小学五年级奥数550数列数表(学生版)专项练习题
五年级奥数数列计算练习题及答案

数列计算从第二项起,后一项与前一项的比值是同一个数,这样的数叫做等比数列。
从1的立方开始的自然数的立方之和等于这些和的平方。
例题精讲例1 计算:0.1+0.3+0.5+0.7+0.9+0.11+0.13+0.15+…+0.97+0.99。
【思路点拨】在计算时如果把所有的数看成是一个等差数列,那就错了,因为前几个数相邻两数之间相差0.2,而后面的数相邻两数的差是0.02,所以在求和时要分开考虑,从0.1到0.9是一个等差数列,而从0.11到0.99又是一个等差数列。
【详细解答】0.1+0.3+0.5+0.7+0.9+0.11+0.13+0.15+…+0.97+0.99(0.1+0.9)×5÷2+(0.11+0.99)×45÷2=2.5+49.5÷2=2.5+24.75=27.25【题后反思】首先观察时应该把小数分为两类:一位小数、两位小数。
再分别求和,注意要理解并牢记等差数列求和公式。
例2计算:1+3+9+27+81+243+729+2187。
【思路点拨】加法算式中的数后一项总是前一项的3倍,构成一个等比数列。
在求和时要根据等比数列的特点来做。
把这些数的和用S来表示,如果把每项扩大3倍,则3S=3+9+27+81+243+729+2187+6561。
把3S的每项与原来等比数列的每项比较,很多项是相同的,3S比S多的就是6561-1=6560,3s是S的3倍,比S多2倍,所以S=6560÷2=3280。
【详细解答】设S=1+3+9+27+81+243+729+2187,则3S=3+9+27+81+243+729+2187+65613S-S=6561-1,2S=6560S=6560÷2=3280【题后反思】扩倍法、缩倍法是等比数列求和的基本方法,扩的倍数就是公比。
这远远比中学的公式法好理解。
同步练习1.计算下列一组数的和:105,110,115,120…,195,2002.有一列数:2.1,2.2,2.3,2.4,2.5,2.6,2.7,…它的第2005项是几?前2005项的和是多少?3.计算:1+216+64+256+1024+40964.计算:100+20+4+0.8+0.16+0.032+0.00645.计算:13+23+33+43+…+10036.计算:103+113+123+…+3037.找出下面数列的生成规律并填空1,2,4,8,16,□,□,128,2568.找出下面数列的生成规律,并填空。
小学数学数列与数表练习题

小学数学数列与数表练习题一、选择题:1. 下列数列中,是等差数列的是:A. 1, 3, 5, 7, 9B. 2, 4, 8, 16, 32C. 1, 2, 4, 7, 11D. 3, 6, 12, 24, 482. 求下列数列的公差:4, 9, 14, 19, 24A. 4B. 5C. 9D. 143. 求数列的第10项:2, 4, 8, 16, ...A. 1024B. 512C. 256D. 128二、填空题:1. 数列1, 3, 5, 7, ...中,第10项为__________。
2. 若数列的通项公式为an = 3n - 1,则数列的第5项为__________。
三、计算题:1. 求等差数列的前n项和:1, 4, 7, 10, ...(n ≥ 4)。
2. 求等比数列的前n项和:2, 4, 8, 16, ...(n ≥ 4)。
四、解答题:1. 数学老师在班级里进行了一个有趣的数学游戏,游戏规则如下:初始时,小明手上有一个数字1,并且每次可以进行如下两种操作之一:操作一:将手上的数字加1;操作二:将手上的数字加倍。
请你帮助小明回答以下问题:a) 经过多少次操作后,小明手上的数字为16?b) 经过多少次操作后,小明手上的数字为128?2. 某学校有500名学生,学校希望给每个学生编号,且要求编号满足以下条件:a) 从1号开始,奇数学生的编号是等差数列;b) 从2号开始,偶数学生的编号是等差数列。
请你帮助学校计算:a) 学校应该给每个奇数学生分配多少个编号?b) 学校应该给每个偶数学生分配多少个编号?以上是小学数学数列与数表的练习题,希望对您有帮助!。
小学奥数 计算题库 数列计算 等差数列的认识与公式运用.学生版

本讲知识点属于计算板块的部分,难度较三年级学到的该内容稍大,最突出一点就是把公式用字母表示。
