挠度计算

合集下载

挠度计算公式

挠度计算公式

挠度计算公式挠度计划公式简支梁在百般荷载作用下跨中最大挠度计划公式:均布荷载下的最大挠度在梁的跨中,其计划公式:Ymax = 5ql^4/(384EI).式中: Ymax 为梁跨中的最大挠度(mm).q 为均布线荷载准绳值(kn/m).E 为钢的弹性模量,对付工程用机关钢,E = 2100000 N/mm^2.I 为钢的截面惯矩,可在型钢表中查得(mm^4).跨中一个齐集荷载下的最大挠度在梁的跨中,其计划公式:Ymax = 8pl^3/(384EI)=1pl^3/(48EI).式中: Ymax 为梁跨中的最大挠度(mm).p 为各个齐集荷载准绳值之和(kn).E 为钢的弹性模量,对付工程用机关钢,E = 2100000 N/mm^2.I 为钢的截面惯矩,可在型钢表中查得(mm^4).跨间等间距安排两个十分的齐集荷载下的最大挠度在梁的跨中,其计划公式: Ymax = 6.81pl^3/(384EI).式中: Ymax 为梁跨中的最大挠度(mm).p 为各个齐集荷载准绳值之和(kn).E 为钢的弹性模量,对付工程用机关钢,E = 2100000 N/mm^2.I 为钢的截面惯矩,可在型钢表中查得(mm^4).跨间等间距安排三个十分的齐集荷载下的最大挠度,其计划公式:Ymax = 6.33pl^3/(384EI).式中: Ymax 为梁跨中的最大挠度(mm).p 为各个齐集荷载准绳值之和(kn).E 为钢的弹性模量,对付工程用机关钢,E = 2100000 N/mm^2.I 为钢的截面惯矩,可在型钢表中查得(mm^4).悬臂梁受均布荷载或自由端受齐集荷载作用时,自由端最大挠度分别为的,其计划公式:Ymax =1ql^4/(8EI). ;Ymax =1pl^3/(3EI).q 为均布线荷载准绳值(kn/m). ;p 为各个齐集荷载准绳值之和(kn).你可以凭据最大挠度控制1/400,荷载条件25kn/m以及一些其他荷载条件实行反算,看能餍足的上部荷载要求!。

挠度计算

挠度计算
M s C hh0 sc h0 b hh0 M s T hh0 s s As hh0
h0
ss
sc sc
3、平衡关系:根据裂缝截面的应力分布
C
Ms sc hbh02
Ms ss As hh0
ssAs
10.3 受弯构件的挠度验算
hh0
第十章 变形和裂缝宽度的计算
q 2.0 0.4
Ml 2 (M s M l ) 2 f q S l S l Bs Bs
长期抗弯刚度
Ms 2 f S l Bl
Ms Bl Bs M s (q 1) M l
10.3 受弯构件的挠度验算
第十章 变形和裂缝宽度的计算
六、受弯构件的挠度变形验算 ◆ 由于弯矩沿梁长的变化的,抗弯 刚度沿梁长也是变化的。但按变刚 度梁来计算挠度变形很麻烦。 ◆ 《规范》为简化起见,取同号弯 矩区段的最大弯矩截面处的最小刚 度Bmin,按等刚度梁来计算 ◆ 这样挠度的简化计算结果比按 变刚度梁的理论值略偏大。 ◆ 但靠近支座处的曲率误差对梁 的最大挠度影响很小,且挠度计算 仅考虑弯曲变形的影响,实际上还 存在一些剪切变形,因此按最小刚 度Bmin计算的结果与实测结果的误 差很小。
刚度是反映力与变形之间的关系:
s Ee 应力-应变:
M EI ×f 弯矩-曲率:
EI P 48 × 3 × f 荷载-挠度: (集中荷载) l0 EI V 12 3 d(两端刚接) 水平力-侧移: h
10.3 受弯构件的挠度验算
第十章 变形和裂缝宽度的计算
对钢筋混凝土梁
由于混凝土开裂、弹塑性应力-应变关系和钢筋屈服等影响, 钢筋混凝土适筋梁的M-f 关系不再是直线,而是随弯矩增大, 截面曲率呈曲线变化。

扰度计算公式(全)

扰度计算公式(全)

