九年级数学第二十九章投影与视图综合测试名校习题(含答案) (192)

合集下载

北京大学(分数线,专业设置)附属中学九年级数学下册第二十九章《投影与视图》综合测试题(含答案)

北京大学(分数线,专业设置)附属中学九年级数学下册第二十九章《投影与视图》综合测试题(含答案)

学校:__________ 姓名:__________ 班级:__________ 考号:__________一、选择题1.用大小和形状完全相同的小正方体木块搭成一-个几何体,使得它的正视图和俯视图如图所示,则搭成这样的一个几何体至少需要小正方体木块的个数为( )A.22个B.19个C.16个D.13个2.如图,是一个由多个相同小正方体堆积而成的几何体的俯视图,图中所示数字为该位置小正方体的个数,则这个几何体的主视图(从正面看)是()A.B.C.D.3.下列四个几何体中,主视图是三角形的是()A.B.C.D.4.小阳和小明两人从远处沿直线走到路灯下,他们规定:小阳在前,小明在后,两人之间的距离始终与小阳的影长相等.在这种情况下,他们两人之间的距离()A.始终不变B.越来越远C.时近时远D.越来越近5.下面的三视图对应的物体是()A.B.C .D .6.如图,阳光从教室的窗户射入室内,窗户框AB 在地面上的影子长DE =1.8m ,窗户下沿到地面的距离BC =1m ,EC =1.2m ,那么窗户的高AB 为( )A .1.5mB .1.6mC .1.86mD .2.16m7.如图是一个由若干个相同的小正方体组成的几何体的三种形状图,则组成这个几何体的小正体的个数是( )A .7B .8C .9D .108.图2是图1中长方体的三视图,若用S 表示面积,222S x x S x x ++主左=,=,则S 俯=( )A .232x x ++B .22x +C .221x x ++D .223x x +9.如图是由4个大小相同的立方块搭成的几何体,这个几何体的主视图是( )A .B .C .D .10.如图中的几何体是由一个圆柱和个长方体组成的,该几何体的俯视图是( )A.B.C.D.11.如图是由一些完全相同的小立方块搭成的几何体的三种视图.搭成这个几何体所用的小立方块的个数是()A.5个B.6个C.7个D.8个12.如图是有一些相同的小正方体构成的立体图形的三视图.这些相同的小正方体的个数是()A.4 B.5 C.6 D.713.如图所示的立体图形的主视图是()A.B.C.D.14.如图是由若干个相同的小立方体搭成的几何体的俯视图和左视图,则小立方体的个数不可能是()A.6个B.7个C.8个D.9个第II卷(非选择题)请点击修改第II卷的文字说明参考答案二、填空题15.已知:如图是由若干个大小相同的小正方体所搭成的几何体从正面、左面和上面看到的形状图,则搭成这个几何体的小正方体的个数是_______.16.10个棱长为a cm的正方体摆放成如图的形状,这个图形的表面积是____________.17.如图是由几个小立方块所搭成几何体的从上面、从正面看到的形状图.这样搭建的几何体最多需要__________个小立方块.18.如图是一个圆柱体的三视图,由图中数据计算此圆柱体的侧面积为________.(结果保留π)19.甲同学的身高为1.5m,某一时刻它的影长为1m,此时一塔影长为20m,则该塔高为____________m。

人教版九年级数学下册第29章投影与视图单元综合评价试卷含解析

人教版九年级数学下册第29章投影与视图单元综合评价试卷含解析

人教版九年级数学下册第29章投影与视图单元综合评价试卷含解析姓名座号题号一二三总分得分考后反思(我思我进步):一.选择题(共10小题,30分)1.下列几何体中,从正面看(主视图)是长方形的是()A.B.C.D.2.下列几何体中,主视图和左视图都为矩形的是()A.B.C.D.3.如图所示几何体的左视图正确的是()A.B.C.D.4.下列四个立体图形中,从正面看到的图形与其他三个不同的是()A.B.C.D.5.已知一个几何体从三个不同方向看到的图形如图所示,则这个几何体是()A.圆柱B.圆锥C.球体D.棱锥6.如图,是某个几何体从不同方向看到的形状图(视图)这个几何体的表面能展开成下面的哪个平面图形?()A.B.C.D.7.下面是一天中四个不同时刻两座建筑物的影子,将它们按时间先后顺序正确的是()A.③①④②B.③②①④C.③④①②D.②④①③8.太阳发出的光照在物体上是_____,车灯发出的光照在物体上是_____.()A.中心投影,平行投影C.平行投影,平行投影B.平行投影,中心投影D.中心投影,中心投影9.如图,晚上小亮在路灯下散步,在小亮由A处径直走到B处这一过程中,他在地上的影子()A.逐渐变短C.先变长后变短B.先变短后变长D.逐渐变长10.小强的身高和小明的身高一样,那么在同一路灯下()A.小明的影子比小强的影子长B.小明的影子比小强的影子短C.小明的影子和小强的影子一样长D.无法判断谁的影子长二.填空题(共8小题,24分)11.从三个方向看所得到的图形都相同的几何体是(写出一个即可).12.在如图所示的几何体中,其三视图中有矩形的是.(写出所有正确答案的序号)13.如图是六个棱长为1的立方块组成的一个几何体,其俯视图的面积是.(14.如图是由几个相同的小正方形搭成的几何体,搭成这个几何体需要个小正方体,在保持主视图和左视图不变的情况下,最多可以拿掉个小正方体.15.某个立体图形的三视图的形状都相同,请你写出一种这样的几何体.16.如图是由一些相同的小正方体构成的几何体从不同方向看得到的平面图形,这些相同的小正方体的个数是.17.已知操场上的篮球架上的篮板长1.8米,高1.2米,当太阳光与地面成45°角投射到篮板时,它留在地面上的阴影部分面积为.18.春天来了天气一天比一天暖和,在同一地点某一物体,今天上午11点的影子比昨天上午11点的影子.(长,短)三.解答题(共5小题,46分)19.8分)如图是由两个长方体组合而成的一个立体图形的三视图,根据图中所标尺寸(单位:mm),计算出这个立体图形的体积和表面积.20.(10分)如图所示是一个物体从正面、左面、上面看到的形状图,试回答下列问题:(1)该物体有几层高?(2)该物体最长处为多少?(3)该物体最高部分位于哪里?21.(8分)从正面、左面观察如图所示几何体,分别画出你所看到的几何体的形状图.22.(10分)两棵小树在同一时刻的影子如图所示:(1)试判断哪是小树白天在太阳光下的影子,哪是小树晚上在路灯下的影子?并确定出路灯灯泡的位置(2)根据你的判断,请画出图中另一棵小树的影子(影子用线段表示即可)23.(10分)如图所示:笔直的公路边有甲、乙两栋楼房,高度分别为12m和25m,两楼之间的距离为10m,现有一人沿着公路向这两栋楼房前进,当他走到与甲楼的水平距离为30m且笔直站立时(这种姿势下眼睛到地面的距离为1.6m),他所看到的乙楼上面的部分有多高?参考答案一.选择题(共10小题)1.下列几何体中,从正面看(主视图)是长方形的是()A.B.C.D.【解答】解:圆锥的主视图是等腰三角形,圆柱的主视图是长方形,圆台的主视图是梯形,球的主视图是圆形,故选:B.2.