要求学生熟记等差数列三个公式,并在公式中找出对应的各个量进行计算。
一、等差数列的定义⑴ 先介绍一下一些定义和表示方法定义:从第二项起,每一项都比前一项大(或小)一个常数(固定不变的数),这样的数列我们称它为等差数列.譬如:2、5、8、11、14、17、20、从第二项起,每一项比前一项大3 ,递增数列100、95、90、85、80、从第二项起,每一项比前一项小5 ,递减数列⑵ 首项:一个数列的第一项,通常用1a 表示末项:一个数列的最后一项,通常用n a 表示,它也可表示数列的第n 项。
项数:一个数列全部项的个数,通常用n 来表示;公差:等差数列每两项之间固定不变的差,通常用d 来表示; 和 :一个数列的前n 项的和,常用n S 来表示 .二、等差数列的相关公式(1)三个重要的公式① 通项公式:递增数列:末项=首项+(项数1-)⨯公差,11n a a n d =+-⨯()递减数列:末项=首项-(项数1-)⨯公差,11n a a n d =--⨯()回忆讲解这个公式的时候可以结合具体数列或者原来学的植树问题的思想,让学生明白 末项其知识点拨教学目标等差数列的认识与公式运用实就是首项加上(末项与首项的)间隔个公差个数,或者从找规律的情况入手.同时还可延伸出来这样一个有用的公式:n m a a n m d -=-⨯(),n m >()② 项数公式:项数=(末项-首项)÷公差+1由通项公式可以得到:11n n a a d =-÷+() (若1n a a >);11n n a a d =-÷+() (若1n a a >). 找项数还有一种配组的方法,其中运用的思想我们是常常用到的. 譬如:找找下面数列的项数:4、7、10、13、、40、43、46 ,分析:配组:(4、5、6)、(7、8、9)、(10、11、12)、(13、14、15)、、(46、47、48),注意等差是3 ,那么每组有3个数,我们数列中的数都在每组的第1位,所以46应在最后一组第1位,4到48有484145-+=项,每组3个数,所以共45315÷=组,原数列有15组. 当然还可以有其他的配组方法.③ 求和公式:和=(首项+末项)⨯项数÷2 对于这个公式的得到可以从两个方面入手: (思路1) 1239899100++++++11002993985051=++++++++共50个101()()()()101505050=⨯=(思路2)这道题目,还可以这样理解: 23498991001009998973212101101101101101101101+++++++=+++++++=+++++++和=1+和倍和即,和(1001=+⨯÷=⨯=(2) 中项定理:对于任意一个项数为奇数的等差数列,中间一项的值等于所有项的平均数,也等于首项与末项和的一半;或者换句话说,各项和等于中间项乘以项数.譬如:① 48123236436922091800+++++=+⨯÷=⨯=(),题中的等差数列有9项,中间一项即第5项的值是20,而和恰等于209⨯; ② 65636153116533233331089++++++=+⨯÷=⨯=(),题中的等差数列有33项,中间一项即第17项的值是33,而和恰等于3333⨯.例题精讲模块一、等差数列基本概念及公式的简单应用等差数列的基本认识【例 1】下面的数列中,哪些是等差数列?若是,请指明公差,若不是,则说明理由。
五年级下册奥数思维训练:数列与数表综合 全国通用 (砍柴篇)

分数数列(★★★★)有这样一串分数:11,12,22,12,13,23,33,23,13,14,24…那么,⑴第一次出现的8998是这一串分数中的第几个分数? ⑵第500个分数是几分之几? (★★★)已知一串有规律的数:1,23,58,1321,3455那么,在这串数中,从左往右数,第10个数是多少?例1数 列 与 数 表 综 合例2(砍柴篇)数表(★★★★)如图,数阵中的数是按一定规律排列的,请问:⑴100在第几行、第几列?⑵第20行第3列的数是多少?(★★★)如果把一些自然数按下表进行排列,那么数1000应在哪个字母下面?例3例4例5(★★★★★)自然数每9个数一行进行排列,现在用2×3的小方框围出6个数,然后算出它们的和.如图,可以横着围或竖着围.若某个方框围出的6个数之和为567,那么其中最大的数为______.