函数性态的研究(凹凸性和渐近线)
合集下载
23-曲线的凹凸性、描绘函数图形

趋于零 , 则称此直线 L 为曲线 y = f ( x ) 的一条 渐近线 .
曲 线 的 渐 近 线
水平渐近线
垂直渐近线
斜渐近线
水平渐近线
若 lim f ( x) b , 则曲线 f ( x) 有一条水平渐近线 y b .
x
这里的极限可以是
x
lim f ( x) b 或 lim f ( x) b .
x
垂直渐近线
若 lim f ( x) , 则曲线 y f ( x) 有一条垂直渐近线 x a .
x a
这里的极限可以是 xlim f ( x) , a lim lim f ( x) ; f ( x) ,
x a
x a
x a
lim f ( x) ; lim f ( x) .
f ( x) ( x 1) lim lim 1 2 x x x ( x 1) x
b k
现在给定一个函数 , 我们可以讨论它的:
定义域、 值 域、 奇偶性、 有界性、 周期性、 连续性、 间断点、 可微性、 单调性、 极 值、 最 值、 凹凸性、 拐 点、 渐近线、 零点位置 . 用极限讨论函数的变化趋势 . 用泰勒公式将函数离散化 .
三、函数图形的描绘
作函数图形的一般步骤如下: (1) 确定函数的定义域 , 观察奇偶性、周期性 . (2) 求函数的一、二阶导数 , 确定极值可疑点和拐点可疑点 .
若 f ( x) 在点 x0 两侧符号相反, 则
点 ( x0 , f ( x0 )) 为曲线 y f ( x) 的拐点 .
定理
( 判别拐点的充分条件 )
设 f ( x) C ( I ) , f ( x) 在 U( x0 ) ( x0 I ) 内三阶可导 .
经济数学课件 4.3函数的凹凸性

x
《经济数学基础》配套课件
定义4.3.3、4.3.4
若 lim f ( x) b,lim f ( x) b 或 lim f (x) b,
x
x
x
则称直线 y = b 为曲线 y = f (x) 的水平渐近线.
若 lim f (x) , lim f ( x) 或 lim f ( x) ,
0
0
f (x)
凹的∪
拐点 (0,1)
凸的∩
拐点 (2 3 ,1127)
凹的∪
凹区间为(,0《],经[2济3数,学基), 础凸》区配套间课为件[0, 2 3]
凹凸区间为(,0], [0, 2 3], [2 3 ,). 《经济数学基础》配套课件
例 求曲线
的拐点.
2
5
解:
y
1 3
x
3
,
y
2 9
x
3
x ( ,0) 0
2. 求
并求出 及
为 0 和不存在
的点 ;
3. 列表判别增减及凹凸区间 , 求出极值和拐点 ;
4. 求渐近线 ;
5. 确定某些特殊点 , 描绘函数图形 .
《经济数学基础》配套课件
例5. 描绘函数
的图形.
解: 1) 定义域为
图形对称于 y 轴.
2)
求关键点 y 1
2
x
e
x2 2
,
y
1
e
x2
2 (1
(0, )
y
不存在
y凹
0
凸
因此点 ( 0 , 0 ) 为曲线
的拐点 .
《经济数学基础》配套课件
练习. 求曲线
的凹凸区间及拐点.
第8节 曲线的凹凸性及渐近线

2
2
那么称在Ⅰ上的图形是(向上)凹的(或凹弧);
如果恒有
f ( x1 x2 ) f (x1) f (x2)
2
2
那么称在Ⅰ上的图形是(向上)凸的(或凸弧)。
定义:设函数 y f x在a,b内可导,则
1.如果曲线y f x在a,b内任意点的切线总位于 曲线的下方,则称曲线y f x在a,b上是凹的.
1.确定函数的定义域并求f x; 2.求出f x 0和f x不存在的点x0; 3.对于2中的每一个x0,检查f x在x0左、右两侧
邻近的符号.
例3.求曲线y 2x3 3x2 12 x 14的凹凸区间和拐点 .
解 函数的定义域为 (, ).
y y
6x2 0
6x 12, ,得x1
y 1 2
第八节 曲线的凹凸性及渐近线
一、曲线的凹凸性及拐点的判定定理 二、曲线的渐近线
一、曲线的凹凸性及其判别法
y y f (x)
y y f (x)
o
x x x1 x2 12
x
2
o x1 x1 x2 x2 x
2
定义 设在区间Ⅰ上连续,如果对Ⅰ上任意两点 x1, x2,
恒有 f ( x1 x2 ) f (x1) f (x2)
拐点是曲线凹与凸的分界点.由定理知,在拐点左右两侧
f x的符号必然异号,因而在拐点处有f x 0或者f x 不存在;反过来,f x 0的点和f x不存在的点可能是 曲线的拐点,究竟是否拐点,还要看该点处f x的符号是
否异号.
