I2C设备与驱动的关联
Linux下I2C驱动介绍

1、I2C概述I2C是philips公司提供的外设总线,I2C有两条数据线,一条是串行数据线SDA、一条是时钟线SCL,使用SDA和SCL实现了数据的交换,便于布线。
I2C总线方便用在EEPROM、实时钟、小型LCD等与CPU外部的接口上。
2、Linux下的驱动思路Linux系统下编写I2c驱动主要有两种方法:一种是把I2C当做普通字符设备来使用;另一种利用Linux下驱动的体系结构来实现。
第一种方法:优点:思路比较直接,不用花费大量时间去了解Linux系统下I2C体系结构缺点:不仅对I2C设备操作要了解,还有了解I2C的适配器操作不仅对I2C设备器和设备操作需要了解,编写的驱动移植性差,内核提供的I2C设备器都没有用上。
第二种方法:第一种的优点就是第二种的缺点,第一种的缺点就是第二种的优点。
3、I2C框架概述Linux的I2C体系结构分为3部分:1)I2C核心I2C核心提供了I2C总线驱动和设备驱动的注册和注销的方法,I2C 通信方法(algorithm)上层,与具体适配器无关的代码,检测设备上层的代码等。
2)I2C总线驱动I2C总线驱动是对I2C硬件体系结构中适配器端的实现,适配器可以直接受CPU来控制。
3)I2C设备驱动I2C设备驱动是对I2C硬件体系结构中设备端的实现,设备端挂在受CPU控制的适配器上,通过I2C适配器与CPU交换数据。
Linux下的I2C体系结构:1)Linux下的I2C体系结构4、I2C设备驱动编写方法首先让我们明白适配器驱动的作用是让我们能够通过它发出标准的I2C时序,在linux内核源代码中driver/I2C/buss包含一些适配器的驱动,例如s3c2410的驱动I2C-s3c2410.c,适配器被加载到内核中,接下的任务就是实现设备驱动的编写。
编写设备驱动的方法主要分为两种方法:第一种:利用设备提供的I2C-dev.c来实现I2C适配器设备文件,然后通过上层应用程序来操作I2C设备器来控制I2C设备。
详细讲解RT-Thread I2C设备驱动框架及相关函数

详细讲解RT-Thread I2C设备驱动框架及相关函数本应用笔记以驱动I2C接口的6轴传感器MPU6050为例,说明了如何使用I2C设备驱动接口开发应用程序,并详细讲解了RT-Thread I2C设备驱动框架及相关函数。
1 本文的目的和结构1.1 本文的目的和背景I2C(或写作i2c、IIC、iic)总线是由Philips公司开发的一种简单、双向二线制(时钟SCL、数据SDA)同步串行总线。
它只需要两根线即可在连接于总线上的器件之间传送信息,是半导体芯片使用最为广泛的通信接口之一。
RT-Thread中引入了I2C设备驱动框架,I2C 设备驱动框架提供了基于GPIO模拟和硬件控制器的2种底层硬件接口。
1.2 本文的结构本文首先描述了RT-Thread I2C设备驱动框架的基本情况,然后详细描述了I2C设备驱动接口,并使用I2C设备驱动接口编写MPU6050的驱动程序,并给出了在正点原子STM32F4探索者开发板上验证的代码示例。
2 I2C设备驱动框架简介在使用MCU进行项目开发的时候,往往需要用到I2C总线。
一般来说,MCU带有I2C 控制器(硬件I2C),也可以使用MCU的2个GPIO自行编写程序模拟I2C总线协议实现同样的功能。
RT-Thread提供了一套I/O设备管理框架,它把I/O设备分成了三层进行处理:应用层、I/O 设备管理层、底层驱动。
I/O设备管理框架给上层应用提供了统一的设备操作接口和I2C 设备驱动接口,给下层提供的是底层驱动接口。
应用程序通过I/O设备模块提供的标准接口访问底层设备,底层设备的变更不会对上层应用产生影响,这种方式使得应用程序具有很好的可移植性,应用程序可以很方便的从一个MCU移植到另外一个MCU。
本文以6轴惯性传感器MPU6050为例,使用RT-Thread I2C设备驱动框架提供的GPIO模拟I2C控制器的方式,阐述了应用程序如何使用I2C设备驱动接口访问I2C设备。
Linux下基于I2C的电源管理芯片驱动设计

0 引 言
内部 集 成 电路 (ne—ne rtd crut 2 itritg ae i i c ,IC)
12 IC 总 线 信 号 时序 . 2
S DA 和 S L2条 信 号 线 都 处 于 高 电平 ,即 总 线 C 空 闲状 态 , 2条 信 号 线 各 自的 上 拉 电阻 把 电平 拉 高 ;
( tritgae i ut u d r iu . h 2 u miga dtese il rhtcueo eICb s nte n xk re ae i e— e rtdcr i n e n x T eICb s i n n p ca ac i tr fh 2 u u en l r n n c ) L t h e t i h Li
23 I C设 备 驱 动 . 2
CON Dn1 oN
图 1 IC总 线起 始 信 号 与结 束信 号【 2
定 义 描 述 具 体 设 备 的 IC cin 2 l t和 可 能 的私 有 e 数 据 结 构 、借 助 IC 框 架 的 IC pr be 函 数 实 现 注 2 2 o
S
‘ 、
.