下列几何体中,主视图和左视图都为矩形的是()A.B.C.D.【解答】解:A、主视图和左视图都为矩形的,所以A选项正确;B、主视图和左视图都为等腰三角形,所以B选项错误;C、主视图为矩形,左视图为圆,所以C选项错误;D、主视图是矩形,左视图为三角形,所以D选项错误.故选:A.3.如图所示几何体的左视图正确的是()A.B.C.D.【解答】解:从几何体的左面看所得到的图形是:故选:A.4.下列四个立体图形中,从正面看到的图形与其他三个不同的是()A.B.C.D.【解答】解:A、的主视图是第一层两个小正方形,第二层右边一个小正方形,B、的主视图是第一层两个小正方形,第二层左边一个小正方形,C、的主视图是第一层两个小正方形,第二层左边一个小正方形,D、的主视图是第一层两个小正方形,第二层左一个小正方形,故选:A.5.已知一个几何体从三个不同方向看到的图形如图所示,则这个几何体是()A.圆柱B.圆锥C.球体D.棱锥【解答】解:∵主视图和左视图都是三角形,∴此几何体为椎体,∵俯视图是一个圆,∴此几何体为圆锥.故选:B.6.如图,是某个几何体从不同方向看到的形状图(视图)这个几何体的表面能展开成下面的哪个平面图形?()A.B.C.D.【解答】解:∵主视图和左视图都是长方形,∴此几何体为柱体,∵俯视图是一个圆,∴此几何体为圆柱,因此图A是圆柱的展开图.故选:A.7.下面是一天中四个不同时刻两座建筑物的影子,将它们按时间先后顺序正确的是()A.③①④②B.③②①④C.③④①②D.②④①③【解答】解:太阳从东边升起,西边落下,所以先后顺序为:③④①②故选:C.8.太阳发出的光照在物体上是_____,车灯发出的光照在物体上是_____.()A.中心投影,平行投影B.平行投影,中心投影(C .平行投影,平行投影D .中心投影,中心投影【解答】解:∵太阳发出的光是平行光线,灯发出的光线是不平行的光线,∴太阳发出的光照在物体上是平行投影,车灯发出的光照在物体上是中心投影.故选:B .9.如图,晚上小亮在路灯下散步,在小亮由A 处径直走到 B 处这一过程中,他在地上的影子()A .逐渐变短C .先变长后变短B .先变短后变长D .逐渐变长【解答】解:晚上小亮在路灯下散步,在小亮由 A 处径直走到 B 处这一过程中,他在地上的影子先变短,再变长.故选:B .10.小强的身高和小明的身高一样,那么在同一路灯下()A .小明的影子比小强的影子长B .小明的影子比小强的影子短C .小明的影子和小强的影子一样长D .无法判断谁的影子长【解答】解:小强的身高和小明的身高一样,在同一路灯下他们的影长与他们到路灯的距离有关,所以无法判断谁的影子长.故选:D .二.填空题(共 8 小题)11.从三个方向看所得到的图形都相同的几何体是 球体(正方体)(写出一个即可).【解答】解:正方体,三视图均为正方形;球,三视图均为圆,故答案为:球体(正方体).12.在如图所示的几何体中,其三视图中有矩形的是 ①② . 写出所有正确答案的序号)【解答】解:长方体主视图,左视图,俯视图都是矩形,圆柱体的主视图是矩形,左视图是矩形,俯视图是圆,圆锥的主视图、左视图是等腰三角形,俯视图是带有圆心的圆,故答案为:①②.13.如图是六个棱长为1的立方块组成的一个几何体,其俯视图的面积是5.【解答】解:从上面看易得第一行有3个正方形,第二行有2个正方形,共5个正方形,面积为5.故答案为5.14.如图是由几个相同的小正方形搭成的几何体,搭成这个几何体需要10个小正方体,在保持主视图和左视图不变的情况下,最多可以拿掉1个小正方体.【解答】解:这个几何体由10小正方体组成,最多可以拿掉1个小正方体,故答案为:10,1.15.某个立体图形的三视图的形状都相同,请你写出一种这样的几何体球(答案不唯一)..【解答】解:球的3个视图都为圆;正方体的3个视图都为正方形;所以主视图、左视图和俯视图都一样的几何体为球、正方体等.故答案为:球(答案不唯一).16.如图是由一些相同的小正方体构成的几何体从不同方向看得到的平面图形,这些相同的小正方体的个数是5.【解答】解:根据三视图的知识,几何体的底面有4个小正方体,该几何体有两层,第二层有1个小正方体,共有5个;故答案为5.17.已知操场上的篮球架上的篮板长1.8米,高1.2米,当太阳光与地面成45°角投射到篮板时,它留在地面上的阴影部分面积为 2.16m2.【解答】解:因为太阳光线是平行光线,所以篮板在地面上的阴影部分为矩形,此矩形的长等于篮板长,为1.8m,由于太阳光与地面成45°角,则矩形的宽等于篮板宽,为1.2m,所以篮板长留在地面上的阴影部分面积=1.8×1.2=2.16(m2).故答案为2.16m2.18.春天来了天气一天比一天暖和,在同一地点某一物体,今天上午11点的影子比昨天上午11点的影子短.(长,短)【解答】解:∵春天来了天气一天比一天暖和,∴太阳开始逐渐会接近直射,∴在同一地点某一物体,今天上午11点的影子比昨天上午11点的影子短.故答案为:短.三.解答题(共5小题)19.如图是由两个长方体组合而成的一个立体图形的三视图,根据图中所标尺寸(单位:mm),计算出这个立体图形的体积和表面积.【解答】解:根据三视图可得:上面的长方体长4mm,高4mm,宽2mm,下面的长方体长6mm,宽8mm,高2mm,∴立体图形的体积是:4×4×2+6×8×2=128(mm3),∴立体图形的表面积是:4×4×2+4×2×2+4×2+6×2×2+8×2×2+6×8×2﹣4×2=200(mm2).20.如图所示是一个物体从正面、左面、上面看到的形状图,试回答下列问题:(1)该物体有几层高?(2)该物体最长处为多少?(3)该物体最高部分位于哪里?【解答】解:(1)根据从正面看所得视图可得该物体有2层高;(2)根据从左边看的视图可得该物体最长处为3个长方体;(3)如图所示:该物体最高部分位于阴影部分.21.从正面、左面观察如图所示几何体,分别画出你所看到的几何体的形状图.【解答】解:如图即为所求作的图形.22.两棵小树在同一时刻的影子如图所示:(1)试判断哪是小树白天在太阳光下的影子,哪是小树晚上在路灯下的影子?并确定出路灯灯泡的位置(2)根据你的判断,请画出图中另一棵小树的影子(影子用线段表示即可)【解答】解:(1)因为光线是相交的,所以是中心投影,所以(1)是小树晚上在路灯下的影子,路灯灯泡的位置是三条光线的交点;(2)因为光线是平行的,所以是平行投影,所以(2)是小树在太阳光下的影子.23.如图所示:笔直的公路边有甲、乙两栋楼房,高度分别为12m和25m,两楼之间的距离为10m,现有一人沿着公路向这两栋楼房前进,当他走到与甲楼的水平距离为30m且笔直站立时(这种姿势下眼睛到地面的距离为 1.6m),他所看到的乙楼上面的部分有多高?【解答】解:作AN⊥GH,交EF于M,如图,AB=1.6m,EF=12m,GH=25m,AF=30m,MN=15m,点A、E、C共线,则MF=NH=AB=1.6,EM=EF﹣MF=10.4,∵EM∥CN,∴△AEM∽△ACN,∴=,即=,∴CN=15.6,∴CG=GH﹣NH﹣CN=25﹣﹣1.6﹣15.6=7.8(m),即他所看到的乙楼上面的部分有7.8m高.。

