无损耗均匀传输线方程的通解.
传输线方程及解

k 特征阻抗为入射电压波与入射电流波之比:
Zc V i I i 1/ Yc
电流波解:
特征导纳Yc
反射电压波与反射电流波在相位上相差180º
传输线纵向V(z)、I(z)分布与终端负载阻抗ZL有关
不同的ZL
有耗传输线方程的解
传输线有损耗,即R’=0,G’=0
传输线方程为:
有耗线的传播常数和特征阻抗 解
传输线方程推出
基尔霍夫定理: V=0,I=0
传输线方程推出I
V (z,t) V (z z,t) V (z,t)
z
z
这就是传输线上电压、电流要满足的方程-传输线方程
方程的复数形式
时谐量与其复数形式的关系是: 把它们代入方程中,即
得到方程的复数形式:
无耗传输线方程的解
如果传输线无损耗
R’=0,G’=0
传输线方程简化为:
dV/dz=-jL’I, dI/dz=-jC’V
d 2V dz2
2L'C'V
k 2V
d 2V dz2
k 2V
0
该方程的解为:
无耗传输线方程的解I
定义本征阻抗和导纳:
电流为 注意:这里得到的电压、电流波均为复数形式!
由时谐量与复数表示的对应关系,可得到:
注意:Zc, k 均为复数!!
有耗传输线方程的解I
传播常数k为
方程的解:
传输线上衰减波
把复数传播常数代入,得到:
有耗传输线方程的解II
传播常数的虚部ki>0, 称为波的衰减因 子或衰减常数,表示波的衰减。
传播常数的实部kr>0, 称为相位常数, 表示波的传播。
从解V, I 表达式中可知:传输线上电压、 电流波的传播可唯一地由两个特征参数 k, Zc(或Yc)。
电路理论第18章均匀传输线

L0
•
R0 I
•
dI dx
jC0
•
G0 U
令:Z0 R0 jL0
Y0 G0 jC0
注意
1 Z0 Y0
Байду номын сангаас
dU dx
Z0
I
dI dx
Y0U
单位长度复阻抗
单位长度复导纳
返回 上页 下页
dU dx
Z0
I
两边求导
d2U dx2
Z0Y0U
2
U
dI dx
Y0U
传播常数
d 2 I dx2
Z Y0 0I
Z C I2s hx I2chx
例1 已知一均匀传输线 Z0=0.42779/km ,
Y0=2.710-690s/km. U2 220kV , I2 455A
求 f=50Hz,距终端900km处的电压和电流。
返回 上页 下页
解
UI((xx))UZUC22cshhxx
Z C I2s hx I2chx
令x l x,x为传输线上一点到终点的距离。
I(x)
I2
+
+
U(x)
-
U-2
l
x
0
以终端 为零点
返回 上页 下页
U(x)
1 2
(U2
e ZCI2 )
x
1 2
(U2
e ZCI2 )
x
I(x)
1 2
(U2 ZC
I2 )e
x
1 2
(U2 ZC
e I2 )
x
UI((xx))UZUC22cshhxx
(U1
ZC
I1)
第15章 均匀传输线

13
4、 高速集成电路的分析与设计 传输线效应:当波长和电路尺寸处于同一数量级时,
信号的传输具有电磁波的性质,经过传输将会受到一定程 度的退化和变质,如出现延时、畸变、回波、串音、散射 等现象,这些现象称为传输线效应。 传输线效应是制约高速集成电路发展的重要因素。 (集成电路的特征尺寸为0.25~0.01m)
u x
( R0 i
L0
i t
)
沿线电压减少率等于单位长度上 电阻和电感上的电压降。
给定均匀传输线的边界条件和初始条件,求解该方程式,
就可得沿线各处的电流和电压。
例1: 已知:
传输线单位长度的参数分别为:
US
200km
I2
R0 1 /k m , G0 5 105 S /k m
直流电源:
Us 200V
2
1
•
c 1) x
•
•
U U • I I e I e Z Z
1( 2
1
•
1)
x 1 ( 2
c
•
1 1) x
c
(15 12) (15 13)
e e 双曲函数代如上式:
chx
1 2
(
x
x)
2021/8/10
e e
shx
1 2
(
x
x)
19
•
U
•
U1
chx
ZC
•
I1
shx
•
i
(G0 d x)u
(C0 d x)
u t
(i
i x
d x)
i
i
u
u (R0dx)(i x dx) (L0dx) t (i x dx) (u x dx)
1.4 均匀无耗传输线的工作状态解析