例1.判定曲线 y x3的凹凸性.
解 函数的定义域为 (, ).
y' 3x2 , y'' 6x. x 0 y'' 0.
函数性态的研究(最值、凹凸性和渐近线).ppt

若 f ( x) C[a , b] ,且在 (a , b) 内有唯一极值点 x0 , 则 f ( x0 ) 为极大值时,即为 f ( x ) 在 [a, b] 的最大值;
f ( x0 ) 为极小值时,即为 f ( x ) 在 [a, b] 的最小值.
例 7 建造一个具有已知容积 V 的无底有盖的圆柱形煤气柜.
EXE. 求函数 y sinx cosx 在 [0, 2 ] 上的极值.
三、最值
(1) 最值存在: 若 f C[a , b] ,则在 [a, b] 上 f 取得最大值和最小值.
(充分非必要)
(2) 何处取得最值:
极值点处 可能最值 端点处
(3)
驻点 f 不存在的点 (应是f 的连续点)
补充作业 (1)
ae 2 x cos x, x 0, 可导,求 a, b . f ( x ) sin(bx ) x, x 0 x
x 3e tx x (2) 求 f ( x ) tlim 的间断点,并指出类型. tx e sin x
(3)
x 1 , L( x ) ln x 1,
如何判定:
驻点 极值点处 f 不存在的点 (应是f 的连续点) 可能最值 端点处
(3) 如何判定: 若 f ( x) C ,则
只要比较 f 在驻点、 f 不存在的点、端点处的值,
最大者为最大值,最小者为最小值.
两个结论:
两个结论:
(1) 若 f ( x) C[a , b] ,且在 (a, b) 内有唯一极值点 x0 ,
p p x (1 x ) 1 , 0 x 1. p 1
例 9 讨论方程 x ke x (k 为正常数)有几个根.
教学目的凹凸性判定和函数作图教学重点凹凸性拐点渐近线教解读

(,0)
0 0 有拐点
(0,1)
凹
_
凸
1 0 有拐点
(1,)
凹
可见曲线在 ( ,0) 与 (1,) 是凹的,在区间 (0,1) 是凸 的.拐点有两个: (0,1) 与 (1,0)
例题
例2
解
求曲线 y 3 x 的拐点.
此函数在 (,) 上连续,当 x 0 时, 5 2 2 3 1 3 f ( x) x f ( x) x 9 3
x
y
(1) f (x)的定义域 D = (∞,0)∪(0,+∞);
(-∞,-3) — — 减、凸
-3 — 0 拐点
(-3,-2) — + 减、凹
-2 0 + 极小值
(-2,0) + + 增、凹
(0,+∞) — + 减、凹
y
y y ( x)
拐点为
(3,
f ( x) , x=0 为无穷间断点, 故有铅直渐近线 (3) 因为 lim x 0
若当 x (有时仅当 x 或 x )时,
f ( x) b ,则称直线 y b 为曲线 y f ( x) 的水平渐近线. 2x 1 2x 1 lim 2 y 例如,由于 x x ,故直线 y 2 是曲线 x
的水平渐近线.
x c 或 x c x c 若当 (有时仅当 )时, f ( x) , 则称直线 x c 为曲线 y f ( x) 的垂直渐近线
上方,则称此曲线弧在这个区间上是凹的;如果在该区间上,曲线 弧位于其上任一点的切线下方,则称此曲线弧在这个区间上是凸 的;曲线弧凹凸的交界点称为这条曲线的拐点.