源 转 换 输 出 的应 用 ,提 供 简 单 易 用 而 又 可 以灵 活 配 置 的完 整 电源 解 决 方 案 , 充 分 满 足 目前 日益 复 杂 的 应 用 处 理器 系 统 对 于 电源 相 对 复 杂 而 精 确 控 制 的要 求 。AXP 9 提 供 了一 个 与主 机 通 讯 的 两 线 串行 通 12
接 收 端 接 收 完 一 个 字 节 后 , 会 立 刻 在 AC 周 期 内 K
1 IC总线 概 述 与时序 2
11 IC 总 线 介 绍 . 2
将 S DA 由高 电平 翻 转 为低 电 平 ,这 便 产 生 了 一 个
TI-I2C驱动

TI-I2C驱动一、与I2C驱动相关的文件分成两部分:1)应用层接口部分:程序在svn中的路径如下:在https://dareglob-971006/svn/eocOS/branches/eocOS_v4/branches/bsp/user/i2c目录下,i2ctest.c文件,提供了lm75a_temp_read()方法,用来读取LM75A设备温度寄存器中的温度信息的功能。
2)内核驱动部分:内核位于svn中的路径如下:https://dareglob-971006/svn/eocOS/branches/eocOS_v4/branches/bsp/kernel(1)总线驱动:i2c-davinci.c:在内核目录中driver/i2c/busses目录下,适用于TI的I2C总线驱动程序。
I2C总线驱动是对I2C硬件体系结构中适配器端的实现。
(2)I2C驱动代码核心:i2c-core.c:在内核目录中driver/i2c/目录下,是I2C代码的核心,用于沟通虚拟文件系统与底层实现。
该文件提供了I2C总线驱动和设备驱动的注册、注销方法,I2C通信方法上层的、与具体适配器无关的代码以及探测设备、检测设备地址的上层代码等。
(3)I2C设备驱动:lm75.c:在内核目录中driver/hwmon目录下,是针对LM75A以及其他能兼容的温度传感器的设备驱动。
I2C设备驱动是对I2C硬件体系结构中设备端的实现,设备一般挂接在受CPU控制的I2C适配器上,通过I2C适配器与CPU交换数据。
二、I2C简要工作流程1)在总线驱动初始化时候,当通过Linux内核源代码/driver/base/platform.c文件中定义platform_driver_register()函数注册platform_driver结构体时,其中probe指针指向的davinci_i2c_probe()函数将被调用,以初始化适配器硬件。
2)而davinci_i2c_remove()函数则完成与davinci_i2c_probe()相反的功能。
电源管理方式的变更,driver.pm.suspend

电源管理⽅式的变更,driver.pm.suspend 与 i2c_driver.suspend 新版linux系统设备架构中关于电源管理⽅式的变更based on linux-2.6.32⼀、设备模型各数据结构中电源管理的部分linux的设备模型通过诸多结构体来联合描述,如struct device,struct device_type,struct class,struct device_driver,struct bus_type等。
@kernel/include/linux/devices.h中有这⼏中结构体的定义,这⾥只列出和PM有关的项,其余查看源码:struct device{...struct dev_pm_info power;...}struct device_type {...int (*uevent)(struct device *dev, struct kobj_uevent_env *env);char *(*devnode)(struct device *dev, mode_t *mode);void (*release)(struct device *dev);const struct dev_pm_ops *pm;};struct class {...void (*class_release)(struct class *class);void (*dev_release)(struct device *dev);int (*suspend)(struct device *dev, pm_message_t state);int (*resume)(struct device *dev);const struct dev_pm_ops *pm;...};struct device_driver {...int (*probe) (struct device *dev);int (*remove) (struct device *dev);void (*shutdown) (struct device *dev);int (*suspend) (struct device *dev, pm_message_t state);int (*resume) (struct device *dev);const struct dev_pm_ops *pm;...};struct bus_type {...int (*match)(struct device *dev, struct device_driver *drv);int (*uevent)(struct device *dev, struct kobj_uevent_env *env);int (*probe)(struct device *dev);int (*remove)(struct device *dev);void (*shutdown)(struct device *dev);int (*suspend)(struct device *dev, pm_message_t state);int (*resume)(struct device *dev);const struct dev_pm_ops *pm;...