乳糖操纵子与色氨酸操纵子的区别

合集下载

操纵子相关知识,分子生物学必考内容

操纵子相关知识,分子生物学必考内容

1.操纵子理论:操纵子是原核生物细胞DNA 上的一段区域,由若干功能相关的结构基因和控制这些基因表达的元件组成的一个完整的连续的功能单元。

包含:(1) 结构基因群 (2) 启动子 (3) 操纵基因 (4) 调控基因 (5) 终止子<I>乳糖操纵子:z 基因:β-半乳糖苷酶 y 基因:半乳糖透过酶 a 基因长:转乙酰基酶要点:1):调节基因位于操纵子外面,lac 操纵子外的调节基因lacI 能产生一种阻遏物。

这种阻物是一种由360个氨基酸组成的蛋白质,有活性的阻遏蛋白是四聚体。

当培养基中没有乳糖时,阻遏蛋白便与结构基因紧密连接的操纵子相结合,阻断了RNA 聚合酶与操纵基因的结合,结构基因形成mRNA 的转录过程不能开始,从而乳糖代谢所必需的3种酶不能合成(操纵基因的位置在-5—+21bp 之间,而RNA 聚合酶保护区域是-48—+5bp 之间,也就是说,RNA 聚合酶和阻遏蛋白的结合位点是重叠的。

这两种蛋白质中的任何一种与DNA 结合后,就会阻止另一种蛋白质的结合)注:异丙基硫代半乳糖苷(isopropylthiogalactoside, IPTG) 为化学合成的乳糖类似物2):细胞内cAMP 的浓度与其所处的培养基中的葡萄糖水平有关,葡萄糖浓度越高,细胞内cAMP 越少,反之亦然P lac 是一个弱启动子,启动需要有CAP (一种转录辅助因子)的参与,CAP 结合到启动子上就可以增加RNA 聚合酶与启动组序列的亲和力。

但是CAP 蛋白这种激活作用只有和cAMP 形成复合物,使CAP 构象发生改变后才能发生。

原因可能是cAMP-CAP 复合物与DNA 结合改变了这一区段DNA 次级结构,促进了RNA 聚合酶结合区的解链。

也可能是cAMP-cAP 先通过与RNA 聚合酶结合,再与DNA 结合,因而促进了RNA 聚合酶与启动子的结合,从而增强了转录。

无葡萄糖时,cAMP 含量增加,可同CAP 结合形成具有活性的CAP- cAMP 复合体,与启动子区域的CAP 位点结合,激活转录起始。

乳糖操纵子与色氨酸操纵子的区别

乳糖操纵子与色氨酸操纵子的区别

乳糖操纵子色氨酸操纵子1、色氨酸操纵子结构:色氨酸操纵子包含操纵基因O,启动子P,及5个结构基因A、B、C、D、E。

E与O之间有一段前导序列L。

色氨酸操纵子上游存在调节基因R,编码阻遏蛋白。

1、乳糖操纵子的组成:大肠杆菌乳糖操纵子含Z、Y、A三个结构基因,分别编码半乳糖苷酶、透酶和半乳糖苷乙酰转移酶,此外还有一个操纵序列O,一个启动子P和一个调节基因I。

2、阻遏蛋白的负性调节:没有乳糖存在时,I基因编码的阻遏蛋白结合于操纵序列O处,乳糖操纵子处于阻遏状态,不能合成分解乳糖的三种酶;有乳糖存在时,乳糖作为诱导物诱导阻遏蛋白变构,不能结合于操纵序列,乳糖操纵子被诱导开放合成分解乳糖的三种酶。

所以,乳糖操纵子的这种调控机制为可诱导的负调控。

3、CAP的正性调节:在启动子上游有CAP结合位点,当大肠杆菌从以葡萄糖为碳源的环境转变为以乳糖为碳源的环境时,cAMP浓度升高,与CAP结合,使CAP发生变构,CAP结合于乳糖操纵子启动序列附近的CAP结合位点,激活RNA聚合酶活性,促进结构基因转录,调节蛋白结合于操纵子后促进结构基因的转录,对乳糖操纵子实行正调控,加速合成分解乳糖的三种酶。