例6(★★★★★)如图,数表中的数字是按照一定的规律排列顺序的,那么这个数表中第50行最左边的数应该是_______.(★★★★)如图,从1开始的自然数按某种方式排列起来,请问:⑴100在第几行?100是这一行左起第几个数?⑵第25行左起第5个数是多少?例7期中考试考试时间:90分钟满分:120分(说明:本套试卷,共12题.难度和重要程度均没有大的区别,每道题都是10分)1.一个等比数列,第1项是7,第3项是175,那么第4项是________.2.计算:1111 248 (1024)2481024++++.3.(第七届“小机灵杯”数学竞赛五年级复赛)8点________分的时候,分针与时针第一次形成75︒角.4.(2007年四中分班考试真题)如图,假设某星球的一天只有6小时,每小时36分钟,那么3点18分时,时针和分针所形成的锐角是________度.5.(四中小升初选拔试题)被除数、除数、商与余数之和是2143,已知商是33,余数是52,求被除数和除数. 6.(全国小学数学奥林匹克试题)用自然数n去除63,91,129得到的三个余数之和为25,那么n=________.7.求24611356047⨯⨯除以11的余数.8.甲、乙两港之间的水路是234千米,一只船从甲港到乙港需9小时,从乙港返回甲港需13小时,问船速和水速各为多少?9.某船在静水中的速度是每小时15千米,它从上游甲地开往下游乙地共花去了8小时,水速每小时3千米,问从乙地返回甲地需要多少时间?10.有一列数:2,3,6,8,8,….从第三个数起,每个数都是前两个数乘积的个位数字,那么这一列数中的第100个数是________;11.如图所示的数表中,从左往右依次看作五列.⑴第99行右边第一个数是________;⑵2006出现在第________行,第________列;12.如图,把从1开始的自然数排成数阵.试问:能否在数阵中放入一个3×3的方框,使得它围住的几个数之和等于:⑴1997;⑵2016;⑶2349.如果可以,请写出方框中最大的数.0 2 4 12 10 8 614 16 18 26 24 22 20……答 案1.【分析】先算公比231255a q q a ⇒===,那么41755875a ⨯==. 2.【分析】把算式的整数部分和分数部分分开:()1111248102424810241023204821024102320461024⎛⎫ ⎪⎝⎭原式=+++++++++=-+=3.【分析】分针每分钟走1格,时针每分钟走112格.当它们成75︒角时,中间相差7525603602⨯=(格),需要追赶25554022-=(格).需要时间为551(1)30212÷-=(分钟).4.【分析】分针速度为:10°/分钟;时针速度为:53o/分钟;3点时分针与时针成180°,18分钟后分针追上时针518101503⎛⎫⨯ ⎪⎝⎭-=°所以此时,分针与时针所成的锐角为30°.5.【分析】(法1)被除数2143=-除数-商-余数2143=-除数3352--2058=-除数,被除数=除数⨯商+余数,所以除数33522058⨯+=-除数, 则除数(205852)3459=-÷=,被除数2058591999=-=.(法2)从被除数中减掉余数52后,被除数就是除数的33倍,所以可以得到:2143335252(331)---=+⨯除数,求得除数59=,被除数 3359521999⨯=+=.6.【分析】n 能整除639112925258++-=.因为25381÷=,所以n 是258大于8的约数.显然,n 不能大于63.符合条件的只有43.7.【分析】因为2461112238÷=,13511123÷=,6047115498÷=,根据余数性质⑤,2461135604711⨯⨯÷的余数等于83811⨯⨯÷的余数,而838192⨯⨯=,19211175÷=,所以2461135604711⨯⨯÷的余数为5.8.【分析】从甲到乙顺水速度:234926÷=(千米/时),从乙到甲逆水速度:2341318÷=(千米/时),船速是:(2618)222+÷=(千米/时),水速是:(2618)24-÷=(千米/时).9.【分析】从甲地到乙地的顺水速度为15318+=(千米/时),甲、乙两地路程为188144⨯=(千米),从乙地到甲地的逆水速度为15312-=(千米/时),返回所需要的时间为1441212÷=(小时).10.