函数的凹凸与曲线的凸向、拐点和渐近线、函数作图

x y x ln x y ln y 。 从而 ( x y )ln 2
10
2.8.3-5 函数的凹凸与曲线的凸向、拐点和渐近线及函数作图
二、曲线的拐点
1. 定义:连续曲线上曲线向上凸与向下凸的分界点 称为曲线的拐点。
2£ Õ ã Ä Ð ¨· ® ¹ µ µ Ŷ¨
与极值点判断类似 , f ( x ) 0 的点和 f ( x ) 不存在 的点,是拐点横坐标 的可疑点。
2(1 x 2 ) 2x (2) y 2 , y 2 , 2 ( x 1) x 1
(3)令 y 0 ,得 x 1 , x 1 。
x y
曲线 y
Hale Waihona Puke (, 1)-1 0拐点 (-1,ln2)
(-1, 1) +
1 0
拐点 (1,ln2)
(1, )
例如: f ( x ) x 4 , f ( x ) 12 x 2 ,有 f (0) 0 ,但 (0,0)不是拐点。
12
2.8.3-5 函数的凹凸与曲线的凸向、拐点和渐近线及函数作图
例 2.求曲线 y ln( x 1) 的凸向和拐点。
2
解: (1)函数的定义域为 (,) ;
则称函数 f 为区间 I 上的凸函数; 若总有 f ( p1 x1 p2 x2 ) p1 f ( x1 ) p1 f ( x2 ) ,则称函数 f 为区间 I 上的凹函数。
3
2.8.3-5 函数的凹凸与曲线的凸向、拐点和渐近线及函数作图
y
y f ( x)
y
A
o a x1
D B
C
x
x2 b x
2
x2 x x x1 令 p1 , p2 , 则 p1 0 , p2 0 且 p1 p2 1 , x2 x1 x2 x1
10
2.8.3-5 函数的凹凸与曲线的凸向、拐点和渐近线及函数作图
二、曲线的拐点
1. 定义:连续曲线上曲线向上凸与向下凸的分界点 称为曲线的拐点。
2£ Õ ã Ä Ð ¨· ® ¹ µ µ Ŷ¨
与极值点判断类似 , f ( x ) 0 的点和 f ( x ) 不存在 的点,是拐点横坐标 的可疑点。
2(1 x 2 ) 2x (2) y 2 , y 2 , 2 ( x 1) x 1
(3)令 y 0 ,得 x 1 , x 1 。
x y
曲线 y
Hale Waihona Puke (, 1)-1 0拐点 (-1,ln2)
(-1, 1) +
1 0
拐点 (1,ln2)
(1, )
例如: f ( x ) x 4 , f ( x ) 12 x 2 ,有 f (0) 0 ,但 (0,0)不是拐点。
12
2.8.3-5 函数的凹凸与曲线的凸向、拐点和渐近线及函数作图
例 2.求曲线 y ln( x 1) 的凸向和拐点。
2
解: (1)函数的定义域为 (,) ;
则称函数 f 为区间 I 上的凸函数; 若总有 f ( p1 x1 p2 x2 ) p1 f ( x1 ) p1 f ( x2 ) ,则称函数 f 为区间 I 上的凹函数。
3
2.8.3-5 函数的凹凸与曲线的凸向、拐点和渐近线及函数作图
y
y f ( x)
y
A
o a x1
D B
C
x
x2 b x
2
x2 x x x1 令 p1 , p2 , 则 p1 0 , p2 0 且 p1 p2 1 , x2 x1 x2 x1
4.4函数的单调性、凹凸性与曲线的渐近线

确定函数单调区间的一 般步骤:
(1) 确定函数 f ( x ) 的定义域;
(2) 求 f ( x ), 并求出使得 f ( x ) 0 的点以及 f ( x ) 不存在的点;
(3) 用上述点将 f ( x ) 的定义域分成若干小区间, 并判定每个子区 间内 f ( x ) 的符号,从而得到 f ( x ) 的单调区间.
例6. 判断曲线 y x 的凹凸性.
3
定义 连续曲线上凸弧与凹弧 的分界点称为拐点 .
注1. 设 ( x 0 , f ( x 0 )) 为 曲线 y f ( x ) 的拐点, 若 f ( x 0 ) 存在,
则 f ( x 0 ) 0. 反之未必, 如
(0, 0) 并非 y x 的拐点.
4
注2. 若 ( x0 , f ( x0 )) 为 y f ( x) 的拐点, 则 f ( x0 ) 未必存在.
例7. 求曲线 y 3 x 的拐点.
3 5 3 2 例 8. 求曲线 y x 3 x 3 1 的凹凸区间及拐点 . 5 2
确定函数凹凸区间及曲 线的拐点的一般步骤:
三. 曲线的渐近线 1.定义
定义 如果动点 M 沿曲线 C 趋于无穷远时, M 与某
直线 L 的距离趋于零, 则称 L 为曲线 C 的一条渐近线 .