2022-2023学年人教新版九年级数学下学期《第29章 投影与视图》测试卷及答案解析

2022-2023学年人教新版九年级数学下学期《第29章 投影与视图》测试卷及答案解析

2022-2023学年人教新版九年级数学下学期《第29章投影与视图》测试卷参考答案与试题解析一.选择题(共16小题)1.如图所示的主视图和俯视图对应的几何体(阴影所示为右)是()A.B.C.D.【分析】根据几何体的主视图确定A、B、D选项,然后根据俯视图确定B选项即可.【解答】解:A、B、D选项的主视图符合题意;B选项的俯视图符合题意,综上:对应的几何体为B选项中的几何体.故选:B.【点评】考查由视图判断几何体;由俯视图得到底层正方体的个数及形状是解决本题的突破点.2.如图是由5个小立方块搭成的几何体的俯视图,小正方形中的数字表示该位置上的小立方块的个数,则这个几何体的主视图是()A.B.C.D.【分析】先细心观察原立体图形中正方体的位置关系,从正面看去,一共三列,左边有1竖列,中间有1竖列,右边是2竖列,结合四个选项选出答案.【解答】解:从正面看去,一共三列,左边有1竖列,中间有1竖列,右边是2竖列.故选:A.【点评】本题考查了由三视图判断几何体及简单组合体的三视图,重点考查几何体的三视图及空间想象能力.3.如图所示几何体的俯视图是()A.B.C.D.【分析】注意几何体的特征,主视图与左视图的高相同,主视图与俯视图的长相等,左视图与俯视图的宽相同.【解答】解:根据俯视图的特征,应选B.故选:B.【点评】本题考查了几何体的三视图,正确理解主视图与左视图以及俯视图的特征是解题的关键.4.如图,这是由7个相同的小正方体搭成的几何体,则这个几何体的左视图是()A.B.C.D.【分析】根据从左边看得到的图形是左视图,可得答案.【解答】解:从左面看第一层是三个小正方形,第二层左边一个小正方形.故选:C.【点评】本题考查了简单组合体的三视图,从左边看得到的图形是左视图.5.如图所示几何体的主视图是()A.B.C.D.【分析】找到从正面看所得到的图形即可.【解答】解:从正面可看到的图形是:故选:B.【点评】本题考查了三视图的知识,主视图是从物体的正面看得到的视图.6.如图所示的几何体是由六个大小相同的小正方体组合而成的,它的俯视图为()A.B.C.D.【分析】根据从上面看得到的图形是俯视图,可得答案.【解答】解:从上面看第一层是两个小正方形,第二层是三个小正方形,俯视图为:故选:D.【点评】本题考查了简单组合体的三视图,从上面看得到的图形是俯视图.7.将一个圆柱和一个正三棱柱如图放置,则所构成的几何体的主视图是()A.B.C.D.【分析】根据主视图是从物体正面看所得到的图形即可解答.【解答】解:根据主视图的概念可知,从物体的正面看得到的视图是选项A.故选:A.【点评】本题考查了简单几何体的主视图,注意主视图、左视图、俯视图是分别从物体正面、左面和上面看所得到的图形.8.如图所示,几何体的左视图是()A.B.C.D.【分析】根据从左面看得到的图形是左视图,可得答案.【解答】解:如图所示,几何体的左视图是:.故选:A.【点评】本题考查了简单组合体的三视图,从左面看得到的图形是左视图.9.展览厅内要用相同的正方体木块搭成一个三视图如右图的展台,则此展台共需这样的正方体()块.A.7B.8.C.9D.10【分析】主视图、左视图、俯视图是分别从物体正面、左面和上面看,所得到的图形.【解答】解:综合主视图,俯视图,左视图,底层有3+1+2=6个正方体,第二层有2个正方体,第三层有2个正方体,所以搭成这个几何体所用的小立方块的个数是6+2+2=10个.故选:D.【点评】考查学生对三视图掌握程度和灵活运用能力,同时也体现了对空间想象能力方面的考查.如果掌握口诀“俯视图打地基,正视图疯狂盖,左视图拆违章”就更容易得到答案.10.某同学家买了一个外形非常接近球的西瓜,该同学将西瓜均匀切成了8块,并将其中一块(经抽象后)按如图所示的方式放在自已正前方的水果盘中,则这块西瓜的三视图是()A.B.C.D.【分析】主视图、左视图、俯视图是分别从物体正面、左面和上面看,所得到的图形;认真观察实物图,按照三视图的要求画图即可,注意看得到的棱长用实线表示,看不到的棱长用虚线的表示.【解答】解:观察图形可知,这块西瓜的三视图是.故选:B.【点评】此题主要考查了三视图的画法,注意实线和虚线在三视图的用法.11.下列立体图形中,俯视图是三角形的是()A.B.C.D.【分析】俯视图是从物体上面看所得到的图形,据此判断得出物体的俯视图.【解答】解:A、立方体的俯视图是正方形,故此选项错误;B、圆柱体的俯视图是圆,故此选项错误;C、三棱柱的俯视图是三角形,故此选项正确;D、圆锥体的俯视图是圆,故此选项错误;故选:C.【点评】本题考查了几何体的三种视图,掌握定义是关键.注意所有的看到的棱都应表现在三视图中.12.小丽在两张6×10的网格纸(网格中的每个小正方形的边长为1个单位长度)中分别画出了如图所示的物体的左视图和俯视图,这个物体的体积等于()A.24B.30C.48D.60【分析】补全几何体左角,可见左角的体积是长宽高分别为4、2、1的小长方体体积的一半,大长方体长宽高分别为8、2、4,用大长方体体积减去小长方体体积就是物体体积.【解答】解:如图,补全几何体左角,根据左视图与俯视图标记几何体的尺寸.这个物体的体积:8×2×4﹣×4×1×2=64﹣4=60,故选:D.【点评】本题考查了几何体的三视图,熟练根据三视图数据标示几何体尺寸是解题的关键.13.如图是某几何体的三视图,该几何体是()A.三棱柱B.三棱锥C.长方体D.正方体【分析】根据几何体的三视图,对各个选项进行分析,用排除法得到答案.【解答】解:根据俯视图是三角形,长方体和正方体以及三棱锥不符合要求,B、C、D 错误;根据几何体的三视图,三棱柱符合要求.故选:A.【点评】本题考查的是几何体的三视图,掌握主视图、左视图、俯视图是分别从物体正面、左面和上面看,所得到的图形是解题的关键.14.圆形的纸片在平行投影下的正投影是()A.圆形B.椭圆形C.线段D.以上都可能【分析】根据在平行投影中,投影线垂直于投影面产生的投影叫做正投影解答即可.【解答】解:圆形的纸片在平行投影下的正投影可能是圆形、椭圆形、线段,故选:D.【点评】此题考查平行投影,关键是根据平行投影的有关概念解答.15.如图分别是某校体育运动会的颁奖台和它的主视图,则其俯视图是()A.B.C.D.【分析】根据俯视图是从上边看得到的图形,可得答案.【解答】解:从上边看是一个矩形被分为3部分,中面的两条分线是实线.故选:A.【点评】本题考查简单组合体的三视图,从上边看得到的图形是左视图,注意能看到的线用实线画,看不到的线用虚线画.16.如图2的三幅图分别是从不同方向看图1所示的工件立体图得到的平面图形,(不考虑尺寸)其中正确的是()A.①②B.①③C.②③D.③【分析】主视图、左视图、俯视图是分别从物体正面、左面和上面看,所得到的图形.【解答】解:从正面看可得到两个左右相邻的中间没有界线的长方形,①错误;从左面看可得到两个上下相邻的中间有界线的长方形,②错误;从上面看可得到两个左右相邻的中间有界线的长方形,③正确.故选:D.【点评】本题考查了几何体的三种视图,掌握定义是关键.注意所有的看到的棱都应表现在三视图中.二.填空题(共19小题)17.一个由13个完全相同的小立方块搭成的几何体,其最下面一层摆放了9个小立方块,它的主视图和左视图如图所示,则这个几何体的搭法共有3种.【分析】由题意俯视图:除了A,B,C不能确定,其余位置上的小立方体是确定的数字如图所示.根据俯视图即可解决问题.【解答】解:由题意俯视图:除了A,B,C不能确定,其余位置上的小立方体是确定的数字如图所示.∵由13个完全相同的小立方块搭成的几何体,其最下面一层摆放了9个小立方块,∴A为1,B为2,C为2或A为2,B为2,C为1或A为2,B为1,C为2,共三种情形,故答案为3.【点评】本题考查三视图判定几何体,解题的关键是理解题意,灵活运用所学知识解决问题.18.如图是由一些大小相同的小正方体组成的简单几何体的左视图和俯视图,符合条件的几何体有7种.【分析】从俯视图中可以看出最底层小正方体的个数及形状,从左视图可以看出每一层小正方体的层数和个数,从而得出答案.【解答】解:该几何体中小正方体的分布情况有如下7种可能结果,故答案为:7.【点评】本题主要考查学生对三视图掌握程度和灵活运用能力,同时也体现了对空间想象能力方面的考查.如果掌握口诀“俯视图打地基,正视图疯狂盖,左视图拆违章”就更容易得到答案.19.如图所示,太阳光线AC和A′C′是平行的,同一时刻两个建筑物在太阳下的影子一样长,那么建筑物是否一样高?说明理由.(注:太阳光线可看成是平行的)【分析】根据已知同一时刻两个建筑物在太阳下的影子一样长,即可得出BC=B′C′,在直角三角形中,可考虑AAS证明三角形全等,从而推出线段相等.【解答】解:建筑物一样高.证明:∵AB⊥BC,A′B′⊥B′C′,∴∠ABC=∠A′B′C′=90°,∵AC∥A′C′,∴∠ACB=∠A′C′B′,在△ABC和△A′B′C′中,∵,∴△ABC≌△A′B′C′(ASA)∴AB=A′B′.即建筑物一样高.【点评】此题考查了全等三角形的应用以及平行投影的性质.在实际生活中,常常通过证明两个三角形得出线段相等.20.如图,小芸用灯泡O照射一个矩形相框ABCD,在墙上形成矩形影子A′B′C′D′.现测得OA=20cm,OA′=50cm,相框ABCD的面积为80cm2,则影子A′B′C′D′的面积为500cm2.【分析】易得对应点到对应中心的比值,那么面积比为对应点到对应中心的比值的平方,据此求解可得.【解答】解:∵OA:OA′=2:5,可知OB:OB′=2:5,∵∠AOB=∠A′OB′,∴△AOB∽△A′OB′,∴AB:A′B′=2:5,∴矩形ABCD的面积:矩形A′B′C′D′的面积为4:25,又矩形ABCD的面积为80cm2,则矩形A′B′C′D′的面积为500cm2.故答案为:500cm2.【点评】本题考查中心投影与位似图形的性质,用到的知识点为:位似比为对应点到对应中心的比值,面积比为位似比的平方.21.由几个相同的小正方体搭成的一个几何体如图所示,这个几何体的主视图可以看到5个小正方体的面,则俯视图与左视图能看到的小正方体的面的个数和为7.【分析】左视图有2列,每列小正方形数目分别为2,1;俯视图有3列,每行小正方形数目分别为1,2,1.据此计算即可.【解答】解:根据题意可得左视图有2列,每列小正方形数目分别为2,1;俯视图有3列,每行小正方形数目分别为1,2,1.∴俯视图与左视图能看到的小正方体的面的个数和为:2+1+1+2+1=7.故答案为:7【点评】本题考查实物体的三视图.在画图时一定要将物体的边缘、棱、顶点都体现出来,看得见的轮廓线都画成实线,看不见的画成虚线,不能漏掉.本题画几何体的三视图时应注意小正方形的数目及位置.22.如图是某个几何体的三视图,请写出这个几何体的名称是圆锥.【分析】由主视图和左视图确定是柱体,锥体还是球体,再由俯视图确定具体形状.【解答】解:主视图和左视图都是等腰三角形,那么此几何体为锥体,由俯视图为圆,可得此几何体为圆锥.故答案为:圆锥.【点评】本题考查的知识点是三视图,如果有两个视图为三角形,该几何体一定是锥,如果有两个矩形,该几何体一定柱,其底面由第三个视图的形状决定.23.