【分析】周期问题,先找出周期.2,3,6,8,8,4,2,8,6,8,8…6位一循环.()10026162-÷=,那么第100个数是循环中的第2个.第100个数是8.11.【分析】⑴首先观察规律.数表里面出现的是从0开始的连续偶数;每两行中有7个数,其中第1行有3个数,从小到大排在第3,4,5号位置;第2行有4个数,从大到小排在第1,2,3,4号位置.那么前98行中有7982343⨯÷=个数,其中第343个数是()34312684-⨯=.第99行最右边的数是该行的第3个数,它是:6846690+=.⑵2006是第2006211004÷+=个数.100471433÷=,那么第1004个数在第14321287⨯+=行的第3个数,那么就是第287行的第5列.12.【分析】左上角的数为:123891015161781++++++++=.由于每向右移动一位,即增加9,最多可向右移动4次,向下移动一位可增加63. 由于:⑴()1997811916,1916633026-=÷=, 不是9的倍数;⑵()2016811935,1935633045-=÷=,无法向右移动5次;⑶()2349812268,22686336-=÷=;所以,只有2349是可以的,应向下移动36次, 所以最大的数为:73617269⨯+=.。
小学数学 课外拓展《数列与数表》练习+详解

小学数学课外拓展《数列与数表》试题部分1.如图,把正整数依次排列,那么70在第______行,第______列。
2.如图,把正整数依次排列,那么32在第_____行,第______列。
3.如图,把正整数依次排列,那么58在第_______行,第______列。
4.如图,把正整数依次排列,那么第6行第7列的数是_______。
5.如图,把正整数依次排列,那么第8行第6列的数是______。
7.如图,把正整数依次排列,那么第6行第3列的数是______。
8.如图,把正整数依次排列,那么第7行第4列的数是________。
10.如图,从一个格到相邻的格需要走1步,那么从第2行第3列走到第6行第5列需要走______步。
(只能横着走或竖着走,不能斜着走)11.如图,从一个格到相邻的格需要走100米,那么从第1行第2列走到第5行第5列需要走______米。
(只能横着走或竖着走,不能斜着走)行第3列需要走______米。
(只能横着走或竖着走,不能斜着走)13.如图,从一个格到相邻的格需要走1步,那么从第1行第1列走到43这个数所在的格需要走______步。
(只能横着走或竖着走,不能斜着走)14.如图,从一个格到相邻的格需要走1步,那么从第2行第3列走到50这个数所在的格需要走______步。
(只能横着走或竖着走,不能斜着走)数所在的格需要走_____步。
(只能横着走或竖着走,不能斜着走)16.如图,从一个格到相邻的格需要走1步,那么从9这个数所在的格走到52这个数所在的格需要走______步。
(只能横着走或竖着走,不能斜着走)17.如图,从一个格到相邻的格需要走1步,那么从12这个数所在的格走到45这个数所在的格需要走______步。
(只能横着走或竖着走,不能斜着走)这个数所在的格需要走______步。
(只能横着走或竖着走,不能斜着走)19.如图,在数表中放入一个十字架形的框,共圈住5个数,这五个数的和是______。
小学奥数---简单数列中的规律专项练习30题(有答案)

第6讲 简单数列中的规律30题(有答案)1.在数列1×2、2×3、3×4、4×5、…、99×100中,第6个数是( )A . 42B . 56C . 722. 1、3、5、 _________ 、9 (1.2.3)、(2.4.6)、(3.6.9)…第8组的三个数的和是 _________ .3.在下面的横线上填数,使这列数有某种规律.是3、5、7、 _________ 、 _________ 、 _________ ;你所填的数的规律是 _________ .4.根据规律填数或者划出适当的图形.(1)3,20;5,40;7,80; _________ , _________ .(2)4,6,10,16,26, _________ , _________(3)16,25, _________ ,49,64, _________ .(4)□○△→△□○→○△□→ _________ .5.