2.渐近线的确定
(1) 垂直渐近线(垂直于 x 轴的渐近线)
命题 1
设函数 f ( x) 在 x c 间断, 若
x c x c
lim f ( x ) 或 lim f ( x ) ,
则称 f ( x ) 在 (a, b) 内是下凸 (上凹) 的, 也称 f ( x ) 是 (a, b) 内的下凸函数, 称区间 (a, b) 为该函数的下凸
凹凸性、渐近线、作图资料

[解] 定义域:(,), 是偶函数.
因 为 lim e x2 0, 所 以 直 线y 0 x
是 水 平 渐 近 线.
y 2xex2
y 2ex2 (2x2 1)
令 y 0 驻点:x 0
令 y 0 x 1
10/15/2019
令 y '' 0, 得 x 1 , 没有二阶导数不存在的点 列表如下:5
x
(,
1 )
5
y '' -
y凸
1
5
0
8 25
拐点
(1 , ) 5
+
凹
在 x 1 两侧 y ''符号发生改变,则(1 , 8 )是拐点.
5
5 25
1
例3.求曲线 y x3 的拐点.
1
解:函数 y x3 的定义域为 (, )
函数的凹凸性、渐近线 与作图
一、函数的凹凸性 二、曲线的渐近线 三、函数作图
10/15/2019
1
一、函数的凹凸性
若在某区间内,曲线上每一点的切线都位 于该曲线的下方,则称曲线在该区间内是凹的; 若曲线上每一点的切线都位于该曲线的上方,
则称曲线在该区间内是凸的.
(a)中曲线上任意两点的割线在曲线的上方
f (x2 )
则称f (x)在该区间上的图形是凸的.
10/15/2019
4
凹曲线的一阶导数变化规律:
若 f (x)是凹函数,则 f (x)单调增加;
10/15/2019
5
凸曲线的一阶导数变化规律:
若 f (x)是凸函数,则 f (x)单调减少.
10/15/2019
6
因 为 lim e x2 0, 所 以 直 线y 0 x
是 水 平 渐 近 线.
y 2xex2
y 2ex2 (2x2 1)
令 y 0 驻点:x 0
令 y 0 x 1
10/15/2019
令 y '' 0, 得 x 1 , 没有二阶导数不存在的点 列表如下:5
x
(,
1 )
5
y '' -
y凸
1
5
0
8 25
拐点
(1 , ) 5
+
凹
在 x 1 两侧 y ''符号发生改变,则(1 , 8 )是拐点.
5
5 25
1
例3.求曲线 y x3 的拐点.
1
解:函数 y x3 的定义域为 (, )
函数的凹凸性、渐近线 与作图
一、函数的凹凸性 二、曲线的渐近线 三、函数作图
10/15/2019
1
一、函数的凹凸性
若在某区间内,曲线上每一点的切线都位 于该曲线的下方,则称曲线在该区间内是凹的; 若曲线上每一点的切线都位于该曲线的上方,
则称曲线在该区间内是凸的.
(a)中曲线上任意两点的割线在曲线的上方
f (x2 )
则称f (x)在该区间上的图形是凸的.
10/15/2019
4
凹曲线的一阶导数变化规律:
若 f (x)是凹函数,则 f (x)单调增加;
10/15/2019
5
凸曲线的一阶导数变化规律:
若 f (x)是凸函数,则 f (x)单调减少.
10/15/2019
6
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
Proof. 设 f ( x) xlnx , x0 ,(Step1 找准函数, )
f
( x)lnx1,
f
( x)
1 x
0
,(Step2
判断函数凹凸性)
∴故Ef (fXx(E)x在 y(0)12, (1x[nf)(内xy)为n )f严(格y)x]凸,2函y数n,,
22
即
x
y
ln
x
y
1x [
0, y xlnx
0, x yln y] ,
y,
n1.
2 22
(Step3 利用凹凸性导结论)
从而 ( x y)ln x y xlnx yln y . 2
(二)曲线的拐点
连续曲线上曲线向上凸与向下凸的分界点
f ( x) 0的 po int s f ( x)不存在的po int s 是拐点横坐标的可疑点.
o
Note:改“ f ( x) 0 ”为 f ( x) 0 ”,则为严格凸函数;
“ f ( x) 0 ”为 f ( x) 0 ”,则为严格凹函数. 反之未必成立,即 Thm 7 及注仅是充分条件,非必要.