已知一个几何体的三视图如图所示,则这个几何体的侧面展开图的面积为65πcm2.【分析】由几何体的主视图和左视图都是等腰三角形,俯视图是圆,可以判断这个几何体是圆锥,结合图形可得出母线及底面半径,继而可求出圆锥侧面积.【解答】解:依题意知高线=12,底面半径r=5,由勾股定理求得母线长为:13cm,则由圆锥的侧面积公式得S=πrl=π•5•13=65πcm2.故答案为:65πcm2.【点评】本题主要考查三视图的知识和圆锥侧面面积的计算,学生由于空间想象能力不够,找不到圆锥的底面半径,或者对圆锥的侧面面积公式运用不熟练,易造成错误.24.在如图所示的几何体中,其三视图中有矩形的是①②.(写出所有正确答案的序号)【分析】主视图、左视图、俯视图是分别从物体正面、左面和上面看,所得到的图形,据此作答.【解答】解:长方体主视图,左视图,俯视图都是矩形,圆柱体的主视图是矩形,左视图是矩形,俯视图是圆,圆锥的主视图、左视图是等腰三角形,俯视图是带有圆心的圆,故答案为:①②.【点评】本题主要考查三视图的知识,熟练掌握常见几何体的三视图是解题的关键.25.按《航空障碍灯(MH/T6012﹣1999)》的要求,为保障飞机夜间飞行的安全,在高度为45米至105米的建筑上必须安装中光强航空障碍灯(AviationObstructionlight).中光强航空障碍灯是以规律性的固定模式闪光.在下图中你可以看到某一种中光强航空障碍灯的闪光模式,灯的亮暗呈规律性交替变化,那么在一个连续的10秒内,该航空障碍灯处于亮的状态的时间总和最长可达7秒.【分析】观察者所处的位置定为一点,叫视点.当该航空障碍灯处于亮的状态的时间总和最长时,灯的亮暗呈规律性交替变化为亮1秒,暗0.5秒,亮1秒,暗0.5秒,亮1秒,暗0.5秒,亮1秒,暗0.5秒,亮1秒,暗0.5秒,亮1秒,暗0.5秒,亮1秒,在这10秒中,航空障碍灯处于亮的状态的时间总和为7秒.【解答】解:根据题意,当该航空障碍灯处于亮的状态的时间总和最长时,灯的亮暗呈规律性交替变化为:亮1秒,暗0.5秒,亮1秒,暗0.5秒,亮1秒,暗0.5秒,亮1秒,暗0.5秒,亮1秒,暗0.5秒,亮1秒,暗0.5秒,亮1秒,在这10秒中,航空障碍灯处于亮的状态的时间总和为7秒,故答案为7.【点评】本题考查了视点,正确理解图示是解题的关键.26.在正方体,圆柱,圆锥,球中,三视图均一样的几何体是球体.【分析】主视图、左视图、俯视图是分别从物体正面、左面和上面看,所得到的图形.【解答】解:正方体只有一个面正对时主视图、俯视图、左视图都是正方形;圆柱主视图和左视图是矩形,俯视图是圆;圆锥主视图和左视图是等腰三角形,俯视图是圆;球体主视图、俯视图、左视图都是圆;因此三视图都完全相同的几何体是球体.故答案为:球体.【点评】本题考查了几何体的三种视图,掌握定义是关键.注意所有的看到的棱都应表现在三视图中.27.一个由9个大小相同的正方体组成的立体图形如图所示,从左面观察这个立体图形,将得到的平面图形的示意图画在如下的画图区中.【分析】根据从左面看得到的图形是左视图,可得答案.【解答】解:从左面观察这个立体图形,分别是2个正方形,1个正方形,1个正方形,如图所示:【点评】本题考查了简单组合体的三视图,关键是把握好三视图所看的方向,从左面看得到的图形是左视图.28.如图,已知路灯离地面的高度AB为4.8m,身高为1.6m的小明站在D处的影长为2m,那么此时小明离电杆AB的距离BD为4m.【分析】利用中心投影的性质可判断△CDE∽△CBA,再根据相似三角形的性质求出BC 的长,然后计算BC﹣CD即可.【解答】解:∵DE∥AB,∴△CDE∽△CBA,∴=,即=,∴CB=6,∴BD=BC﹣CD=6﹣2=4(m).故答案为4.【点评】本题考查了中心投影:中心投影的光线特点是从一点出发的投射线.物体与投影面平行时的投影是放大(即位似变换)的关系.29.如图是六个棱长为1的立方块组成的一个几何体,其俯视图的面积是5.【分析】先得出从上面看所得到的图形,再求出俯视图的面积即可.【解答】解:从上面看易得第一行有3个正方形,第二行有2个正方形,共5个正方形,面积为5.故答案为5.【点评】本题考查了三视图的知识,俯视图是从物体的上面看得到的视图,同时考查了面积的计算.30.用若干个相同的小立方块搭一个几何体,使它主视图、俯视图都如图所示,则这样的几何体至少需要9个小立方块.【分析】由于主视图第一列为3层,故俯视图中第一列至少有一个是3层的,其余可是1~3层,同时可分析第2列和第三列,进而得到答案.【解答】解:由主视图可知,它自下而上共有3列,第一列3块,第二列2块,第三列1块.由俯视图可知,它自左而右共有3列,第第一列3块,第二列2块,第三列1块,从空中俯视的块数只要最底层有一块即可.因此,综合两图可知这个几何体的形状不能确定;并且最少时为6+2+1=9块.故答案为:9.【点评】本题考查简单空间图形的三视图,考查空间想象能力,是基础题,难度中等.31.正放的圆柱形水杯的正视图为长方形,俯视图为圆.【分析】依据圆柱体的三视图进行判断即可.【解答】解:正放的圆柱形水杯的正视图为长方形,俯视图为圆,故答案为:长方形,圆.【点评】本题主要考查了简单几何体的三视图,画简单组合体的三视图要循序渐进,通过仔细观察和想象,再画它的三视图.32.如图,长方体的一个底面ABCD在投影面P上,M,N分别是侧棱BF,CG的中点,矩形EFGH与矩形EMNH的投影都是矩形ABCD,设它们的面积分别是S1,S2,S,则S1,S2,S的关系是S1=S<S2(用“=、>或<”连起来)【分析】根据长方体的概念得到S1=S,根据矩形的面积公式得到S<S2,得到答案.【解答】解:∵立体图形是长方体,∴底面ABCD∥底面EFGH,∵矩形EFGH的投影是矩形ABCD,∴S1=S,∵EM>EF,EH=EH,∴S<S2,∴S1=S<S2,故答案为:S1=S<S2.【点评】本题考查的是平行投影和立体图形,平行投影:由平行光线形成的投影是平行投影.33.如图是由一些相同的小正方体构成的几何体从不同方向看得到的平面图形,这些相同的小正方体的个数是5.【分析】根据所给的图形可得,几何体的底层应该有3+1=4个小正方体,第二层应该有1个小正方体,因此小正方体的个数有5个.【解答】解:根据三视图的知识,几何体的底面有4个小正方体,该几何体有两层,第二层有1个小正方体,共有5个;故答案为5.【点评】本题意在考查学生对三视图掌握程度和灵活运用能力,同时也体现了对空间想象能力方面的考查.如果掌握口诀“俯视图打地基,正视图疯狂盖,左视图拆违章”就能容易得到答案了.34.一个长方体的主视图和左视图如图所示(单位:cm),其表面积是6cm2.【分析】根据给出的长方体的主视图和左视图可得,俯视图的长方形的长与主视图的长方形的宽相等为3,俯视图的长方形的宽与左视图的长方形的宽相等为2.因此俯视图的面积是6cm2.进而可求出其表面积.【解答】解:俯视图是边长分别为3和2的长方形,因而该长方体的面积为6×2=12cm2.所以其表面积=3×4×2+2×4×2+12=52cm2,故答案为52.【点评】考查立体图形的三视图和学生的空间想象能力.35.一个几何体从正面、左面、上面看都是同样大小的圆,这个几何体是球体.【分析】从正面、左面、上面看得到的图形是几何体的主视图,左视图,俯视图,三视图都是圆的几何体是球.【解答】解:只有球的三视图都是圆,故这个几何体是球体.故答案为:球.【点评】本题考查了由三视图判断几何体,用到的知识点为:三视图相同的几何体有正方体和球体;球的三视图是全等的圆.2022-2023学年人教新版九年级数学下学期《第29章投影与视图》测试卷一.选择题(共16小题)1.如图所示的主视图和俯视图对应的几何体(阴影所示为右)是()A.B.C.D.2.如图是由5个小立方块搭成的几何体的俯视图,小正方形中的数字表示该位置上的小立方块的个数,则这个几何体的主视图是()A.B.C.D.3.如图所示几何体的俯视图是()A.B.C.D.4.如图,这是由7个相同的小正方体搭成的几何体,则这个几何体的左视图是()A.B.C.D.5.如图所示几何体的主视图是()A.B.C.D.6.如图所示的几何体是由六个大小相同的小正方体组合而成的,它的俯视图为()A.B.C.D.7.将一个圆柱和一个正三棱柱如图放置,则所构成的几何体的主视图是()A.B.C.D.8.如图所示,几何体的左视图是()A.B.C.D.9.展览厅内要用相同的正方体木块搭成一个三视图如右图的展台,则此展台共需这样的正方体()块.A.7B.8.C.9D.1010.某同学家买了一个外形非常接近球的西瓜,该同学将西瓜均匀切成了8块,并将其中一块(经抽象后)按如图所示的方式放在自已正前方的水果盘中,则这块西瓜的三视图是()A.B.C.D.11.下列立体图形中,俯视图是三角形的是()A.B.C.D.12.小丽在两张6×10的网格纸(网格中的每个小正方形的边长为1个单位长度)中分别画出了如图所示的物体的左视图和俯视图,这个物体的体积等于()A.24B.30C.48D.6013.如图是某几何体的三视图,该几何体是()A.三棱柱B.三棱锥C.长方体D.正方体14.圆形的纸片在平行投影下的正投影是()A.圆形B.椭圆形C.线段D.以上都可能15.如图分别是某校体育运动会的颁奖台和它的主视图,则其俯视图是()A.B.C.D.16.如图2的三幅图分别是从不同方向看图1所示的工件立体图得到的平面图形,(不考虑尺寸)其中正确的是()A.①②B.①③C.②③D.③二.填空题(共19小题)17.一个由13个完全相同的小立方块搭成的几何体,其最下面一层摆放了9个小立方块,它的主视图和左视图如图所示,则这个几何体的搭法共有种.18.如图是由一些大小相同的小正方体组成的简单几何体的左视图和俯视图,符合条件的几何体有种.19.如图所示,太阳光线AC和A′C′是平行的,同一时刻两个建筑物在太阳下的影子一样长,那么建筑物是否一样高?说明理由.(注:太阳光线可看成是平行的)20.如图,小芸用灯泡O照射一个矩形相框ABCD,在墙上形成矩形影子A′B′C′D′.现测得OA=20cm,OA′=50cm,相框ABCD的面积为80cm2,则影子A′B′C′D′的面积为cm2.21.由几个相同的小正方体搭成的一个几何体如图所示,这个几何体的主视图可以看到5个小正方体的面,则俯视图与左视图能看到的小正方体的面的个数和为.22.如图是某个几何体的三视图,请写出这个几何体的名称是.23.已知一个几何体的三视图如图所示,则这个几何体的侧面展开图的面积为.24.在如图所示的几何体中,其三视图中有矩形的是.(写出所有正确答案的序号)25.按《航空障碍灯(MH/T6012﹣1999)》的要求,为保障飞机夜间飞行的安全,在高度为45米至105米的建筑上必须安装中光强航空障碍灯(AviationObstructionlight).中光强航空障碍灯是以规律性的固定模式闪光.在下图中你可以看到某一种中光强航空障碍灯的闪光模式,灯的亮暗呈规律性交替变化,那么在一个连续的10秒内,该航空障碍灯处于亮的状态的时间总和最长可达秒.26.在正方体,圆柱,圆锥,球中,三视图均一样的几何体是.27.一个由9个大小相同的正方体组成的立体图形如图所示,从左面观察这个立体图形,将得到的平面图形的示意图画在如下的画图区中.28.如图,已知路灯离地面的高度AB为4.8m,身高为1.6m的小明站在D处的影长为2m,那么此时小明离电杆AB的距离BD为m.。