找规律填数:100,81,64,49,36 _________ , _________ ,9.6.按规律在括号里填上适当的数.(1)1、15、3、13、5、11、 _________ 、 _________ .(2)198、297、396、 _________ 、 _________ .(3)21、4、18、5、15、6、 _________ 、 _________ .7.根据规律填数①30,28,26, _________ , _________ , _________ ;②1,3,6, _________ , _________ ;③15,20,25, _________ , _________ , _________ .8.寻找规律:1,4,9,16, _________ , _________ .9.找规律填后面的数:1,4,9,16, _________ ,36, _________ , _________ , _________ . 2,3,5,8, _________ ,21, _________ , _________ .10.(1)1,4,9,16, _________ ,36,49;(2)11.找规律填数:2 5 11 23 47 _________ .5 6 7 774 5 6 5412.按规律填空.(1)1,5,9,_________,17,21,_________,29.(2)2,4,6,10,16,_________,_________.(3)13.找规律填数.(1)5243,2435,4352,_________.(2)987,877,767,_________,_________.(3)2,5,11,23,_________,95.14.下面数列的每一项由3个数组成的数组表示,它们依次是;(1,4,9 ),(2,8,18),(3,12,27)那么第50个数组内三个数是(_________,_________,_________)15.请认真观察下列数字的排列规律,并填最后一行.11 11 2 11 3 3 11 4 6 4 11 5 10 10 5 11_____________________________________________1.16.按规律填数(1)2,8,32,_________,_________(2)1,3,6,10,_________,21,28,36,_________(3)21×9=189321×9=28894321×9=3888954321×9=_________.17.找规律,在括号内填入适当的数.0,1,3,8,21,55,_________,_________.18.按规律填数:1,2,3,6,11,_________,37,68,…19.找规律,在括号内填入适当的数.1,6,7,12,13,18,19,_________,_________.20.找规律填数①2 5 8 11_________17②1 2 4 7 11_________③48 24 12_________ 3④(1,3),(2,6),(3,9),_________,_________.⑤1,2,3,7;2,3,4,14;3,4,5,_________.21.按一定的规律在括号中填上适当的数:(1)1,2,4,8,16,_________,_________,128,256(2)1,9,2,8,3,_________,4,6,5,5(3)1,8,27,64,125,_________,343.22.按规律填数.2、7、17、32、52、_________、107.23.按规律填数.(1)1,4,9,16,_________,36,_________.(2)7,2,5,2,3,2,_________,_________(3)3,8,18,33,53,_________,_________.(4)15,6,13,7,11,8,_________,_________.(5)2,5,11,23,47,_________,_________.24.按规律填数(1)1,4,7,10,_________,_________,19.(2)1,2,2,4,3,8,_________,_________.(3)0,1,4,9,_________,25,_________.(4)0,1,1,2,3,5,8,_________.