简支梁在各种荷载作用下跨中最大挠度计算公式:均布荷载下的最大挠度在梁的跨中,其计算公式:Ymax = 5ql八4/(384EI).式中: Ymax 为梁跨中的最大挠度(mm).q 为均布线荷载标准值(kn/m).E为钢的弹性模量,对于工程用结构钢,E = 2100000 N/mm八2. I为钢的截面惯矩,可在型钢表中查得(mm A4).跨中一个集中荷载下的最大挠度在梁的跨中,其计算公式:Ymax = 8pl A3/(384EI)=1pl A3/(48EI).式中: Ymax 为梁跨中的最大挠度(mm).p 为各个集中荷载标准值之和(kn).E 为钢的弹性模量,对于工程用结构钢,E = 2100000 N/mmA2.I 为钢的截面惯矩,可在型钢表中查得(mmA4).跨间等间距布置两个相等的集中荷载下的最大挠度在梁的跨中其计算公式:Ymax = 6.81plA3/(384EI).式中: Ymax 为梁跨中的最大挠度(mm).p 为各个集中荷载标准值之和(kn).E 为钢的弹性模量,对于工程用结构钢,E = 2100000 N/mmA2.I 为钢的截面惯矩,可在型钢表中查得(mmA4).跨间等间距布置三个相等的集中荷载下的最大挠度,其计算公式:Y max = 6.33pl八3/(384EI).式中: Ymax 为梁跨中的最大挠度(mm).p 为各个集中荷载标准值之和(kn).E为钢的弹性模量,对于工程用结构钢,E = 2100000 N/mm八2. I为钢的截面惯矩,可在型钢表中查得(mm A4).悬臂梁受均布荷载或自由端受集中荷载作用时,自由端最大挠度分别为的,其计算公式:Ymax =1ql A4/(8EI). ;Ymax =1pl A3/(3EI).q 为均布线荷载标准值(kn/m). ;p 为各个集中荷载标准值之和(kn).你可以根据最大挠度控制1/400,荷载条件25kn/m 以及一些其他荷载条件进行反算,看能满足的上部荷载要求!机械零件和构件的一种截面几何参量,旧称截面模量。

工程力学挠度计算公式

工程力学挠度计算公式

工程力学挠度计算公式
一、工程力学挠度计算公式
1、简单结构挠度计算公式
(1)悬臂梁挠度公式:
挠度D=4FL/3π^2EI
其中:F——悬臂梁上作用的竖向力;L——悬臂梁的长度;E——材料的本构模量;I——悬臂梁截面惯性矩
(2)桁架挠度公式:
挠度D=4FL^3/3π^2EI
其中:F——桁架上拉桥上端受力;L——桁架支撑长度;E——材料的本构模量;I——桁架截面惯性矩
2、复杂结构挠度计算公式
(1)连接桁架和悬臂梁的挠度公式:
挠度D=4F(L_1^3+L_2^3)/3π^2EI
其中:F——桁架和悬臂梁上拉桥上端受力;L_1,L_2——桁架和悬臂梁支撑长度;E——材料的本构模量;I——桁架和悬臂梁截面惯性矩
(2)弯矩桁架的挠度公式:
挠度D=4M(L_1^2+L_2^2)/3π^2EI
其中:M——弯矩桁架上拉桥上端受力;L_1,L_2——弯矩桁架支撑长度;E——材料的本构模量;I——弯矩桁架截面惯性矩。

- 1 -。

挠度计算公式

挠度计算公式

挠度计算公式默认分类 2009-08-20 12:46 阅读2447 评论1字号:大中小简支梁在各种荷载作用下跨中最大挠度计算公式:均布荷载下的最大挠度在梁的跨中,其计算公式:Ymax = 5ql^4/(384EI).式中: Ymax 为梁跨中的最大挠度(mm).q 为均布线荷载标准值(kn/m).E 为钢的弹性模量,对于工程用结构钢,E = 2100000 N/mm^2.I 为钢的截面惯矩,可在型钢表中查得(mm^4).跨中一个集中荷载下的最大挠度在梁的跨中,其计算公式:Ymax = 8pl^3/(384EI)=1pl^3/(48EI).式中: Ymax 为梁跨中的最大挠度(mm).p 为各个集中荷载标准值之和(kn).E 为钢的弹性模量,对于工程用结构钢,E = 2100000 N/mm^2.I 为钢的截面惯矩,可在型钢表中查得(mm^4).跨间等间距布置两个相等的集中荷载下的最大挠度在梁的跨中,其计算公式:Ymax = 6.81pl^3/(384EI).式中: Ymax 为梁跨中的最大挠度(mm).p 为各个集中荷载标准值之和(kn).E 为钢的弹性模量,对于工程用结构钢,E = 2100000 N/mm^2.I 为钢的截面惯矩,可在型钢表中查得(mm^4).跨间等间距布置三个相等的集中荷载下的最大挠度,其计算公式:Ymax = 6.33pl^3/(384EI).式中: Ymax 为梁跨中的最大挠度(mm).p 为各个集中荷载标准值之和(kn).E 为钢的弹性模量,对于工程用结构钢,E = 2100000 N/mm^2.I 为钢的截面惯矩,可在型钢表中查得(mm^4).悬臂梁受均布荷载或自由端受集中荷载作用时,自由端最大挠度分别为的,其计算公式:Ymax =1ql^4/(8EI). ;Ymax =1pl^3/(3EI).q 为均布线荷载标准值(kn/m). ;p 为各个集中荷载标准值之和(kn).你可以根据最大挠度控制1/400,荷载条件25kn/m以及一些其他荷载条件进行反算,看能满足的上部荷载要求!。