};以上可以看出和电源管理相关的两个结构体是struct dev_pm_info和struct dev_pm_ops,他们定义于⽂件@kernel/include/linux/pm.hstruct dev_pm_info {pm_message_t power_state;unsigned int can_wakeup:1;unsigned int should_wakeup:1;enum dpm_state status;#ifdef CONFIG_PM_SLEEPstruct list_head entry;#endif#ifdef CONFIG_PM_RUNTIME // undefstruct timer_list suspend_timer;unsigned long timer_expires;struct work_struct work;wait_queue_head_t wait_queue;spinlock_t lock;atomic_t usage_count;atomic_t child_count;unsigned int disable_depth:3;unsigned int ignore_children:1;unsigned int idle_notification:1;unsigned int request_pending:1;unsigned int deferred_resume:1;enum rpm_request request;enum rpm_status runtime_status;int runtime_error;#endif};struct dev_pm_ops {int (*prepare)(struct device *dev);void (*complete)(struct device *dev);int (*suspend)(struct device *dev);int (*resume)(struct device *dev);int (*freeze)(struct device *dev);int (*thaw)(struct device *dev);int (*poweroff)(struct device *dev);int (*restore)(struct device *dev);int (*suspend_noirq)(struct device *dev);int (*resume_noirq)(struct device *dev);int (*freeze_noirq)(struct device *dev);int (*thaw_noirq)(struct device *dev);int (*poweroff_noirq)(struct device *dev);int (*restore_noirq)(struct device *dev);int (*runtime_suspend)(struct device *dev);int (*runtime_resume)(struct device *dev);int (*runtime_idle)(struct device *dev);};⼆、device中的dev_pm_info结构体device结构体中的power项⽤来将该设备纳⼊电源管理的范围,记录电源管理的⼀些信息。
I2C设备驱动介绍

I2C设备驱动介绍I2C(Inter-Integrated Circuit)是一种串行通信协议,用于连接并使多个外部设备与主控制器进行通信。
在嵌入式系统中,I2C设备驱动起着至关重要的作用,负责将操作系统与I2C总线上的设备进行通信,促进数据的传输和交互。
1.初始化:驱动程序需要初始化I2C控制器,包括设置时钟频率、地址范围等。
2.设备注册:设备驱动需要在操作系统中注册I2C设备,以便操作系统能够识别和管理设备。
3.读写操作:驱动程序需要实现读写设备寄存器的功能,包括发送开始和停止信号、以及发送、接收数据等。
4.错误处理:驱动程序需要处理I2C通信过程中可能出现的错误,例如传输失败、设备无响应等情况。
5.中断处理:驱动程序需要支持I2C设备的中断机制,以便及时处理设备的状态变化或数据传输完成的中断信号。
6.电源管理:驱动程序需要支持设备的电源管理功能,包括设备的唤醒、睡眠等操作。
7.设备控制:驱动程序需要实现设备特定的控制功能,例如设置传感器的采样率、配置设备的工作模式等。
8. 虚拟文件系统接口:在Linux系统中,驱动程序通常通过虚拟文件系统接口(如/dev)与用户空间进行交互,提供读写设备寄存器的功能。
1.确定设备:首先,开发者应该确定需要驱动的I2C设备。
这可能包括传感器、EEPROM、显示器等。
2.确定硬件连接:确定I2C设备与主控制器之间的硬件连接和电气特性。
这包括设备的I2C地址、I2C总线上的物理接口等。
3.编写驱动程序:在操作系统中,开发者可以根据设备的文档或芯片厂商提供的驱动程序框架,编写自己的I2C设备驱动程序。
驱动程序需要实现上述提到的功能,并且根据设备的特点进行相应的适配和优化。
4.编译和测试:完成驱动程序的编写后,需要将其编译成与操作系统内核匹配的模块或静态链接库。
然后,通过加载驱动模块或重新编译内核来使驱动程序生效。
最后,进行测试,确保驱动程序在各种场景下的正常运行。
i2c_register_driver函数详解

i2c_register_driver函数详解在嵌入式软件开发中,I2C(Inter-Integrated Circuit)总线是一种常用的串行通信接口,用于在微控制器和外部设备之间传输数据。
i2c_register_driver函数是Linux内核中一个重要的函数,用于注册I2C 驱动程序。
本文将详细解析i2c_register_driver函数的功能、参数和应用。
一、i2c_register_driver函数概述i2c_register_driver函数是在Linux内核中注册一个I2C驱动程序的函数。
它的作用是将驱动程序与对应的I2C适配器绑定,使得操作系统能够正确地识别和管理该驱动程序。
在驱动程序注册后,当相应的I2C设备连接到系统时,驱动程序将会自动加载并为该设备提供服务。
二、i2c_register_driver函数参数i2c_register_driver函数包含一个结构体参数,该结构体用于指定驱动程序的相关信息和功能。
1. struct i2c_driverstruct i2c_driver是一个定义I2C驱动程序的结构体,包含了以下重要的成员:- .driver:指向内核的struct device_driver结构体,用于描述驱动程序的信息,如名称、文件操作方法等。
- .probe:指向I2C设备探测函数的指针,用于在设备连接时进行初始化和配置。