九年级数学下册第二十九章《投影与视图》综合经典习题(答案解析)

九年级数学下册第二十九章《投影与视图》综合经典习题(答案解析)

学校:__________ 姓名:__________ 班级:__________ 考号:__________一、选择题1.如图所示的几何体的主视图是()A.B.C.D.2.一张矩形纸片在太阳光的照射下,在地面上的投影不可能是()A.正方形B.平行四边形C.矩形D.等边三角形3.如图由5个相同的小正方体组成的-个立体图形,其俯视图是()A.B.C.D.4.由m个相同的正方体组成一个立体图形,下面的图形分别是从正面和上面看它得到的平面图形,则m能取到的最大值是()A.6 B.5 C.4 D.35.如图所示立体图形,从上面看到的图形是()A.B.C.D.6.如图,把一个棱长为3的正方体的每个面等分成9个小正方形,然后沿每个面正中心的一个正方形向里挖空(相当于挖去7个小正方体),所得到的几何体的表面积是()A.78 B.72 C.54 D.487.如图是小明一天看到的一根电线杆的影子的俯视图,按时间先后顺序排列正确的是( )A.(1)(2)(3)(4) B.(4)(3)(2)(1) C.(4)(3)(1)(2) D.(2)(3)(4)(1)8.下列四个几何体中,主视图是三角形的是()A.B.C.D.9.如图所示,所给的三视图表示的几何体是()A.圆锥B.四棱锥C.三棱锥D.三棱柱10.如图,将一个小球摆放在圆柱上底面的正中间,则该几何体的俯视图是()A.B.C.D.11.如图是一个由若干个相同的小正方体组成的几何体的三种形状图,则组成这个几何体的小正体的个数是( )A.7 B.8 C.9 D.1012.一个几何体由一些大小相同的小正方体组成,如图是它的主视图和左视图,那么组成该几何体所需小正方体的个数最少为()A.4 B.5C.6 D.713.如图,是一块带有圆形空洞和正方形空洞(圆面直径与正方形边长相等)的小木板,则下列物体中既可以堵住圆形空洞,又可以堵住方形空洞的可能是().A.B.C.D.14.如图是由若干个相同的小立方体搭成的几何体的俯视图和左视图,则小立方体的个数不可能是()A.6个B.7个C.8个D.9个第II卷(非选择题)请点击修改第II卷的文字说明参考答案二、填空题15.10个棱长为a cm的正方体摆放成如图的形状,这个图形的表面积是____________.16.如图是一个几何体的三视图,根据图中所示数据求得这个几何体的侧面积是________(结果保留 ).17.已知一个圆锥体的三视图如图所示,则这个圆锥体的侧面积是__________.18.八中食堂厨房的桌子上整齐地摆放着若干相同规格的碟子,碟子的个数与碟子的高度的关系如表:碟子的个数碟子的高度(单位:cm)1222+1.532+342+4.5……现在分别从三个方向上看若干碟子,得到的三视图如图所示,厨房师傅想把它们整齐地叠成一摞,求叠成一摞后的高度为_____cm.19.在一快递仓库里堆放着若干个相同的正方体快递件,管理员从正面看和从左面看这堆快递如图所示,则这正方体快递件最多有_____件.20.如图,小明站在距离灯杆6m的点B处.若小明的身高AB=1.5m,灯杆CD=6m,则在灯C的照射下,小明的影长BE=______m.21.小明想测量一棵树的高度,他发现树的影子恰好落在地面和一斜坡上;如图,此时测得地面上的影长为8米,坡面上的影长为4米.已知斜坡的坡角为30°,同一时刻,一根长为1米,垂直于地面放置的标杆在地面上的影长为2米,则树的高度为___.22.如图,身高1.6米的小丽在阳光下的影长为2米,在同一时刻,一棵大树的影长为8米,则这棵树的高度为_____米.23.如图,由五个小正方体组成的几何体中,若每个小正方体的棱长都是1,则该几何体的主视图和左视图的面积之和是_____.24.一天,小青想利用影子测量校园内一根旗杆的高度,在同一时刻内,小青的影长为2米,旗杆的影长为20米,若小青的身高为1.60米,则旗杆的高度为__________米.25.一个几何体的三视图如图所示,其中从上面看的视图是一个等边三角形,则这个几何体的表面积为____.26.张师傅按1:1的比例画出某直三棱柱零件的三视图,如图所示,已知EFG中,==,4512,18EF cm EG cm∠=︒,则AB的长为_____cm.EFG参考答案三、解答题27.如图是由几个小立方体所堆成的几何俯视图,小下方形里的数学字表示该位置小立方块的个数,请画出这个几何主视图和左视图:28.画出如图所示的几何体的主视图、左视图和俯视图.29.如图,王乐同学在晩上由路灯A走向路灯B.当他行到P处时发现,他往路灯B下的影长为2m,且恰好位于路灯A的正下方,接着他又走了6.5m到Q处,此时他在路灯A下的影孑恰好位于路灯B的正下方(已知王乐身高1.8m,路灯B高9m).(1)王乐站在P处时,在路灯B下的影子是哪条线段?(2)计算王乐站在Q处时,在路灯A下的影长;(3)计算路灯A的高度.30.如图,是由8块棱长都为1的小正方体组合成的简单几何体.(1)请画出这个几何体的三视图并用阴影表示出来;(2)该几何体的表面积(含下底面)为________.【参考答案】一、选择题1.C2.D3.C4.B5.C6.B7.C8.B9.D10.C11.C12.B13.B14.D二、填空题15.【分析】先画出这个图形的三视图从而可得上下面前后面左右面的小正方形的个数再根据正方形的面积公式即可得【详解】由题意画出这个图形的三视图如下:则这个图形的表面积是故答案为:【点睛】本题考查了求几何体的16.24πcm²【分析】根据三视图确定该几何体是圆柱体再计算圆柱体的侧面积【详解】解:先由三视图确定该几何体是圆柱体底面半径是4÷2=2cm高是6cm圆柱的侧面展开图是一个长方形长方形的长是圆柱的底面周17.【分析】先由勾股定理求出母线再根据圆锥侧面积公式S=r计算即可【详解】圆锥半径:r=8÷2=4S=r=20故答案为:20【点睛】本题考查圆锥侧面积的求法理解并掌握圆锥侧面积公式是解题关键18.23【分析】根据三视图得出碟子的总数由(1)知每个碟子的高度即可得出答案【详解】可以看出碟子数为x时碟子的高度为2+15(x﹣1);由三视图可知共有15个碟子∴叠成一摞的高度=15×15+05=2319.39【分析】由主视图可得组合几何体有4列由左视图可得组合几何体有4行可得最底层几何体最多正方体的个数为:4×4=16;由主视图和左视图可得第二层最多正方体的个数为:4×4=16;由主视图和左视图可得20.2【分析】首先判定△ABE∽△CDE根据相似三角形的性质可得然后代入数值进行计算即可【详解】解:∵AB⊥EDCD⊥ED∴AB∥DC∴△ABE∽△CDE∴∵AB=15mCD=6mBD=6m∴解得:EB21.6+【解析】【分析】延长AC交BF延长线于D点则BD即为AB的影长然后根据物长和影长的比值计算即可【详解】延长AC交BF延长线于D点则∠CFE=30°作CE⊥BD于E在Rt△CFE中∠CFE=30°22.64【分析】根据平行投影同一时刻物长与影长的比值固定即可解题【详解】解:由题可知:解得:树高=64米【点睛】本题考查了投影的实际应用属于简单题熟悉投影概念列比例式是解题关键23.7【解析】该几何体的主视图的面积为1×1×4=4左视图的面积是1×1×3=3所以该几何体的主视图和左视图的面积之和是3+4=7故答案为724.16【分析】易得△AOB∽△ECD利用相似三角形对应边的比相等可得旗杆OA的长度【详解】解:∵OA⊥DACE⊥DA∴∠CED=∠OAB=90°∵CD∥OE∴∠CDA=∠OBA∴△AOB∽△ECD∴解25.【分析】先判断出几何体为正三棱柱求出三棱柱的底面积最后求表面积即可【详解】解:由三视图得几何体为正三棱柱上下底为边长为2的等边三角形侧面积为长为3宽为2的矩形如图等边三角形ABC中作AD⊥BC于D则26.【分析】作EH⊥FG于点H解直角三角形求出EH即可得出AB的长度【详解】解:如图所示作EH⊥FG于点H∵∠EHF=90°∠EFG=45°∴∠EFG=∠FEH=45°∴EH=HF=∵∴EH=根据三视图三、解答题27.28.29.30.