弯曲挠度公式

弯曲挠度公式

挠度计算公式
挠度计算公式一览表
梁挠度的计算公式是什么?1、在跨中单个荷载F作用下的挠度是:F*L^3/(48 EI)
2、在均不荷载q作用下的挠度是:5*q*L^4/(384EI)
3、在各种荷载作用下,利用跨中弯矩M可以近似得到统一的跨中挠度计算公式:0.1*M*L^2/(EI),自己可以去核实下上面的两个公式
简支梁在各种荷载作用下跨中最大挠度计算公式:
均布荷载下的最大挠度在梁的跨中,其计算公式:
Ymax=5ql^4/(384EI).
式中:Ymax为梁跨中的最大挠度(mm).
q为均布线荷载标准值(kn/m).
E为钢的弹性模量,对于工程用结构钢,E=2100000N/mm^2.
I为钢的截面惯矩,可在型钢表中查得(mm^4).
跨中一个集中荷载下的最大挠度在梁的跨中,其计算公式:
Ymax=8pl^3/(384EI)=1pl^3/(48EI).
式中:Ymax为梁跨中的最大挠度(mm).
p为各个集中荷载标准值之和(kn).。

挠度计算公式推导

挠度计算公式推导

挠度计算公式推导
挠度是一种量度材料弹性变形的单位,是指材料在受到外力时所产生的弹性变形量。

它可以用来衡量材料的弹性性能,也可以用来检查材料结构的稳定性。

挠度计算公式是计算材料挠度的基础,它能够更好地衡量材料的弹性变形量。

挠度计算公式是以下形式:挠度(δ)=载荷(F)/材料断
面积(A)/材料模量(E)其中,载荷(F)表示外力,材料
断面积(A)表示材料断面积,材料模量(E)表示材料模量。