(5)2,6,18,54,_________,_________.25.找规律:57、69、84、96、_________、114.26.1,1,2,3,5,8,_________,21,_________,….27.观察规律填空.86、70、62、_________、_________、5519、109、1009、_________、_________、_________.28.29._________、_________、72199、73199、_________、_________.30.按规律填数5,11,23,47,_________,…参考答案:1.由题意得:第6个算式是:6×7=42.故选:A.2.(1)5+2=7;要求的数是7;(2)6×8=48;第8组数的和是48.故答案为:7,48.3.由分析得出:3、5、7、9、11、13;所填的数的规律是:按照顺序写奇数.故答案为:9、11、13;按照顺序写奇数.4.(1)7+2=9,80×2=160;(2)16+26=42,26+42=68;(3)25+11=36,64+17=81;(4)□○△故答案为:9,160,42,68,36,81,□○△5.52=5×5=25;42=4×4=16;所以后两个数是25,16.故答案为:25,16.6.(1)5+2=7,11﹣2=9;(2)396+99=495,495+99=594;(3)15﹣3=12,6+1=7.故答案为:7,9;495,594;12,7.7.根据分析,这几个数列分别是:①30,28,26,24,22,20;②1,3,6,10,15;③15,20,25,30,35,40.故答案为:①24,22,20,②10,15,③30,35,408.寻找规律:1,4,9,16,25,36.9.找规律填后面的数:1,4,9,16,25,36,49,64,81.2,3,5,8,13,21,34,55.10.(1)1,4,9,16,25,36,49;(2)第三组是:前三个数是:6,7,8;第四个数是:(6+7)×8=104;第四组是:前三个数是:7,8,9;第四个数是:(7+8)×9=135;故答案为:25;6,7,8,104;7,8,9,13511.47+24×2=47+48=95;故答案为:9512.(1)1,5,9,13,17,21,25,29.(2)2,4,6,10,16,26,42.(3)4×1÷2=2;即:13.(1)把4352最高位上的数字移到最后,就是:3524;这个数是3524;(2)767﹣110=657;657﹣110=547;这两个数是547.(3)23+12×2=23+24=47;故答案为:3524,657,547,47.14.下面数列的每一项由3个数组成的数组表示,它们依次是;(1,4,9 ),(2,8,18),(3,12,27)那么第50个数组内三个数是(50,200,450)15.1+5=6,5+10=15,10+10=20,10+5=15,5+1=6,故答案为:6,15,20,15,616.按规律填数(1)2,8,32,128,512(2)1,3,6,10,15,21,28,36,45(3)21×9=189321×9=28894321×9=3888954321×9=488889.17.找规律,在括号内填入适当的数.0,1,3,8,21,55,144,377.18.按规律填数:1,2,3,6,11,20,37,68,…19.找规律,在括号内填入适当的数.1,6,7,12,13,18,19,24,25.20.找规律填数①2 5 8 111417②1 2 4 7 1116③48 24 126 3④(1,3),(2,6),(3,9),(4,12),(5,15).⑤1,2,3,7;2,3,4,14;3,4,5,28.21.按一定的规律在括号中填上适当的数:(1)1,2,4,8,16,32,64,128,256(2)1,9,2,8,3,7,4,6,5,5(3)1,8,27,64,125,216,343.22.按规律填数.2、7、17、32、52、77、107.23.按规律填数.(1)1,4,9,16,25,36,49.(2)7,2,5,2,3,2,1,2(3)3,8,18,33,53,78,108.(4)15,6,13,7,11,8,9,9.(5)2,5,11,23,47,95,191.24.按规律填数(1)1,4,7,10,13,16,19.