【参考解析】一、选择题1.C解析:C【分析】根据三视图的定义,主视图是底层有两个正方形,左侧有三层,即可得到答案.【详解】解:由题图可知,主视图为故选:C【点睛】本题考查了简单几何体的三视图,解题的关键是熟练掌握三视图的定义.2.D解析:D【分析】根据平行投影的性质求解可得.【详解】一张矩形纸片在太阳光线的照射下,形成影子不可能是等边三角形,故选:D.【点睛】本题考查了平行投影:由平行光线形成的投影是平行投影,如物体在太阳光的照射下形成的影子就是平行投影.3.C解析:C【分析】根据立体图形三视图的性质进行判断即可.【详解】根据立体图形三视图的性质,该立体图形的俯视图为故答案为:C.【点睛】本题考查了立体图形的三视图,掌握立体图形三视图的性质是解题的关键.4.B解析:B【分析】根据主视图和俯视图分析每行每列小正方体最多的情况,即可得出答案.【详解】由题中所给出的主视图知物体共两列,且左侧一列高两层,右侧一列最高一层;由俯视图可知左侧两行,右侧一行,于是,可确定右侧只有一个小正方体,而左侧可能是一行单层一行两层,可能两行都是两层.最多的情况如图所示,所以图中的小正方体最多5块.故选:B.【点睛】本题考查根据三视图判断小正方体个数,需要一定空间想象力,熟练掌握主视图与俯视图的定义是解题的关键.5.C解析:C【分析】从上面看到3列正方形,找到相应列上的正方形的个数即可.【详解】从上面看得到从左往右3列正方形的个数依次为2,1,1,故选C.【点睛】本题考查了简单组合体的三视图,解决本题的关键是得到3列正方形具体数目.6.B解析:B【解析】【分析】如图所示,一、棱长为3的正方体的每个面等分成9个小正方形,那么每个小正方形的边长是1,所以每个小正方面的面积是1;二、正方体的一个面有9个小正方形,挖空后,这个面的表面积增加了4个小正方形,减少了1个小正方形,即:每个面有12个小正方形,6个面就是6×12=72个,那么几何体的表面积为72×1=72.【详解】如图所示,周边的六个挖空的正方体每个面增加4个正方形,减少了1个小正方形,则每个面的正方形个数为12个,则表面积为12×6×1=72.故选:B.【点睛】主要考查学生的空间想象能力,解决本题的关键是能够想象出物体表面积的变化情况. 7.C解析:C【分析】根据平行投影的规律:早晨到傍晚物体的指向是:西-西北-北-东北-东,影长由长变短,再变长可得.【详解】根据平行投影的规律知:顺序为(4)(3)(1)(2).故选C.【点睛】本题考查平行投影的特点和规律.在不同时刻,同一物体的影子的方向和大小可能不同,不同时刻物体在太阳光下的影子的大小在变,方向也在改变,就北半球而言,从早晨到傍晚物体的指向是:西-西北-北-东北-东,影长由长变短,再变长.8.B解析:B【解析】主视图是三角形的一定是一个锥体,只有B是锥体.故选B.9.D解析:D【解析】分析:由左视图和俯视图可得此几何体为柱体,根据主视图是三角形可判断出此几何体为正三棱柱.详解:∵左视图和俯视图都是长方形,∴此几何体为柱体,∵主视图是一个三角形,∴此几何体为三棱柱.故选D.点睛:考查了由三视图判断几何体,用到的知识点为:由左视图和俯视图可得几何体是柱体,锥体还是球体,由主视图可确定几何体的具体形状.10.C解析:C【解析】分析:俯视图就是要从问题的正上方往下看,相当于把物体投影到平面.详解:圆柱体和球体投影到平面以后都是圆形,故排除A,因为圆形的轮廓线都是可以看到的,所以选C.点睛:三视图中,可以看到的轮廓线,要化成实线,看不到的轮廓线,要化成虚线. 11.C解析:C【分析】根据主视图、左视图、俯视图是分别从物体正面、左面和上面看,所得到的图形进行判断.【详解】解:综合三视图,这个几何体的底层有3+2+1=6个小正方体,第二层有1+1=2个小正方体,第三层有1个,因此组成这个几何体的小正方形有6+2+1=9个.故选C.【点睛】本题意在考查学生对三视图掌握程度和灵活运用能力,同时也体现了对空间想象能力方面的考查.如果掌握口诀“俯视图打地基,主视图疯狂盖,左视图拆违章”就容易得到答案了.12.B解析:B【分析】从俯视图中可以看出最底层小正方体的个数及形状,从左视图可以看出每一层小正方体的层数和个数,从而算出总的个数.【详解】由题中所给出的主视图知物体共三列,且左侧一列高两层,中间一列高1层,右侧一列最高两层;由左视图可知左侧两,右侧一层,所以图中的小正方体最少3+2=5块.故选B.【点睛】本题主要考查三视图的相关知识:主视图主要确定物体的长和高,左视图确定物体的宽和高,俯视图确定物体的长和宽.13.B解析:B【分析】根据题意,满足条件的空间几何体的三视图中含有圆和正方形.然后分别进行判断即可.【详解】A.正方体的正视图为正方形,侧视图为正方形,俯视图也为正方形,不满足条件.B.圆柱的正视图和侧视图为相同的矩形,俯视图为圆,满足条件.C.圆锥的正视图为三角形,侧视图为三角形,俯视图为圆,不满足条件.D.球的正视图,侧视图和俯视图相同的圆,不满足条件.故选B.【点睛】本题主要考查三视图的识别和判断,解题关键在于熟练掌握常见空间几何体的三视图,比较基础.14.D解析:D【解析】由俯视图可得得最底层有5个立方体,由左视图可得第二层最少有1个立方体,最多有3个立方体,所以小立方体的个数可能是6个或7个或8个,小立方体的个数不可能是9.故选D.点睛:本题主要考查了三视图的应用,掌握口诀“俯视图打地基,主视图疯狂盖,左视图拆违章”就更容易得到答案.注意俯视图中有几个正方形,底层就有几个立方体.二、填空题15.【分析】先画出这个图形的三视图从而可得上下面前后面左右面的小正方形的个数再根据正方形的面积公式即可得【详解】由题意画出这个图形的三视图如下:则这个图形的表面积是故答案为:【点睛】本题考查了求几何体的解析:2236a cm【分析】先画出这个图形的三视图,从而可得上下面、前后面、左右面的小正方形的个数,再根据正方形的面积公式即可得.【详解】由题意,画出这个图形的三视图如下:则这个图形的表面积是()()22226262636a a cm ⨯+⨯+⨯=, 故答案为:2236a cm .【点睛】本题考查了求几何体的表面积,正确画出图形的三视图是解题关键.16.24πcm²【分析】根据三视图确定该几何体是圆柱体再计算圆柱体的侧面积【详解】解:先由三视图确定该几何体是圆柱体底面半径是4÷2=2cm 高是6cm 圆柱的侧面展开图是一个长方形长方形的长是圆柱的底面周解析:24π cm²【分析】根据三视图确定该几何体是圆柱体,再计算圆柱体的侧面积.【详解】解:先由三视图确定该几何体是圆柱体,底面半径是4÷2=2cm ,高是6cm ,圆柱的侧面展开图是一个长方形,长方形的长是圆柱的底面周长,长方形的宽是圆柱的高,且底面周长为:2π×2=4π(cm),∴这个圆柱的侧面积是4π×6=24π(cm²).故答案为:24π cm².【点睛】此题主要考查了由三视图确定几何体和求圆柱体的侧面积,关键是根据三视图确定该几何体是圆柱体.17.【分析】先由勾股定理求出母线再根据圆锥侧面积公式S=r 计算即可【详解】圆锥半径:r=8÷2=4S=r=20故答案为:20【点睛】本题考查圆锥侧面积的求法理解并掌握圆锥侧面积公式是解题关键解析:20π【分析】先由勾股定理求出母线l ,再根据圆锥侧面积公式S=πr l 计算即可.【详解】圆锥半径:r=8÷2=422345l =+=S=πr l=20π故答案为:20π【点睛】本题考查圆锥侧面积的求法,理解并掌握圆锥侧面积公式是解题关键.18.23【分析】根据三视图得出碟子的总数由(1)知每个碟子的高度即可得出答案【详解】可以看出碟子数为x时碟子的高度为2+15(x﹣1);由三视图可知共有15个碟子∴叠成一摞的高度=15×15+05=23解析:23【分析】根据三视图得出碟子的总数,由(1)知每个碟子的高度,即可得出答案.【详解】可以看出碟子数为x时,碟子的高度为2+1.5(x﹣1);由三视图可知共有15个碟子,∴叠成一摞的高度=1.5×15+0.5=23(cm).故答案为:23cm.