2、阻遏调控:当培养基中无色氨酸时,R编码的阻遏蛋白不与O结合,结构基因表达催化合成色氨酸的酶。

当培养基中有大量色氨酸时,阻遏蛋白与色氨酸结合而改变构象,形成活性阻遏物,与O结合,阻遏结构基因转录。

3、衰减调控:L中含有4段特殊序列:序列1编码一个前导肽,前导肽的第10、11位是色氨酸;序列2-3或序列3-4可形成茎环结构。

3-4茎环结构是一个转录终止子结构,称为衰减子。

当色氨酸缺乏时,前导肽的翻译停滞于色氨酸密码处,序列2-3形成茎环结构,使序列3、4不能形成衰减子结构,结构基因得以完全转录;当色氨酸充足时,核糖体快速翻译前导肽,并对序列2形成约束,使序列3-4形成衰减子结构,下游的结构基因不被转录。

4、协调调节:乳糖操纵子中的I基因编码的阻遏蛋白的负调控与CAP的正调控两种机制,互相协调、互相制约。

(整理)分子生物学.

(整理)分子生物学.

分子生物学1、原核基因调控机制的类型与特点1.负转录调控:调节基因的产物是阻遏蛋白,起阻止结构基因转录的作用。

(1)负控诱导:阻遏蛋白不与诱导物结合时,结构基因不转录;(2)负控阻遏:阻遏蛋白与诱导物结合时,结构基因不转录.2.正转录调控:调节基因的产物是激活蛋白.(1)正控诱导系统:诱导物的存在是激活蛋白处于活性状态;(2)正控阻遏系统:诱导物使激活蛋白处于非活性状态.2、乳糖操纵子和色氨酸操纵子大肠杆菌乳糖操纵子:乳糖——开动大肠杆菌乳糖操纵子——表达利用乳糖的三个酶——细菌利用乳糖。

乳糖操纵子的控制模型内容(1)Z、Y、A基因的产物由同一条多顺反子的mRNA分子所编码;(2)该mRNA的启动区(P)位于阻遏基因(I)与操纵区(O)之间,不能单独起始半乳糖苷酶和透过酶基因的高效表达;(3)操纵区是DNA上的一小段序列(26bp),是阻遏物的结合位点;(4)当阻遏物与操纵区结合时,Lac mRNA的转录起始受到抑制;(5)诱导物通过与阻遏物结合,改变它的三维构象,使之不能与操纵区相结合,激发Lac mRNA 的转录。

大肠杆菌色氨酸操纵子:加入色氨酸——阻遏色氨酸操纵子—相关合成酶基因关闭。

色氨酸操纵子与负控阻遏系统Trp体系参与生物合成而不是降解;Trp合成分5步,有7个基因参与.组成包括:阻遏基因(R)、启动区(P)、操纵区(O)、前导区(L)、弱化区(a)和结构基因区;Trp操纵子的转录调控包括阻遏系统和弱化系统.3、原核与真核基因表达调控的异同4、DNA水平的表达调控染色质的丢失:不可逆核的全能性(totipotency):细胞核内保存了个体发育所必需的全部基因基因扩增(gene amplification):增加基因的拷贝数非洲爪蟾卵母细胞rRNA基因卵裂时,扩增2000倍,达1012个核糖体药物:诱导抗药性基因的扩增;肿瘤细胞:原癌基因拷贝数异常增加基因重排(gene rearrangement):将一个基因从远离启动子的地方移到距它很近的位点从而启动转录。