(2)1,2,2,4,3,8,4,16.(3)0,1,4,9,16,25,36.(4)0,1,1,2,3,5,8,13.(5)2,6,18,54,162,486.25.找规律:57、69、84、96、102、114.26.1,1,2,3,5,8,13,21,34,….27.观察规律填空.86、70、62、58、56、5519、109、1009、10009、100009、1000009.28.11+7=18;32+7=39;39+7=46;53+7=60;数轴如下:29.70199、71199、72199、73199、74199、75199.30.24×2=48;48+47=95;要填的数是95.故答案为:95。
五年级奥数专题 数列找规律(学生版)

数列找规律学生姓名授课日期教师姓名授课时长知识定位知识梳理例题讲解【试题来源】【题目】下面每列数都有什么规律呢?你能找到并继续往下填吗?⑴ 1,3,5,7,( ),()。
⑴ 2,4,6,8,(),()。
⑴ 1,4,7,10,(),()。
⑴ 35,30,25,20,(),( )。
【试题来源】【题目】你知道下面数列的规律吗?请继续往下写。
⑴1,3,9,(),()。
⑵1,10,100,1000,(),()。
⑶64,32,16,8,(),()。
【试题来源】【题目】有一个人养了一对刚出生的小兔子,一般而言,一对兔子如果第一个月出生,第二个月长大,第三个月就能生一对小兔子,以后每个月都能生出一对小兔子。
而新生的一对小兔子经过一个月可以长成大兔子,以后也是每月生一对小兔子。
假如所有兔子都不死,问:从一对小兔子出生经过一年的时间一共有多少对兔子?【试题来源】【题目】数列的变化非常多,下面的数列要我们多动脑筋才能找出来。
快来试一试吧!⑴5,7,10,14,( ),25,( )。
⑵100,81,64,49,36,25,( ),9,4,1 。
⑶1,2,6,24 , ( )。
⑷6,9,15,24,39,( ),( )。
【试题来源】【题目】下图的数是按一定规律排列的,请按规律填上所缺数。
习题演练【试题来源】【题目】根据下面这列数的规律,正确填出( )内的数。
正确的选项是( )2、6、10、14、18、22、( )A.25B.28C.26D.21【试题来源】【题目】根据下面这列数的规律,正确填出( )内的数。
正确的选项是( )1、2、4、8、16、( )A.30B.32C.15D.28【试题来源】【题目】有这样一列数:1, 1, 2, 3, 5, 8, 13, 21, 34, 55,,你知道这个数列第13项是( )?A.198B.213C.250D.233【试题来源】【题目】根据下面这列数的规律,正确填出( )内的数。
正确的选项是( )2、3、5、8、12、17、( )A.23B.22C.19D.25【试题来源】【题目】根据下面这列数的规律,正确填出( )内的数。
小学奥数 计算题库 数列计算 等差数列应用题.学生版

等差数列应用题例题精讲【例 1】15位同学排成一队报数,从左边报起思思报10.从右边报起学学报12.那么学学和思思中间排着有位同学.【例 2】体育课上老师指挥大家排成一排,冬冬站排头,阿奇站排尾,从排头到排尾依次报数。
如果冬冬报17,阿奇报150,每位同学报的数都比前一位多7,那么队伍里一共有多少人?【例 3】一个队列按照每排2,4,6,8人的顺序可以一直排到某一排有100人,那么这个队列共有多少人?【例 4】有一个很神秘的地方,那里有很多的雕塑,每个雕塑都是由蝴蝶组成的.第一个雕塑有3只蝴蝶,第二个雕塑有5只蝴蝶,第三个雕塑有7只蝴蝶,第四个雕塑有9只蝴蝶,以后的雕塑按照这样的规律一直延伸到很远的地方,学学和思思看不到这排雕塑的尽头在哪里,那么,第102个雕塑是由多少只蝴蝶组成的呢?由999只蝴蝶组成的雕塑是第多少个呢?【巩固】有一堆粗细均匀的圆木,堆成梯形,最上面的一层有5根圆木,每向下一层增加一根,一共堆了28层.问最下面一层有多少根?【巩固】建筑工地有一批砖,码成如右图形状,最上层两块砖,第2层6块砖,第3层10块砖…,依次每层都比其上面一层多4块砖,已知最下层2106块砖,问中间一层多少块砖?这堆砖共有多少块?【例 5】一个建筑工地旁,堆着一些钢管(如图),聪明的小朋友,你能算出这堆钢管一共有多少根吗?