U (z) U (z) U (0)(e jz e jz )
| U (0) | e ju0 (e jz e jz )
(1-73)
j2 | U (0) | e ju0 sin z
正弦或余弦分布;
最大值和最小值的特点
I (z) Il (e j z e j z ) I (z) I (z) 2
2 I (0) Zc cosz cos(t 0 )
i(z,t) i (z,t) i(z,t)
Ul 2Zc
cos(t
0
z)
Ul 2Zc
cos(t
0
z)
2
U
(0) Zc
sin
z
cos(t
0
2
)
2. 终端开路
§1.4 均匀无耗传输线的工作状态
1. 终端短路
结论
• 短路状态下,均匀无耗传输线上各点电压和电流的复振幅的值是不 相同的,它们是距离z的函数。——与行波不同
• 当 z=(2n+1)λ/4 (n=0,1,2,3,……)时,电压幅值最大(腹点), 而电流幅值为零(节点);
• 当 z=nλ/2 (n=0,1,2,3,……)时,电流幅值最大(腹点),而电 压幅值为零(节点)。
• 电压腹点与电压节点之间,以及电流腹点与电流节点之间,空间距 离上相差λ/4,空间相位差是π/2。
• 在传输线某一固定位置观察电压和电流随时间变化时,二者相位差 是π/2;
• 在某一固定时刻沿整个传输线观察电压和电流随时间变化时,二者
相位差也是π/2; 公式(1-77/78)
1. 终端短路
传输线方程及其解

对于均匀无耗传输线 Z 0 L / C
当损耗很小时,即当 R L G C 时,特性阻抗为
Z 0 ( R jL) /(G jC ) L C (1 R / jL)1/ 2 (1 G / jC ) 1/ 2 L C (1 R / 2 jL)(1 G / 2 jC ) L C
第一章 均匀传输线理论之•均匀传输线方程及其解
第一章 均匀传输线理论
1.1节 1.2节 1.3节 1.4节 1.5节 1.6节 1.7节
微波工程基础
均匀传输线方程及其解 传输线的阻抗与状态参量 无耗传输线的状态分析 传输线的传输功率、效率与损耗 阻抗匹配 史密斯圆图及其应用 同轴线的特性阻抗
1
第一章 均匀传输线理论之•均匀传输线方程及其解
c d
微波工程基础
LC
16
第一章 均匀传输线理论之•均匀传输线方程及其解
(3) 相速与传输线波长(相波长) 相速(phase velocity) —传输线上行波等相位面沿传输 方向的传播速度。 其表达式为
vp
dz dt L C
不管是入射波还是反射波,它们都是行波。
z
行波在传播过程中其幅度按e 衰减,称 为衰减常数。而相位随z 连续滞后 z ,故称 为相位常数。
微波工程基础
14
第一章 均匀传输线理论之•均匀传输线方程及其解
6. 传输线的工作特性参数
(1)特性阻抗——传输线上行波的电压与电流的比值
R jL Z0 G jC
(优选)第二讲传输线方程及解

传输线方程推出I
V (z,t) V (z z,t) V (z,t)
z
z
这就是传输线上电压、电流要满足的方程-传输线方程
方程的复数形式
时谐量与其复数形式的关系是: 把它们代入方程中,即
得到方程的复数形式:无耗传来自线方程的解如果传输线无损耗
R’=0,G’=0
传输线方程简化为:
将传输线分成N段后,只要每一段长度l << ,基尔
霍夫定理仍适用。
传输线方程及其解:传输线的特征参数为传播常数k与 特征阻抗Zc(或特征导纳Yc = 1/Zc)。k的实部kr表示 波的传播,虚部ki表示波的衰减,传输线上电压、电 流与位置z有关,可分解为入射波与反射波之和。电压 入射波与电流入射波之比为特征阻抗Zc,电压反射波 与电流反射波相位相差180°。
传输线上衰减波
把复数传播常数代入,得到:
有耗传输线方程的解II
传播常数的虚部ki>0, 称为波的衰减因 子或衰减常数,表示波的衰减。
传播常数的实部kr>0, 称为相位常数, 表示波的传播。
从解V, I 表达式中可知:传输线上电压、 电流波的传播可唯一地由两个特征参数 k, Zc(或Yc)。
复习要点
入射波
反射波
入射波的相速:vi = dz/dt = /k (+z方向) 反射波的相速:vr = dz/dt = -/k (-z方向)
无损耗传传输播线速上度波就的是传填播充速介度质为中:的光速
v p1/ L'C' 1/
无耗解的初步解释I
波长: 2
k 特征阻抗为入射电压波与入射电流波之比:
Zc V i I i 1/ Yc
均匀传输线方程及其解

均匀传输线方程及其解
哎哟,说到这个均匀传输线方程嘛,可是咱们工程界里头的一个大头哦。
先给大家说说这方程是个啥玩意儿,然后再慢慢儿地给大家展开讲讲咋解。
咱们先从陕西话儿说起,这均匀传输线方程啊,就像是咱老陕地里的那条直溜溜儿的渠,水流稳稳当当地过去,不歪不斜。
这方程嘛,就是描述那条“水流”——也就是信号——在传输线上是怎么跑的。
再换到咱们四川话儿,这方程就像咱们四川的麻辣烫,各种调料都得恰到好处,多了少了都不行。
信号在传输线上跑,也得有个“度”,快了慢了都会影响效果。
那咋解这方程呢?这可得好好儿说说。
解这方程啊,就像咱们做川菜一样,得一步一步来,不能急。
首先得把方程里的各个量都弄清楚,哪些是已知的,哪些是未知的,这就好比咱们做菜前要准备好的各种食材。
然后就开始动手解啦。
这解的过程啊,有时候得用点儿小技巧,就像咱们川菜厨师炒菜时用的那些独门绝技。
有时候得加点儿这个,减点儿那个,才能让味道刚刚好。
解完之后呢,还得检查一下解得对不对。
这就像咱们做完菜后要尝尝味道一样,看看符不符合要求。
所以说啊,这均匀传输线方程及其解,虽然听起来挺复杂的,但只要咱们用心去做,就一定能把它搞明白。
就像咱们做菜一样,只要用心去做,就一定能做出美味佳肴来。
无损耗传输线