分子生物学简答题

分子生物学简答题
2)原核基因表达调控主要为负调节;真核生物基因表达调控主要为正调节。
3)原核转录起始不需要转录因子,RNA聚合酶直接结合启动子,由σ因子决定基因表达的特异性;真核转录起始需要基础、特异两类转录因子,依赖DNA-蛋白质、蛋白质-蛋白质相互作用,调控转录激活。
4)原核基因表达调控主要采用操纵子模型,转录出多顺反子RNA,实现协调调节;真核基因转录产物为单顺反子RNA,功能相关蛋白质的协调表达机制更为复杂。
(6)转录后调控包括对mRNA的加工修饰、转运、细胞质定位以及稳定性等多方面的调控。翻译调控点主要在起始阶段和延长阶段,翻译起始因子的磷酸化可调节蛋白质翻译。另外,小分子RNA通过干扰翻译过程抑制基因表达。
真核基因表达调控特点:1)既有瞬时调控,又有发育调控2)调控环节更多3)染色质结构变化影响转录效率4)转录调控以正调控为主5)调控元件复杂并且可以远离转录区6)转录因子种类多,调控机制更复杂
(1)具有自主复制起点,使载体在宿主细胞中进行自主复制,并能使克隆的外源DNA得到同步扩增;(2)至少有一个筛选标志;(3)有适宜的限制性核酸内切酶单一酶切位点,可供外源基因插入时选择。
11.简述分子生物学实验中的α互补和蓝白斑筛选的原理。
β-半乳糖苷酶(β-gal)的α片段与受体菌编码的ω片段(lacZ-ω)可以互补结合发挥β-gal的活性,称作α互补。一些质粒上带有β-半乳糖苷酶α片段的编码序列LacZ’,转化进入受体菌,可形成α互补,即可催化底物X-gal产生蓝色产物,使菌落变蓝。由于这些质粒的多克隆位点位于LacZ’内部,插入外源DNA片段后,使LacZ’不能编码产生有功能的β-gal的α片段,不能发生α互补,在X-gal存在下受体菌落呈白色。因此,蓝色菌落代表载体中LacZ’基因活性完好无损,没有插入外源DNA片段,白色菌落则表明着所含质粒带有外源DNA片段,为重组质粒。用蓝白斑筛选可以来区分转化进入受体菌的是空载体还是重组质粒。

基础生物化学—赵武玲

基础生物化学—赵武玲

第三节原核转录调控P371页细胞的基因表达是指由DNA转录成RNA再翻译成蛋白质的过程,是受到严格的调控的。

细胞响应调节信号,使基因表达产物的水平升高或降低的过程,就称之为基因表达调控(regulated gene expression)。

基因的表达调控可以在多种水平上进行,如DNA结构的调控、转录水平的调控及翻译水平的调控。

原核生物基因表达调控以转录起始水平的调控为主。

下面以乳糖操纵子和色氨酸操纵子为例介绍原核生物转录起始阶段的调控。

一、乳糖操纵子操纵子(operon)模型很好地说明了原核生物基因表达的调节机制,在原核生物基因调控中具有普遍性。

操纵子是原核生物染色体上控制蛋白质合成的功能单位,包括结构基因区(structural gene region)和调控区。

有些操纵子中还具有其他的位点。

结构基因由功能上彼此相关的几个基因组成,编码具有酶功能或结构功能的蛋白质。

一个操纵子中若干个结构基因排列在一起,它们的表达作为一个整体受到调控区的调节,通过转录形成的是一条多顺反子mRNA。

调控区由启动子(promoter,P)、操纵序列(operator,O)所组成。

调控区可接受调节基因(regulatory gene)产物的调节。

调节基因不在操纵子内,它编码调节蛋白,结合在DNA的特殊位点上调节基因表达。

如果调节基因编码的蛋白质与操纵序列结合后激活了基因的表达,这样的调控被称为正调控(positive control),相应的调节蛋白就称为激活蛋白(activator)。

如果调节基因编码的蛋白质与操纵序列结合后阻遏了基因的表达,这样的调控就称为负调控(negative control),相应的调节蛋白就称为阻遏蛋白(repressor)。

大肠杆菌的乳糖操纵子模型(ιac operon )是第1个被阐明的基因表达系统,由Francois Jacob和Jacques Monod于1962年提出的。

大肠杆菌乳糖操纵子有3个结构基因Z,Y,A,分别编码3种参与乳糖分解代谢的酶,即β-半乳糖昔酶(β—galactosidase)、β-半乳糖昔透过酶(permease)和硫代半乳糖昔转乙酞基酶(thiogalactoside transacetylase)。

常用化学诱变剂的种类及作用机制

常用化学诱变剂的种类及作用机制

常用化学诱变剂的种类及作用机制(1)碱基类似物原理:通过异构体互变代替碱基进行复制,造成复制的错误。

(2)烷化剂原理:主要通过烷化基团使DNA分子上的碱基或磷酸部分被烷化,引起碱基结构的改变,导致碱基配对错误而引起突变。

(3)脱氨剂原理:亚硝酸的诱变机制主要是使碱基氧化脱去氨基。

(4)移码诱变剂原理:叩嚏类化合物是一种平面型的三环分子,与喋吟』密嚏碱基对的结构十分相似,因而能够插入DNA双链上两个相邻的碱基对之间,使DNA链拉长,两碱基间距离拉宽,使碱基插入或缺失,在DNA复制时造成点突变,以后的所有碱基都往后或往前移动,导致全体三联体密码转录、翻译错误而引起突变。