【点睛】本题考查了图形的变化类问题及由三视图判断几何体的知识,找出碟子个数与碟子高度的之间的关系式是此题的关键.19.39【分析】由主视图可得组合几何体有4列由左视图可得组合几何体有4行可得最底层几何体最多正方体的个数为:4×4=16;由主视图和左视图可得第二层最多正方体的个数为:4×4=16;由主视图和左视图可得解析:39【分析】由主视图可得组合几何体有4列,由左视图可得组合几何体有4行,可得最底层几何体最多正方体的个数为:4×4=16;由主视图和左视图可得第二层最多正方体的个数为:4×4=16;由主视图和左视图可得第3层最多正方体的个数为:3×2=6;由主视图和左视图可得第4层最多正方体的个数为:1;相加可得所求.【详解】由主视图可得组合几何体有4列,由左视图可得组合几何体有4行,最底层几何体最多正方体的个数为:4×4=16,由主视图和左视图可得第二层最多正方体的个数为:4×4=16;由主视图和左视图可得第3层最多正方体的个数为:3×2=6;由主视图和左视图可得第4层最多正方体的个数为:1;16+16+6+1=39(件).故这正方体快递件最多有39件.故答案为:39.【点睛】此题考查由视图判断几何体;得到最底层正方体的最多的个数是解决本题的突破点;用到的知识点为:最底层正方体的最多的个数=行数×列数.20.2【分析】首先判定△ABE∽△CDE根据相似三角形的性质可得然后代入数值进行计算即可【详解】解:∵AB⊥EDCD⊥ED∴AB∥DC∴△ABE∽△CDE∴∵AB=15mCD=6mBD=6m∴解得:EB解析:2【分析】首先判定△ABE∽△CDE,根据相似三角形的性质可得AB EBCD ED=,然后代入数值进行计算即可.【详解】解:∵AB⊥ED,CD⊥ED,∴AB∥DC,∴△ABE∽△CDE,∴AB EB CD ED=∵AB=1.5m,CD=6m,BD=6m,∴1.566EBEB=+解得:EB=2,故答案为2【点睛】此题主要考查了相似三角形的应用,属于简单题,关键是掌握相似三角形对应边成比例是解题关键.21.6+【解析】【分析】延长AC交BF延长线于D点则BD即为AB的影长然后根据物长和影长的比值计算即可【详解】延长AC交BF延长线于D点则∠CFE=30°作CE⊥BD于E在Rt△CFE中∠CFE=30°解析:6【解析】【分析】延长AC交BF延长线于D点,则BD即为AB的影长,然后根据物长和影长的比值计算即可.【详解】延长AC交BF延长线于D点,则∠CFE=30°,作CE⊥BD于E.在Rt△CFE中,∠CFE=30°,CF=4,∴CE=2,EF在Rt△CED中,∵同一时刻,一根长为1米、垂直于地面放置的标杆在地面上的影长为2米,CE=2,CE:DE=1:2,∴DE=4,∴BD=BF+EF+ED在Rt△ABD中,AB12=BD12=(12+23)=6+3.故答案为(6+3)米.【点睛】本题考查了相似三角形的性质.解决本题的关键是作出辅助线得到AB的影长.22.64【分析】根据平行投影同一时刻物长与影长的比值固定即可解题【详解】解:由题可知:解得:树高=64米【点睛】本题考查了投影的实际应用属于简单题熟悉投影概念列比例式是解题关键解析:6.4【分析】根据平行投影,同一时刻物长与影长的比值固定即可解题.【详解】解:由题可知:1.628=树高,解得:树高=6.4米.【点睛】本题考查了投影的实际应用,属于简单题,熟悉投影概念,列比例式是解题关键.23.7【解析】该几何体的主视图的面积为1×1×4=4左视图的面积是1×1×3=3所以该几何体的主视图和左视图的面积之和是3+4=7故答案为7解析:7【解析】该几何体的主视图的面积为1×1×4=4,左视图的面积是1×1×3=3,所以该几何体的主视图和左视图的面积之和是3+4=7,故答案为7.24.16【分析】易得△AOB∽△ECD利用相似三角形对应边的比相等可得旗杆OA的长度【详解】解:∵OA⊥DACE⊥DA∴∠CED=∠OAB=90°∵CD∥OE∴∠CDA=∠OBA∴△AOB∽△EC D∴解解析:16【分析】易得△AOB∽△ECD,利用相似三角形对应边的比相等可得旗杆OA的长度.【详解】解:∵OA ⊥DA ,CE ⊥DA ,∴∠CED=∠OAB=90°,∵CD ∥OE ,∴∠CDA=∠OBA ,∴△AOB ∽△ECD , ∴CE OA 16OA ,DE AB 220==, 解得OA=16.故答案为16. 25.【分析】先判断出几何体为正三棱柱求出三棱柱的底面积最后求表面积即可【详解】解:由三视图得几何体为正三棱柱上下底为边长为2的等边三角形侧面积为长为3宽为2的矩形如图等边三角形ABC 中作AD ⊥BC 于D 则 解析:1823+【分析】先判断出几何体为正三棱柱,求出三棱柱的底面积,最后求表面积即可.【详解】解:由三视图得,几何体为正三棱柱,上下底为边长为2的等边三角形,侧面积为长为3,宽为2的矩形.如图,等边三角形ABC 中,作AD ⊥BC 于D ,则BD=1BC=12, 在t ABD R △中,2222AD=AB -BD =21=3-;∴11=BC AD=23=322ABC S ⨯⨯⨯⨯△, ∴三棱柱的表面积为23323=18+23⨯⨯+⨯.故答案为: 183+【点睛】本题考查了三视图,等边三角形的面积计算等知识,根据三视图判断出几何体形状是解题关键.26.【分析】作EH ⊥FG 于点H 解直角三角形求出EH 即可得出AB 的长度【详解】解:如图所示作EH ⊥FG 于点H ∵∠EHF=90°∠EFG=45°∴∠EFG=∠FEH=45°∴EH=HF=∵∴EH=根据三视图 解析:62 【分析】 作EH ⊥FG 于点H ,解直角三角形求出EH 即可得出AB 的长度.【详解】解:如图所示,作EH ⊥FG 于点H ,∵∠EHF=90°,∠EFG=45°,∴∠EFG=∠FEH=45°,∴EH=HF=22EF , ∵12EF cm ,∴EH=62,根据三视图的意义可知,AB=EH=62故答案为:62【点睛】本题考查了三视图,解直角三角形的应用,解题的关键是理解题意,灵活运用所学知识解决问题.三、解答题27.见解析【分析】利用俯视图即可得出几何体的形状,进而得出几何体的主视图和左视图.【详解】解:如图所示:.【点睛】此题主要考查了作三视图以及由三视图判断几何体的形状,正确得出几何体的形状是解题关键.28.见解析.【分析】分别从正面、左面、上面看得到的图形即可.看到的棱用实线表示,实际存在但是被挡住看不见的棱用虚线表示.【详解】【点睛】本题考查了三视图的作图.29.(1)线段CP为王乐在路灯B下的影子;(2)王乐站在Q处时,在路灯A下的影长为1.5m;(3)路灯A的高度为12m【分析】(1)影长为光线与物高相交得到的阴影部分;(2)易得Rt△CEP∽Rt△CBD,利用对应边成比例可得QD长;(3)易得Rt△DFQ∽Rt△DAC,利用对应边成比例可得AC长,也就是路灯A的高度.【详解】解:(1)线段CP为王乐在路灯B下的影子.(2)由题意得Rt△CEP∽Rt△CBD,∴1.8292 6.5QD=++,解得:QD=1.5m.所以王乐站在Q处时,在路灯A下的影长为1.5m (3)由题意得Rt△QDF∽Rt△CDA,∴FQ QD=,AC DC∴1.8 1.5=,AC10解得:AC=12m.所以路灯A的高度为12m.【点睛】本题考查了中心投影及相似的判定和性质,利用两三角形相似,对应边成比例来求线段的长.30.(1)见解析;(2)34【分析】(1)从正面看得到从左往右4列正方形的个数依次为1,3,1,2;从左面看得到从左往右2列正方形的个数依次为3,1;从上面看得到从左往右,4列正方形的个数依次为2,1,,1,1,依此画出图形即可;(2)有顺序的计算上下面,左右面,前后面的面积之和,然后加上2个三视图中没看到的面,计算表面积之和,即可;【详解】解:(1)如下图:(2)(5×2+7×2+4×2+2)×(1×1)=(10+14+8+2)×1=34×1=34故答案为:34.【点睛】考查了作图-三视图,三视图分为主视图、左视图、俯视图,分别是从物体正面、左面和上面看,所得到的图形.计算几何体的表面积应有顺序的分为相对的面进行计算不易出差错.。