§14.5 无损耗传输线14.5.1 无损耗传输线的特点如果传输线的电阻0R 和导线间的漏电导0G 等于零,这时信号在传输线上传播时,其能量不会消耗在传输线上,这种传输线就称为无损耗传输线,简称无损耗线。
当传输线中的信号的ω很高时,由于00R L >>ω、00G C >>ω,所以略去0R 和0G 后不会引起较大的误差,此时传输线也可以被看成是无损耗线。
因为00=R ,00=G ,所以无损耗传输线的传播常数γ000000))((C L j C j L j Y Z ωωωγ===即0=α,00C L ωβ=,可见无损耗线也是无畸变线。
无损耗传输线的特性阻抗c Z 为00C L Y Z Z c ==为纯电阻性质的。
因为0=α,所以依式(14-8)可知无损耗线上的电压和电流相量为)sin()cos()sin()cos(2222x Z U j x I I x I jZ x U U cc '+'='+'=ββββ (14-10) 其中x '为传输线上一点到终端的距离。
从距终端x '处向终端看进去的输入阻抗为c c cin Z x jZ x Z x jZ x Z I U Z )sin()cos()sin()cos(22'+''+'==ββββ (14-11)其中,222I UZ =为终端负载的阻抗。
14.5.2 终端接特性阻抗的无损耗线当传输线的终端阻抗与传输线相匹配,即c Z Z =2时,由式(14-10)可求得无损耗线上的电压和电流相量为x I x j x I x Z U j x I I x U x j x U U x I jZ x U U cc '∠='+'='+'='∠='+'='+'=ββββββββββ22222222)]sin()[cos()sin()cos()]sin()[cos()sin()cos(其电压、电流的时域表达式为)sin(2)sin(22222i u x t I i x t U u ϕβωϕβω+'+=+'+=其中,2u ϕ和2i ϕ分别为终端电压和电流的初相。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
x vw t ) vw
u(x, t) f (t x ) vw
表示一个沿x增加方向移动的行波,行波行进的速度称 为波速,其值为
dx 1 vw dt L0C0
无损耗线上暂态行波的 传播速度vw是一个正实 常数,其值与无损耗线 上正弦稳态行波的相移 速度相等。
u(x, t) f (t x ) vw
则
L 1[F (s)e sx / vw ]
f (t
x )
vw
L 1[F (s)esx / vw ] f (t x )
vw
u( x, t)
f (t
x ) f (t
x )
vw
vw
u(x, t) u(x, t)
i(x, t) 1 f (t x ) 1 f (t x )
L0 / C0
vw
L0 / C0
vw
i(x, t) i(x, t)
电压的第一个分量u+(x, t), 令t = t0
u (x, t0)
f
(t0
x )
vw
经过 t瞬间后电压u+的沿线分布为
u ( x, t0 t)
f
[(
t0
t
)
x vw
]
f (t0
返回
(s)def
波速
Z0 (s)Y0 (s) sL0 sC0 s
v w de f
1 L0C0
L0C0
s vw
复频域特性阻抗
Zc (s)def
Z0(s) Y0 ( s)
sL0 sC0
L0 C0
Zc
设
L 1[F (s)] f (t )
L 1[F (s)] f (t )
i(x, t) 1 f (t x )
L0 / C0
vw
分别为沿x减小的方向以 速度vw传播的反向电压 行波和反向电流行波 。
u (x, t) i(x, t)
u(x, t) i(x, t)
L0 C0
Zc
与无损耗线在正弦稳态下的特性阻抗完全相同, 是 一个正实常数 ,称为无损耗线的暂态波阻抗。
§6-1 无损耗均匀传输线方程的通解
u x
L0
i t
i u x C0 t
¥
ò L [u( x, t)] = u( x, t)e- stdt = U( x, s) 0¥
ò L [i( x, t)] = i( x, t)e- stdt = I( x, s) 0-
假定传输线处于零状态,即
u( x, 0 ) 0 i( x, 0 ) 0
dU( x, dx
s)
sL0I( x,
s)
Z0 (s)I ( x,
s)
dI( x, s) dx sC0U( x, s) Y0 (s)U ( x, s)
U ( x, s) F (s)e (s) x F (s)e (s) x
F (s)e sx /w F (s)esx / vw
I( x, s) F (s) e (s)x F (s) e (s)x
ห้องสมุดไป่ตู้
Zc (s)
Zc(s)
F (s) esx / w F (s) esx / vw
L0 / C0
L0 / C0
复频域传播常数