(5)羟化剂原理:羟胺只与C发生反应,可将C的氨基变为羟基,并与A 配对,能专一地诱发G:C碱基对到A:T碱基的转换第五章工业微生物代谢调控育种。

1.什么是代谢调控育种?它建立在什么基础上?答:微生物代谢控制育种是指以生物化学和遗传学为基础,研究代谢产物的生物合成途径和代谢调节的机制,选择巧妙的技术路线,通过遗传育种技术获得解除或绕过了微生物正常代谢途径的突变株,从而人为地使用有用产物选择性地大量合成积累。

建立在诱变育种的基础之上。

2.次级代谢受哪些遗传物质的控制?次级代谢产物有哪些?答:次级代谢除受核内DNA控制,还受核外DNA(质粒)的控制。

产物有抗生素、毒素、激素、色素、生物碱等。

3.反馈阻遏与反馈抑制的含义。

答:反馈抑制:是指最终产物抑制作用,即在合成过程中有生物合成途径的终点产物对该途径的酶的活性调节,所引起的抑制作用。

是一种负反馈机制,其中酶促反应的末端产物可抑制在此产物合成过程中起作用的酶。

这种抑制具有协同性、积累性和序贯性。

反馈阻遏:即在合成过程中有生物合成途径的终点产物对该途径的一系列酶的量调节,所引起的阻遏作用。

反馈阻遏是转录水平的调节,产生效应慢。

4.乳糖操纵子的组成成分有哪些?答:组成成分:启动基因、操纵基因、结构基因5.乳糖操纵子与色氨酸操纵子的区别?(有乳糖时,乳糖操纵子如何?有色氨酸时,色氨酸操纵子如何?)答:没有乳糖存在时,I基因编码的阻遏蛋白结合于操纵序列o 处,______处于阻遏状态,不能合成分解乳糖的三种酶;有乳糖存在时,乳糖作为诱导物诱导阻遏蛋白变构,不能结合于操纵序列,______被诱导开放合成分解乳糖的三种酶。

原核生物的基因表达调控调控

原核生物的基因表达调控调控

第九章原核生物的基因表达调控调控第一节转录起始调控一、乳糖操纵子1961年Jacob和Monod,提出了操纵子模型。

操纵子是原核生物基因表达和调控的单元。

典型的操纵子包括一组结构基因和调节结构基因转录所需的顺式作用序列,这些序列包括启动子(promoter)、操纵基因(operator)以及其他与转录调控有关的序列。

一个操纵子的所有结构基因均由同一启动子起始转录并受到相同调控元件的调节,所以从结构上可以把它们看作一个整体。

操纵子的结构基因编码在某一特定代谢途径中起作用的酶,它们被转录成一条多顺反子mRNA,这是原核生物的典型特征。

1、乳糖操纵子的结构乳糖操纵子具有三个结构基因:lacZ编码β-半乳糖苷酶,它可将乳糖水解为半乳糖和葡萄糖;lacY编码乳糖转移酶,该蛋白插入细胞膜中,将乳糖转运到细胞内;lacA编码硫代半乳糖苷乙酰转移酶,该酶的作用是消除同时被乳糖转移酶转运到细胞内的硫代半乳糖苷对细胞造成的毒性。