例 9 证: ( x y)ln x y xlnx yln y , x, y0 且 x y ; 2
Note: (2) 定义中的不等式 对 x [x1, x2] (a, b) ,都有
f (x)
x2 x x2 x1
f ( x1 )
x x1 x2 x1
f ( x2 )
凸函数
f (x)
x2 x x2 x1
f ( x1 )
x x1 x2 x1
f ( x2 )
凹函数
y y f (x)
A DB C
f ( x) 在 (a, b) 内可导, 则 f ( x) 在 (a, b) 内凸
f ( x) 在 (a, b) 内单增 ?
o a x1 x x2 b x
?
凸函数:对 x [ x1, x2 ] (a, b),总有
f (x)
x2 x x2 x1
f ( x1 )
x x1 x2 x1
f( x1
x1
)(
x
x1
)
,即
f (x)
x2 x x2 x1
f ( x1 )
x x1 x2 x1
f ( x2 )
凸函数
Def. 2 设 f ( x) C[a, b] .对 x 1 , x2 (a, b) f (x1) (1 ) f (x2) (a, b) 内的凸函数; f ( x1 (1 )x2) f (x1) (1 ) f (x2) (a, b) 内的凹函数.
反之未必.如
f (x) x4 , f (x)12x2 ,有 f (0)0 ,
但 (0, 0) 不是拐点.
f ( x) 在 x0 左右两侧变号, 是; 不变号, 不是.
例 10 求曲线 y x 3 x 1 的凸向和拐点.
解:(1) 定义域为 (, ) ;
(2) y 4 x 3 , y 2(2 x 3) ,
Note: (1) 改“ ”为“ ”,即为严格凸函数; 改“ ”为“ ”,即为严格凹函数.
y
y f (x)
A DB
C
图形向下凸 “弦在曲线的上方”
o a x1 x x2 b x
∵弦 AB
的方程为
y
f
( x1)
f
(
x2 ) x2
f( x1
x1
) (
x
x1
),
∴
f
( x)
f
( x1)
f
(
x2 ) x2
C
若总有
(图形向下凸);
o a x1 x x2 b x
f ( x1 (1 )x2 ) f ( x1) (1 ) f ( x2 )
称函数 f ( x) 在 (a, b) 内是凹函数(图形向上凸).
Def. 2 设 f ( x) C[a, b] .对 x 1 , x2 (a, b) , 及 0 1,若总有 f ( x1 (1 )x2) f (x1) (1 ) f (x2) (a, b) 内的凸函数; f ( x1 (1 )x2 ) f ( x1) (1 ) f ( x2) (a, b) 内的凹函数.
o
TThhmm7设设f (fx()x在) 在N ((xa0,,b))内内有二二阶阶可导导数,,且若在f N( x( x) 0,0)(内或
(1)
f ( x
)f则(0x())x,在0 ,则xf0(f左x(0右x)))是两在侧曲(a变线, 号by),内f (是x)凸的(拐或点凹;或 由)由函数.,
(2) f (x) 在 x0 左右两侧不变号, 则 ( x0 , f ( x0 )) 不是曲线 y f ( x) 的拐点.
Note:(1) 拐点是曲线上的点,必须用 ( x0 , y0 )表示;
(2) 若 ( x0 , f ( x0 )) 是曲线 y f ( x) 的拐点,则 x0
可能是 f ( x) 的零点或 f ( x) 不存在的点;
(3) 若 ( x0 , f ( x0 )) 是曲线 y f ( x) 的拐点, 且 f ( x) 在 x0 连续,则 f ( x0 ) 0 ,
f ( x2 ),
即
f ( x) f ( x1 ) f ( x) f ( x2 ) .
x x1
x x2
Thm 6 设 f ( x) 在 (a, b) 内可导,则 f ( x) 是 (a, b)
内的凸(或凹)函数 f ( x) 在 (a, b) 内单增 (或单减).
Thm 7 设函数 f ( x) 在 (a, b) 内二阶可导,且 f ( x) 0 (或 f ( x) 0 ),则 f ( x) 在 (a, b) 内是凸(或凹)函数.
三、凹凸函数、曲线的凸向及拐点
Def. 2 设 f ( x) C[a, b] .对 x 1 , x2 (a, b) ,
及 0 1,若总有
f ( x1 (1 )x2 ) f ( x1) (1 ) f ( x2 )
y y f (x)
A DB
称函数 f ( x) 在 (a, b) 内是凸函数
33 x 1
93 x 1
(3) 令 y0 ,得 x 3/ 2 .当 x1 时, y 不存在.
f f
( (
x) 0的 po int s x)不存在的po int
s
是拐点横坐标的可疑点
(4) 列表
x (, 1)
1
3 (1, )
3
( 3, )
2
2
2
y
+
不存在 -
0
+
拐点