可以看出,挠度计算公式需要三个参数:载荷(F)、材
料断面积(A)和材料模量(E)。

载荷(F)表示外力,也就是说,当材料受到外力作用时,载荷(F)就会变化,也就是
材料的弹性变形量会变化,从而改变挠度。

材料断面积(A)
是材料断面积,即要测量挠度所使用的材料的断面积,不同材料的断面积不同,也就意味着挠度也会有所不同。

最后,材料模量(E)是材料模量,也就是说,材料的弹性变形受到材料
模量的影响。

该参数受材料的性质而定,不同的材料会有不同的模量,从而影响挠度。

从上面可以看出,挠度计算公式是一个简单而又重要的公式,它将外力、材料断面积和材料模量这三个参数综合起来,可以更好地衡量材料的弹性变形量。

此外,挠度计算公式还可以用来检查材料结构的稳定性,从而保证材料的质量和使用寿命。

总而言之,挠度计算公式是一个非常重要的公式,它能够有效地衡量材料的弹性变形量,从而检查材料结构的稳定性,保证材料的质量和使用寿命。

建筑结构构件挠度计算公式

建筑结构构件挠度计算公式

建筑结构构件挠度计算公式引言。

建筑结构工程是一门综合性较强的学科,它主要研究建筑物的结构设计、施工和维护等方面的技术。

在建筑结构工程中,挠度是一个非常重要的参数,它直接关系到建筑物的安全性和稳定性。

因此,准确计算建筑结构构件的挠度是非常重要的。

本文将介绍建筑结构构件挠度的计算公式及相关内容。

一、挠度的定义。

挠度是指在外力作用下,构件在跨度方向上产生的变形。

在建筑结构工程中,挠度通常用来描述构件的柔度和变形程度,它是一个重要的性能指标。

挠度的大小直接影响到建筑物的使用性能和安全性能。

二、挠度计算公式。

在建筑结构工程中,常用的挠度计算公式有很多种,其中比较常见的是梁的挠度计算公式和板的挠度计算公式。

下面将分别介绍这两种挠度计算公式。

1. 梁的挠度计算公式。

对于梁的挠度计算,常用的挠度计算公式为:δ = (5wL^4)/(384EI)。

其中,δ为梁的挠度,w为梁的荷载,L为梁的跨度,E为梁的弹性模量,I为梁的惯性矩。

2. 板的挠度计算公式。

对于板的挠度计算,常用的挠度计算公式为:δ = (qL^4)/(8D)。

其中,δ为板的挠度,q为板的荷载,L为板的跨度,D为板的弹性模量。

以上是常用的梁和板的挠度计算公式,它们都是基于梁和板的理论模型进行推导得出的。

在实际工程中,可以根据具体情况选择合适的挠度计算公式进行计算。

三、挠度的影响因素。

在建筑结构工程中,挠度的大小受到多种因素的影响,主要包括以下几个方面:1. 荷载。

荷载是影响建筑结构挠度的重要因素,不同的荷载会导致构件的不同变形情况。

在计算挠度时,需要考虑到各种荷载的作用。

2. 材料性能。

建筑结构所使用的材料的性能也会直接影响挠度的大小。

不同的材料具有不同的弹性模量和惯性矩,这些参数会直接影响到挠度的计算结果。

3. 结构形式。

建筑结构的形式也会对挠度产生影响,不同的结构形式会导致不同的挠度变形情况。

4. 施工质量。

施工质量是影响挠度的重要因素之一,如果施工质量不好,可能会导致构件的变形情况不符合设计要求。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