2、乳糖操纵子的阻遏与诱导lacI编码的阻遏蛋白以四聚体的形式与操纵基因结合,关闭三个结构基因的表达。

由于阻遏蛋白偶尔会脱离操纵子基因,所以操纵子的转录并非完全关闭,仍会有本底水平的表达,细胞内会有几个分子的β-半乳糖苷酶和透性酶。

当培养基中加入乳糖后,细胞中所含的少量的透性酶,使细胞能够吸收乳糖,β-半乳糖苷酶则催化一些乳糖转化为异乳糖。

异乳糖可作为诱导物结合到阻遏蛋白上,从而引起阻遏物四聚体构象的变化,降低了阻遏蛋白与操纵基因的亲和力,导致阻遏蛋白从操纵序列上脱离下来。

RNA聚合酶迅速开始lacZYA基因的转录。

3、葡萄糖对lac操纵子表达的影响葡萄糖是细菌优先利用的糖类。

当葡萄糖和其他糖类(比如乳糖)同时存在时,细菌只利用葡萄糖而不代谢别的糖类。

因此,乳糖操纵子只有在乳糖存在,同时葡萄糖缺乏时才会高水平表达。

原因是乳糖操纵子除了受阻遏蛋白的调节,还要受到分解代谢活化子蛋白(catabolic activator protein,CAP)的调节。

第7章原核生物基因表达的调控

第7章原核生物基因表达的调控
④ 当阻遏物与操纵基因结合时,lac mRNA转录起始受到抑制。
Z编码β-半乳糖苷酶:将乳糖水解成葡萄糖和半乳糖。
Y编码β-半乳糖苷透过酶:使外界的β-半乳糖苷(如乳糖)能透过大肠杆
菌细胞壁和原生质膜进入细胞内。
A编码β-半乳糖苷乙酰基转移酶:乙酰辅酶A上的乙酰基转到β-半乳糖苷
上,形成乙酰半乳糖。
gene
正调控
调控蛋白
负调控
结构基因表达
▪ 负调控:抑制基因表达的调控方式 ▪ 正调控:促进基因表达的调控方式
B、特殊代谢物的调控
诱导(induction)
阻遏(repression)
inducer
gene
repressor
gene
特殊代谢物
诱导 阻遏
结构基因表达
诱导物、可诱导基因 阻遏物、可阻遏基因
无葡萄糖、 有乳糖-----cAMP水平高 (2)cAMP与CRP结合形成有活性的
CRP- cAMP 复合物 (3)CRP-cAMP 与Plac结合 (4)增强了RNA聚合酶与启动子的结合
(5)lacZ, lacY 、 lacA高表达
105
40
105
41
乳糖、G存在与否及与操纵子正、负控因素、 基因开放与关闭情况如下:
CRP
Binding
RNA
Promoter
Operator
CRP
Pol. Repressor
cAMP
LacZ
LacY
LacA
Repressor mRNA
STOP
Right there
CRP
Polymerase
cAMP
Repressor
cAMP
CRP
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
乳糖操纵子
色氨酸操纵子
1、乳糖操纵子的组成:大肠杆菌乳糖操纵子含Z、Y、A三个结构基因,分别编码半乳糖苷酶、透酶和半乳糖苷乙酰转移酶,此外还有一个操纵序列O,一个启动子P和一个调节基因I。
1、色氨酸操纵子结构:色氨酸操纵子包含操BP,及5个结构基因A、、O纵基因,启动子。色与O之间有一段前导序列LEC、D、E。,编码阻遏蛋氨酸操纵子上游存在调节基因R白。
3是色氨酸;序列2-3或序列3-4可形成茎环结构。3-4茎环结构是一个转录终止子结构,称为衰减子。当色氨酸缺乏时,前导肽的翻译停滞于色氨酸密码处,序列2-3形成茎环结构,使序列3、4不能形成衰减子结构,结构基因得以完全转录;当色氨酸充足时,核糖体快速翻译前导肽,并对序列2形成约束,使序列3-4形成衰减子结构,下游的结构基因不被转录。
没有乳糖存在时,阻遏蛋白的负性调节:2、OI基因编码的阻遏蛋白结合于操纵序列处,乳糖操纵子处于阻遏状态,不能合成分解乳糖的三种酶;有乳糖存在时,乳糖作为诱导物诱导阻遏蛋白变构,不能结合于操纵序列,乳糖操纵子被诱导开放合成分解乳糖的三种酶。所以,乳糖操纵子的这种调控机制为可诱导的负调控。
2、阻遏调控:当培养基中无色氨酸时,R编码的阻遏蛋白不与O结合,结构基因表达催化合成色氨酸的酶。当培养基中有大量色氨酸时,阻遏蛋白与色氨酸结合而改变构象,形成活性阻遏物,与O结合,阻遏结构基因转录。
基因编码、协调调节:乳糖操纵子中的4I的阻遏蛋白的负调控与CAP的正调控两种机制,互相协调、互相制约。.
CAP的正性调节:在启动子上游有CAP3、结合位点,当大肠杆菌从以葡萄糖为碳源的环境转变为以乳糖为碳源的环境时,发CAPcAMP浓度升高,与CAP结合,使结合于乳糖操纵子启动序列CAP生变构,附近的聚合酶活激活CAP结合位点,RNA性,促进结构基因转录,调节蛋白结合于操纵子后促进结构基因的转录,对乳糖操纵子实行正调控,加速合成分解乳糖的三种酶。
相关文档
最新文档