【巩固】某剧院有20排座位,后一排都比前一排多2个座位,最后一排有70个座位,这个剧院一共有多少个座位?【巩固】一个大剧院,座位排列成的形状像是一个梯形,而且第一排有10个座位,第二排有12个座位,第三排有14个座位,……最后一排他们数了一下,一共有210个座位,思考一下,剧院中间一排有多少个座位呢?这个剧院一共有多少个座位呢?【例 6】一辆双层公共汽车有66个座位,空车出发,第一站上一位乘客,第二站上两位乘客,第三站上三位乘客,依此类推,第几站后,车上坐满乘客?【例 7】时钟在每个整点敲打,敲打的次数等于该钟点数,每半点钟敲一下.问:时钟一昼夜打多少下?【例 8】已知:13599101a=+++++,24698100b=+++++,则a、b两个数中,较大的数比较小的数大多少?【例 9】小明进行加法珠算练习,用1234++++,当加到某个数时,和是1000.在验算时发现重复加了一个数,这个数是多少?【例 10】编号为1~9的9个盒子里共放有351粒糖,已知每个盒子都比前一个盒子里多同样数量的糖.如果1号盒子里放11粒糖,那么后面的盒子比它前一个盒子里多放几粒糖?【巩固】例题中已知如果改为3号盒子里放了23粒糖呢?【例 11】小王和小高同时开始工作。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
学科培优数学
“数列数表”
学生姓名授课日期
教师姓名授课时长
日常生活中,我们经常接触到许多按一定顺序排列的数,如:
自然数:1,2,3,4,5,6,7, (1)
年份:1990,1991,1992,1993,1994,1995,1996 (2)
某年级各班的学生人数(按班级顺序一、二、三、四、五班排列)
45,45,44,46,45 (3)像上面的这些例子,按一定次序排列的一列数就叫做数列.数列中的每一个数都叫做这个数列的项,其中第1个数称为这个数列的第1项,第2个数称为第2项,…,第n个数就称为第n项.如数列(3)中,第1项是45,第2项也是45,第3项是44,第4项是46,第5项45。
根据数列中项的个数分类,我们把项数有限的数列(即有有穷多个项的数列)称为有穷数列,把项数无限的数列(即有无穷多个项的数列)称为无穷数列,上面的几个例子中,(2)(3)是有穷数列,(1)是无穷数列。
一、数列规律
等差数列,简单的等比数列,周期规律,递推规律是数列中常见的形式,在小学阶段的奥数题中,比较多的项数进行计算基本都是可以找到相应规律的。
二、数表规律
通过观察数表中的已知数据,发现规律并进行补填与计算的问题.这里要注意数表结构的差异,它们通常是按行、按列、沿斜线或螺旋线逐步形成的.涉及小数的,或与其他方面知识相综合的数列问题.
三、递推思想
奥数学习需要的是思维的积累,其中递推归纳的思想应用十分广泛。
而在数列数表中,递推的规律体现的淋漓尽致,需要学生用心体会。
注意:
1.等差数列及相对应的数学解题思想,倒序相加,递推,对应等。
2.数列求和技巧,简单等比数列求和中措项相消得思想。
3.数表中如何发现规律并转化成已知知识。
4.措项相消思想的运用
5.数表与计数数论相联系
6.分数数列的计算
7.数表的求和
例题精讲
【试题来源】
【题目】0,1,2,3,6,7,14,15,30,________,________,________。
上面这个数列是小明按照一定的规律写下来的,他第一次先写出0,1,然后第二次写出2,3,第三次接着写6,7,第四次又接着写14,15,依次类推。
那么这列数的最后3项的和应是多少?
【试题来源】
【题目】图5-1中各个数之间存在某种关系,请按照这一关系求出数a和b.
【试题来源】
【题目】1,2,3,2,3,4,3,4,5,4,5,6……
上面是一串按某种规律排列的自然数,问其中第101个数至第110个数之和是多少?
【试题来源】
【题目】有一列数: 1,1989,1988,1,1987……从第三个数起,每一个数都是它前面两个数中大数减小数的差.那么第1989个数是多少?
【试题来源】
【题目】标有A、B、C、D、E、F、G记号的七盏灯顺次排成一行,每盏灯安装着一个开关,现在A、C、D、G四盏灯亮着,其余三盏灯是灭的.小方先拉一下A的开关,然后拉B、C……直到G的开关各一次,接下去再按A到G的顺序拉动开关,并依此循环下去.他拉动了1990次后,亮着的灯是哪几盏?。