-,则它的对称中心为 ;计算1232012()()()()2013201320132013f f f f +++⋅⋅⋅+=三、解答题(第17、18、19、20、21题各12分,第22题各14分,共74分) 17.(本小题满分12分)已知tan (α+π4)=-3,α∈(0,π2). (1)求tan α的值;(2)求sin (2α-π3)的值.18.已知集合A={}2|230x x x --<,B={}|(1)(1)0x x m x m -+--≥, (1)当0m =时,求A B ⋂(2)若p :2230x x --<,q :(1)(1)0x m x m -+--≥,且q 是p 的必要不充分条件,求实数m 的取值范围。

19..已知向量m =(3sin x ,cos x ),n =(cos x ,cos x ),p =(23,1). (1)若//m p ,求m n ⋅的值; (2)若角(0,]3x π∈,求函数f (x )=m n ⋅的值域.20.(本小题满分12分)已知.)21121()(x x f x +-=求: (1)函数的定义域;(2)判断函数)(x f 的奇偶性;(3)求证0)(>x f .21、如图,A,B是海面上位于东西方向相距5(3+ 3)海里的两个观测点,现位于A点北偏东45°,B点北偏西60°的D点有一艘轮船发出求救信号,位于B 点南偏西60°且与B点相距203海里的C点的救援船立即即前往营救,其航行速度为30海里/小时,该救援船到达D点需要多长时间?22.已知函数f(x)=ax+ln x(a∈R).(1)若a=2,求曲线y=f(x)在x=1处切线的斜率;(2)求f(x)的单调区间;(3)设g (x )=x 2-2x +2,若对任意x 1∈(0,+∞),均存在x 2∈[0,1],使得f (x 1)<g (x 2),求a 的取值范围. 答案一、选择题答案(每小题5分,共60分)题号 1 2 3 4 5 6 7 8 9 10 11 12 答案DCCAADBCDCCD二、填空题答案(每小题4分,共16分) 13、-2/7 14、1)63sin(2+-=ππx y 15、 4 、_5___ ,16、 (1/2,1),2012 。

三、解答题(第17、18、19、20、21题各12分,第22题各14分,共74分) 17.18. 解:(1){}{}2|230|13A x x x x x =--<=-<<,………………………2分{}{}|(1)(1)0|11B x x x x x x =+-≥=≥≤-或……………………………………4分 {}|13A B x x ∴⋂=≤< …………6分(2) p 为:(1,3)-………………7分 而q 为: (,1][1,)m m -∞-⋃++∞, …………………………………………9分 又q 是p 的必要不充分条件, 即p q ⇒………………………………………10分 所以 11m +≤-或13m -≥ ⇒ 4m ≥或2m ≤-即实数m 的取值范围为(,2][4,)-∞-⋃+∞。

………………………………12分 19.解:(1)若m ∥p ,得3sin x cos x =231⇒sin x =2cos x , …………………………2分因为cos x ≠0,所以tan x =2, …………………………3分 所以m ·n =3sin x cos x +cos 2x =3sin x cos x +cos 2xsin 2x +cos 2x=3tan x +1tan 2x +1=23+15. ……………6分 (2)f (x )=3sin x cos x +cos x co =32sin2x +1+cos2x 2=sin(2x +π6)+12. …………………9分因为x ∈(0,π3],所以2x +π6∈(π6,5π6],所以sin(2x +π6)∈[12,1],所以f (x )∈[1,32],即函数f (x )=m ·n 的值域为[1,32]. ……………………………12分20.解:(1)}0|{≠∈x R x (4分)(2)设任意0≠x ,))(21212())(21121()(x x x f xx x-+-=-+-=-- ).()21121())(21211())(2121112(x f x x x x x x x =+-=---=-+-+-=)(x f ∴为偶函数8分(3))(x f 为偶函数,)()(x f x f =-只需证当0)(,0>>x f x 时即可.02112112,0>+-∴>>x x x 时 .0)(0)21121(>>+-∴x f x x 即(12) 21.解:由题意知AB=5(3+3)海里,∠DBA=90°-60°=30°,∠DAB=90°-45°=45°, ∴∠ADB=180°-(45°+30°)=105°, 在△ADB 中,有正弦定理得DB sin ∠DAB解得DB=103又在△DBC 中,∠DBC=600DC 2=DB 2+BC 2-2×DB×BC×cos600=900∴DC=30 ∴救援船到达D 点需要的时间为3030=1(小时)答:该救援船到达D 点需要1小时. 22.解:(1)由已知f ′(x )=2+1x (x >0), …………………………………………2分 f ′(1)=2+1=3.故曲线y =f (x )在x =1处切线的斜率为3 ……………………3分(2)f ′(x )=a +1x =ax +1x (x >0).……………………………………4分 ①当a ≥0时,由于x >0,故ax +1>0,f ′(x )>0恒成立,所以,f (x )的单调递增区间为(0,+∞).…………………………………6分②当a <0时,由f ′(x )=0,得x =-1a在区间(0,-1a )上,f ′(x )>0;在区间(-1a ,+∞)上,f ′(x )<0.所以,函数f (x )的单调递增区间为(0,-1a ),单调递减区间为(-1a ,+∞).……8分(3)由已知,转化为f (x )max <g (x )max =2,……………………………10分由(2)知,当a ≥0时,f (x )在(0,+∞)上单调递增,值域为R ,故不符合题意.(或者举出反例:存在f (e 3)=a e 3+3>2,故不符合题意.) ………11分当a <0时,f (x )在(0,-1a )上单调递增,在(-1a ,+∞)上单调递减,故f (x )的极大值即为最大值,f (-1a )=-1+ln(1-a)=-1-ln(-a ),……13分所以2>-1-ln(-a ),解得a <-1e 3. …………………………14分2020届高考数学一轮复习模拟试卷及答案(二)满分150分。

相关文档
最新文档