ss
Es

ec
sc Ec
3、平衡关系:根据裂缝截面的应力分布
Ms Ch0csh0bh0
Ms Th0ssAsh0
sc
Ms
bh02
ss
Ms
As h0
A
h0
h0
sc sc
C
ssAs
9 10.3 受弯构件的挠度验算
第十章 变形和裂缝宽度的计算
h0
h 0
ec
cec
c
sc Ec
c
Ms
Ecbh02
Ms Ecbh02
当 l0≤7m 时
l0/200(l0/250)
当 7m≤l0≤9m 时
l0/250(l0/300)
当 l0> 9m 时
l0/300(l0/400)
注:1、表中括号内数值适用于使用上对挠度有较高要求的构件;
2、悬臂构件的挠度限值按表中相应数值乘以系数 2.0 取用。
A
2
10.3 受弯构件的挠度验算
第十章 变形和裂缝宽度的计算
s sk
Msk
As h0
当 <0.2时,取 =0.2;
当 >1.0时,取 =1.0;
对直接承受重复荷载作
用的构件,取 =1.0。
te
As Ate
te为以有效受拉混凝土截面面积
计算的受拉钢筋配筋率。
Ate为有效受拉混凝土截面面积,对
受弯构件取
A te0.5b h(bf b)hf
A
14
10.3 受弯构件的挠度验算
对钢筋混凝土梁
f
SMk B
l02
短期弯矩Mk一般处于第Ⅱ阶段,刚度计算需要研究构件带裂缝 时的工作情况。该阶段裂缝基本等间距分布,钢筋和混凝土的
应变分布具有以下特征:
A
6 10.3 受弯构件的挠度验算
第十章 变形和裂缝宽度的计算
c
ec ec
f es ec
h0
es 10.3 受弯构件的挠度验算
仅与配筋率有关。《规范》根据试验结果分析给出,
E0.2 6E
13.5f
f
(bf b)hf bh0
受压翼缘加强系数
A
12
10.3 受弯构件的挠度验算
第十章 变形和裂缝宽度的计算
A
13
10.3 受弯构件的挠度验算
第十章 变形和裂缝宽度的计算
3、钢筋应变不均匀系数
1.10.65 ftk sskte
es es
ss Es
Ms Es As h0
sc sc
3、平衡关系:根据裂缝截面的应力分布
C
MsCh0csh0bh0 MsTh0ssAsh0
sc
Ms
bh02
ss
Ms
As h0
A
ssAs
10 10.3 受弯构件的挠度验算
第十章 变形和裂缝宽度的计算
ec
cec
c
sc Ec
c
Ms
Ecbh02
Ms Ecbh02
10.3 受弯构件的挠度验算
第十章 变形和裂缝宽度的计算
对钢筋混凝土梁
由于混凝土开裂、弹塑性应力-应变关系和钢筋屈服等影响,
钢筋混凝土适筋梁的M-f 关系不再是直线,而是随弯矩增大,
截面曲率呈曲线变化。
M 0.85EcI0
My
Mk
Mcr
Bs
f
A
5
10.3 受弯构件的挠度验算
第十章 变形和裂缝宽度的计算
es es
ss Es
Ms Es As h0
f Ms
es ec
Ms Ecb h02
Ms Es Ash0
Bs
h0
h0
Bs
E
s
As
h
2 0
E
A
11 10.3 受弯构件的挠度验算
第十章 变形和裂缝宽度的计算
四、参数、 和
1、开裂截面的内力臂系数
试验和理论分析表明,在短期弯矩Msk=(0.5~0.7)Mu范围,
第十章 变形和裂缝宽度的计算
三、刚度公式的建立 材料力学中曲率与弯矩关系的推导
fM EI
fe y
sEee s
E
sM y
I
几何关系 物理关系 平衡关系
fe s M
y Ey EI
A
8
10.3 受弯构件的挠度验算
第十章 变形和裂缝宽度的计算
1、几何关系: f e s e c
h0
2、物理关系:
es
10.3.2 截面抗弯刚度的概念 钢筋混凝土梁的抗弯刚度B
对匀质弹性材料梁
均 集布中 :ff: 3415884P E qE0l304lII114528M M E E02I0l2Il
f
f SEMIl02 Sf l02
fM
EI
EI
M
f
MEIf
截面抗弯刚度EI 体现了截面抵抗弯曲变形的能力,同时也反映 了截面弯矩与曲率之间的物理关系。
第十章 变形和裂缝宽度的计算
§ 10.3 钢筋混凝土受弯构件的挠度验算
10.3.1 挠度控制的目的和要求
目的 1、保证结构的使用功能要求。结构构件产生过大的变形将影响
甚至丧失其使用功能,如支承精密仪器设备的梁板结构挠度 过大,将难以使仪器保持水平;屋面结构挠度过大会造成积 水而产生渗漏;吊车梁和桥梁的过大变形会妨碍吊车和车辆 的正常运行等。 2、防止对结构构件产生不良影响。如支承在砖墙上的梁端产生 过大转角,将使支承面积减小、支承反力偏心增大,并会引 起墙体开裂。 3、防止对非结构构件产生不良影响。结构变形过大会使门窗等 不能正常开关,也会导致隔墙、天花板的开裂或损坏。
A
1
10.3 受弯构件的挠度验算
第十章 变形和裂缝宽度的计算
4、保证使用者的感觉在可接受的程度之内。过大振动、变形 会引起使用者的不适或不安全感。
要求
f ≤[f]
表 11.1 受弯构件的挠度限值[ f ]
构件类型 吊车梁:手动吊车
电动吊车
挠度限值(以计算跨度 l0计算)
l0/500 l0/600
屋盖、楼盖及楼梯构件:
第十章 变形和裂缝宽度的计算
Bs
E s As h02
E
Bs
Es Ash02
1.15 6E
13.5 f
1.10.65 ftk sskte
在短期弯矩Msk=(0.5~0.7)Mu范围,三个参数、 和 中, 和 为常数,而 随弯矩增长而增大。
该参数反映了裂缝间混凝土参与受拉工作的情况,随着弯矩增 加,由于裂缝间粘结力的逐渐破坏,混凝土参与受拉的程度减
裂缝截面的相对受压区高度 变化很小,内力臂的变化也不大。 对常用的混凝土强度和配筋情况, 值在0.83~0.93之间波动。 《规范》为简化计算,取=0.87。 2、受压区边缘混凝土平均应变综合系数
根据试验实测受压边缘混凝土的压应变,可以得到系数 的试 验值。在短期弯矩Msk=(0.5~0.7)Mu范围,系数 的变化很小,
对于弹性均质材料截面,EI为常数,M-f 关系为直线。
A
3
10.3 受弯构件的挠度验算
第十章 变形和裂缝宽度的计算
刚度是反映力与变形之间的关系:
应力-应变:s E e
弯矩-曲率:M EI ×f
荷载-挠度:P
48 ×
EI l03
×
(f 集中荷载)
水平力-侧移:V
12
EI h3
d(两端刚接)
A
4
相关文档
最新文档