- .remove:指向I2C设备移除函数的指针,用于在设备断开连接时进行清理和释放资源。
- .id_table:指向I2C设备ID表的指针,用于匹配设备和驱动程序。
2. I2C设备探测函数(probe函数)I2C设备探测函数是I2C驱动程序的核心功能之一,在I2C设备连接到系统时被调用。
该函数的作用是检测和初始化I2C设备,并将设备与驱动程序进行绑定。
在probe函数中,可以执行一系列必要的操作,如配置寄存器、分配内存、注册字符设备等。
Linux I2C设备驱动编写

Linux I2C设备驱动编写(一)在Linux驱动中I2C系统中主要包含以下几个成员:如果一个I2C适配器不支持I2C通道,那么就将master_xfer成员设为NULL。
如果适配器支持SMBUS 协议,那么需要去实现smbus_xfer,如果smbus_xfer指针被设为NULL,那么当使用SMBUS协议的时候将会通过I2C通道进行仿真。
master_xfer指向的函数的返回值应该是已经成功处理的消息数,或者返回负数表示出错了。
functionality指针很简单,告诉询问着这个I2C主控器都支持什么功能。
在内核的drivers/i2c/i2c-stub.c中实现了一个i2c adapter的例子,其中实现的是更为复杂的SMBUS。
SMBus 与I2C的区别通常情况下,I2C和SMBus是兼容的,但是还是有些微妙的区别的。
时钟速度对比:在电气特性上他们也有所不同,SMBus要求的电压范围更低。
I2C driver具体的I2C设备驱动,如相机、传感器、触摸屏、背光控制器常见硬件设备大多都有或都是通过I2C 协议与主机进行数据传输、控制。
结构体如下:如同普通设备的驱动能够驱动多个设备一样,一个I2C driver也可以对应多个I2C client。
以重力传感器AXLL34X为例,其实现的I2C驱动为:这里要说明一下module_i2c_driver宏定义(i2c.h):module_driver():理解上述宏定义后,将module_i2c_driver(adxl34x_driver)展开就可以得到:这一句宏就解决了模块module安装卸载的复杂代码。
这样驱动开发者在实现I2C驱动时只要将i2c_driver结构体填充进来就可以了,无需关心设备的注册与反注册过程。
I2C client即I2C设备。
I2C设备的注册一般在板级代码中,在解析实例前还是先熟悉几个定义:下面还是以adxl34x为例:这样ADXL34X的i2c设备就被注册到了系统中,当名字与i2c_driver中的id_table中的成员匹配时就能够出发probe匹配函数了。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
I2C设备与驱动的关联作者:leeoo 联系方式:neu_linuxer@在Linux操作系统中,驱动程序的加载分为两种:内核启动时自动加载和用户手动加载;硬件设备也可以采用两种方式添加到系统中:在系统启动前及系统运行时的热插拨。
下面,我们以arm体系结构下的at91处理器中的I2C控制器为例,介绍一下硬件设备及相关的驱动程序是如何绑定及松绑的。
1.平台驱动注册过程1.1 at91_i2c_init()函数在文件drivers/i2c/busses/i2c-at91.c中,定义了结构体struct platform_driver并进行了初始化,通过使用module_init()宏进行声明,当模块被加载到内核时会调用 at91_i2c_init()函数。
在此函数中,调用了platform_driver_register()函数来完成注册。
static struct platform_driver at91_i2c_driver = {.probe = at91_i2c_probe,.remove = __devexit_p(at91_i2c_remove),.suspend = at91_i2c_suspend,.resume = at91_i2c_resume,.driver = {.name = "at91_i2c",.owner = THIS_MODULE,},};static int __init at91_i2c_init(void){return platform_driver_register(&at91_i2c_driver);}1.2 platform_driver_register()函数在文件drivers/base/platform.c中,实现并导出了platform_driver_register()函数,以便使其他模块中的函数可以调用此函数。
它在完成简单的包装后,调用了driver_register()函数,完成了从平台实现到Linux内核实现的过渡。
在此,我们需要关注一下platform_match()和platform_drv_probe()函数。
platform_match() 函数确定驱动与设备的关联,而platform_drv_probe()函数会在随后介绍的函数中被调用。
//比较驱动信息中的name与设备信息中的name两者是否一致static int platform_match(struct device * dev, struct device_driver * drv){struct platform_device *pdev = container_of(dev, struct platform_device,dev);return (strncmp(pdev->name, drv->name, BUS_ID_SIZE) == 0);}struct bus_type platform_bus_type = {.name = "platform",.dev_attrs = platform_dev_attrs,.match = platform_match,.uevent = platform_uevent,.suspend = platform_suspend,.suspend_late = platform_suspend_late,.resume_early = platform_resume_early,.resume = platform_resume,};EXPORT_SYMBOL_GPL(platform_bus_type);/*** platform_driver_register* @drv: platform driver structure*/int platform_driver_register(struct platform_driver *drv){drv->driver.bus = &platform_bus_type;//在really_probe函数中,回调了platform_drv_probe函数if (drv->probe)drv->driver.probe = platform_drv_probe;if (drv->remove)drv->driver.remove = platform_drv_remove;if (drv->shutdown)drv->driver.shutdown = platform_drv_shutdown;if (drv->suspend)drv->driver.suspend = platform_drv_suspend;if (drv->resume)drv->driver.resume = platform_drv_resume;return driver_register(&drv->driver);}EXPORT_SYMBOL_GPL(platform_driver_register);1.3 driver_register()函数在文件drivers/base/driver.c中,实现了driver_register()函数。
在此函数中,初始化结构体struct device_driver中的klist_device和unloaded字段,通过klist_device字段,可以保存此驱动支持的设备链表,通过“完成”接口机制,完成线程间的同步。
链表和“完成”接口的详细信息可以参考文献[1]。
返回bus_add_driver()函数的运行结果。
/*** driver_register - register driver with bus* @drv: driver to register** We pass off most of the work to the bus_add_driver() call,* since most of the things we have to do deal with the bus* structures.** The one interesting aspect is that we setup @drv->unloaded* as a completion that gets complete when the driver reference* count reaches 0.*/int driver_register(struct device_driver * drv){if ((drv->bus->probe && drv->probe) ||(drv->bus->remove && drv->remove) ||(drv->bus->shutdown && drv->shutdown)) {printk(KERN_WARNING "Driver '%s' needs updating - please usebus_type methods\n", drv->name);}klist_init(&drv->klist_devices, NULL, NULL);init_completion(&drv->unloaded);return bus_add_driver(drv);}1.4 bus_add_driver()函数在文件drivers/base/bus.c中实现了bus_add_driver()函数,它通过语句klist_add_tail(&drv->knode_bus, &bus->klist_drivers); 将驱动信息保存到总线结构中,在设备注册过程中,我们就可以明白此语句的作用了。
在此语句之前,调用了driver_attach()函数。
/*** bus_add_driver - Add a driver to the bus.* @drv: driver.**/int bus_add_driver(struct device_driver *drv){struct bus_type * bus = get_bus(drv->bus);int error = 0;if (!bus)return 0;pr_debug("bus %s: add driver %s\n", bus->name, drv->name);error = kobject_set_name(&drv->kobj, "%s", drv->name);if (error)goto out_put_bus;drv->kobj.kset = &bus->drivers;if ((error = kobject_register(&drv->kobj)))goto out_put_bus;error = driver_attach(drv);if (error)goto out_unregister;klist_add_tail(&drv->knode_bus, &bus->klist_drivers);module_add_driver(drv->owner, drv);error = driver_add_attrs(bus, drv);if (error) {/* How the hell do we get out of this pickle? Give up */printk(KERN_ERR "%s: driver_add_attrs(%s) failed\n",__FUNCTION__, drv->name);}error = a dd_bind_files(drv);if (error) {/* Ditto */printk(KERN_ERR "%s: add_bind_files(%s) failed\n",__FUNCTION__, drv->name);}return error;out_unregister:kobject_unregister(&drv->kobj);out_put_bus:put_bus(bus);return error;}1.5 dd.c文件在文件drivers/base/dd.c中,实现了设备与驱动交互的核心函数。