九年级数学下册第二十九章《投影与视图》综合经典测试题(含答案)

九年级数学下册第二十九章《投影与视图》综合经典测试题(含答案)

学校:__________ 姓名:__________ 班级:__________ 考号:__________一、选择题1.如图,正方形ABCD 的边长为3cm ,以直线AB 为轴,将正方形旋转一周,所得几何体的主视图的面积是( )A .29cmB .29πcmC .218πcmD .218cm 2.如图所示,该几何体的主视图为( )A .B .C .D . 3.下面几何体的左视图是( )A .B .C .D . 4.如图是一个由相同小立方块搭成的几何体从上面看到的形状图,小正方形中的数字表示该位置上小立方块的个数,则该几何体从正面看是( )A .B .C .D . 5.如图,是一个由多个相同小正方体堆积而成的几何体的俯视图,图中所示数字为该位置小正方体的个数,则这个几何体的主视图(从正面看)是( )A .B .C .D . 6.如图是一个几何体的三视图(图中尺寸单位:cm ),根据图中所示数据求得这个几何体的侧面积是( )A .212cmB .()212πcm +C .26πcmD .28πcm 7.小明想测量一棵树的高度,他发现树的影子恰好落在地面和一斜坡上;如图,此时测得地面上的影长为8米,坡面上的影长为4米.已知斜坡的坡角为300,同一时 刻,一根长为l 米、垂直于地面放置的标杆在地面上的影长为2米,则树的高度为( )A .米B .12米C .米D .10米8.如图,身高为1.6m 的某学生想测量一棵大树的高度,她沿着树影BA 由B向A 走去,当走到C 点时,她的影子顶端正好与树的影子顶端重合,测得BC =3.2m",CA =0.8m , 则树的高度为( )A .4.8mB .6.4mC .8mD .10m9.圆桌面(桌面中间有一个直径为1m 的圆洞)正上方的灯泡(看作一个点)发出的光线照射平行于地面的桌面后,在地面上形成如图所示的圆环形阴影.已知桌面直径为2m ,桌面离地面1m ,若灯泡离地面2m ,则地面圆环形阴影的面积是( )A .2πm 2B .3πm 2C .6πm 2D .12πm 210.下面的三视图对应的物体是()A.B.C.D.11.如图是由若干个小正方体组成的几何体从上面看到的图形,小正方形中的数字表示该位置小正方体的个数,这个几何体从正面看到的图形是()A.B.C.D.12.如图,用八个同样大小的小立方体粘成一个大正方体,得到的几何体从正面、从左面和从上面看到的形状图如图,若小明从八个小立方体中取走若干个,剩余小立方体保持位置不动,并使得到的新几何体从三个方向看到的形状图不变,则他取走的小立方体最多可以是()A.0个B.1个C.4个D.3个13.如图中的几何体是由一个圆柱和个长方体组成的,该几何体的俯视图是( )A.B.C.D.14.如图是由一些完全相同的小立方块搭成的几何体的三种视图.搭成这个几何体所用的小立方块的个数是()A.5个B.6个C.7个D.8个二、填空题15.用小立方体搭一个几何体,其主视图和俯视图如下图,搭这样的集合体最多需要__________个小立方体,最少需要__________个小立方体.16.由几个相同小正方体搭成的几何体的主视图与左视图如图所示,则该几何体最少由________个小正方体搭成.17.如图是某几何体的三视图,则该几何体左视图的面积为_________.18.小新的身高是1.7m,他的影子长为5.1m,同一时刻水塔的影长是42m,则水塔的高度是_____m.19.已知一个物体由x个相同的正方体堆成,它的正视图和左视图如图所示,那么x的最大值是_____.20.几个棱长为1的正方体组成的几何体的三视图如图所示,则这个几何体的体积是_____.21.如图,一几何体的三视图如图:那么这个几何体是______.22.图中几何体的主视图是().A BC D23.如图,小明在A时测得某树的影长为3米,B时又测得该树的影长为12米,若两次日照的光线互相垂直,则树的高度为_________米.24.由n个相同的小正方体堆成的几何体,其视图如下所示,则n的最大值是_____.25.由一些完全相同的小正方体组成的几何体,从正面看和左面看的图形如图所示,则组成这个几何体的小正方体的个数至少是_____个.26.以下给出的几何体:球、正方体、圆柱、圆锥中,主视图是矩形,俯视图是圆形的是_____.三、解答题27.下图是某几何体的表面展开图:(1)这个几何体的名称是;(2)若该几何体的主视图是正方形,请在网格中画出该几何体的左视图、俯视图;(3)若网格中每个小正方形的边长为1,则这个几何体的体积为.28.如图是一个几何体从三个方向看所得到的形状图.(1)写出这个几何体的名称;(2)若从正面看的长为10cm,从上面看到的圆的直径为4cm,求这个几何体的表面积(结果保留π).29.画出下面图形的三视图.(请把线条加粗加黑!)30.如图,上午小明在上学路上发现路灯的灯泡B在太阳光下的影子恰好落到点E处,他自己的影子恰好落在另一灯杆CD的底部点C处,晚自习放学时,小明又站在上午同一地方,此时发现灯泡D的灯光下自己的影子恰好落在点E处.请在图中画出表示小明身高的线段(用线段FG表示).【参考答案】一、选择题1.D2.B3.C4.A5.B6.C7.A8.C9.B10.D11.C12.C13.D14.D二、填空题15.1410【分析】根据几何体三视图的性质分析即可【详解】∵俯视图有6个正方形∴最底层有6个正方形∵主视图第二层有3个正方形∴第二层最多有6个正方形最少有3个正方形∵主视图第三层有1个正方形∴第三层最多16.【解析】【分析】仔细观察该几何体的主视图和左视图发挥空间想象能力便可得出几何体的形状【详解】仔细观察物体的主视图和左视图可知:该几何体的下面最少要有三个小正方体上面最少要有一个小正方体故该几何体最少17.【解析】【分析】由视图知此几何体的侧视图为一个长方形故由题设条件求出侧视图的面积即可【详解】由几何体的主视图与俯视图可得几何体为三棱柱所以该几何体的左视图的面积为2×6=12故答案为:【点睛】本题考18.14【分析】设水塔的高为xm根据同一时刻平行投影中物体与影长成正比得到x:42=17:51然后利用比例性质求x即可【详解】设水塔的高为xm根据题意得x:42=17:51解得x=14即水塔的高为14m19.11【解析】综合正视图和左视图底面最多有3×3=9个小正方体第二层最多有2个小正方体那么x的最大值应该是9+2=11故答案为:11点睛:本题考查对三视图的理解应用及空间想象能力本题中虽然没有告诉俯视20.5【解析】试题21.圆锥【解析】试题分析:由主视图和左视图为三角形判断出是锥体由俯视图是圆形可判断出这个几何体应该是圆锥故答案为圆锥考点:由三视图判断几何体22.C【解析】试题分析:根据几何体的三视图知识几何体的主视图即从正面看到的图形此几何体从正面看到的图形为上下两层下面有两个小正方形上面靠左有一个小正方形如图C 所示故选C考点:几何体的三视图23.6【分析】根据题意画出示意图易得:Rt△EDC∽Rt△FDC进而可得;即DC2=EDFD代入数据可得答案【详解】根据题意作△EFC树高为CD且∠ECF=90°ED=3FD=12易得:Rt△EDC∽R24.18【分析】根据主视图和俯视图得出几何体的可能堆放从而即可得出答案【详解】综合主视图和俯视图底面最多有个第二层最多有个第三层最多有个则n的最大值是故答案为:18【点睛】本题考查了三视图中的主视图和俯25.4【分析】根据图示可知该几何体有2层由俯视图可得第一层小正方图的个数由主视图可得第二层小正方体的可能的个数即可解决问题【详解】由俯视图易得最底层有3个小正方体由主视图易得第二层最少有1个最多有2个小26.圆柱【分析】根据三视图的基本知识分析各个几何体的三视图然后可解答【详解】解:俯视图是圆的有球圆柱圆锥主视图是矩形的有正方体圆柱故答案为:圆柱【点睛】本题考查了简单几何体的三视图熟记简单几何的三视图是三、解答题27.28.29.30.【参考解析】一、选择题1.D解析:D【分析】先确定几何体的主视图,得到边长分别为3cm、6cm,再根据面积公式计算得出答案.【详解】如图,所得几何体的主视图是一个长方形,边长分别为3cm、6cm,∴所得几何体的主视图的面积是36 =218cm,故选:D.【点睛】此题考查几何体的三视图,平面图形的面积计算公式,正确理解几何体的三视图是解题的关键.2.B解析:B【分析】找到从正面看所得到的图形即可.【详解】从正面看两个矩形,中间的线为虚线,故选B.【点睛】考查了三视图的知识,主视图是从物体的正面看得到的视图.3.C解析:C【分析】根据三视图的定义,从左边观察可得.【详解】从左面看可得到左边有2个正方形,右边有1个正方形.故选:C.【点睛】考核知识点:三视图.注意观察的方向.4.A解析:A【分析】由已知条件可知,主视图有3列,每列小正方形数目分别为1,2,1;左视图有2列,每列小正方形数目分别为2,2,据此可画出图形.【详解】根据图形可知:主视图有3列,每列小正方形数目分别为1,2,1.故选A.【点睛】本题考查了几何体的三视图画法.由几何体的俯视图及小正方形中的数字,可知主视图有3列,且每列小正方形数目为俯视图中该列小正方形数字中的最大数字.左视图有2列,且每列小正方形数目为俯视图中相应行中正方形数字中的最大数字.5.B解析:B【分析】俯视图中的每个数字是该位置小立方体的个数,分析其中的数字,得主视图有4列,从左到右分别是1,2,3,2个正方形.【详解】由俯视图中的数字可得:主视图有4列,从左到右分别是1,2,3,2个正方形.故选B.【点睛】本题考查了学生的思考能力和对几何体三种视图的空间想象能力.6.C解析:C【分析】根据三视图确定该几何体是圆柱体,再计算圆柱体的侧面积.【详解】先由三视图确定该几何体是圆柱体,底面半径是2÷2=1cm,高是3cm.所以该几何体的侧面积为2π×1×3=6π(cm2).故选C.【点睛】此题主要考查了由三视图确定几何体和求圆柱体的侧面积,关键是根据三视图确定该几何体是圆柱体.7.A解析:A【解析】解直角三角形的应用(坡度坡角问题),锐角三角函数定义,特殊角的三角函数值,相似三角形的判定和性质.【分析】延长AC交BF延长线于E点,则∠CFE=30°.作CE⊥BD于E,在Rt△CFE中,∠CFE=30°,CF=4,∴CE=2,EF=4cos30°3在Rt△CED中,CE=2,∵同一时刻,一根长为1米、垂直于地面放置的标杆在地面上的影长为2米,∴DE=4.∴3∵△DCE∽△DAB,且CE:DE=1:2,∴在Rt △ABD 中,AB=BD=.故选A .8.C解析:C【解析】解:因为人和树均垂直于地面,所以和光线构成的两个直角三角形相似,设树高x 米,则 1.6AC AB x =,即0.8 1.60.8 3.2x=+ ∴x=8故选C . 9.B解析:B【解析】【分析】 先根据AC ⊥OB ,BD ⊥OB 可得出△AOC ∽△BOD ,由相似三角形的对应边成比例可求出BD 的长,进而得出BD ′=1m ,再由圆环的面积公式即可得出结论.【详解】解:如图所示:∵AC ⊥OB ,BD ⊥OB ,∴△AOC ∽△BOD ,∴OA AC OB BD =,即112BD=, 解得:BD =2m , 同理可得:AC ′=0.5m ,则BD ′=1m ,∴S 圆环形阴影=22π﹣12π=3π(m 2).故选B .【点睛】考查的是相似三角形的应用以及中心投影,利用相似三角形的对应边成比例得出阴影部分的半径是解题关键.10.D解析:D【解析】解:从俯视图可以看出直观图的下面部分为三个长方体,且三个长方体的宽度相同.只有D 满足这两点.故选D .点睛:本题主要考查学生对图形的三视图的了解及学生的空间想象能力.11.C解析:C【解析】【分析】先根据俯视图判断出几何体的形状,再根据主视图是从正面看画出图形即可.【详解】解:由俯视图可知,几何体共有两排,前面一排从左到右分别是1个和2个小正方体搭成两个长方体,后面一排分别有2个、3个、1个小正方体搭成三个长方体,并且这两排右齐,故从正面看到的视图为:.故选:C.【点睛】本题考查几何体三视图,熟记三视图的概念并判断出物体的排列方式是解题的关键.12.C解析:C【解析】【分析】根据三视图不变,可知可以把1、4号小正方体下面的两个小正方体去掉,再把第二层的2、3号小正方体去掉,最多去掉四个.【详解】由于从八个小立方体中取走若干个,剩余小立方体保持原位置不动,并使得到的新几何体的三视图不变,所以这个正方体可以把1、4号小正方体下面的两个小正方体去掉,再把2、3号小正方体去掉(或最底层2、3号小正方体下面的两个小正方体去掉,再把第二层的1、4号小正方体去掉),即可得取走的小立方体最多可以是4个.故选:C【点睛】本题考查了学生的观察能力和对几何体三种视图的空间想象能力,根据三视图确定几何体的形状是解决本题的关键.13.D解析:D【解析】【分析】根据从上边看得到的图形是俯视图,可得答案.【详解】解:从上边看是一个圆形,圆形内部是一个虚线的正方形.故选:D.【点睛】本题考查了简单组合体的三视图,从上边看得到的图形是俯视图.14.D解析:D【解析】【分析】结合三视图的知识,主视图以及左视图底面有6个小正方体,共有两层三行,第二层有2个小正方体.【详解】综合主视图,俯视图,左视图底面有6个正方体,第二层有2个正方体,所以搭成这个几何体所用的小立方块的个数是8.故选D.【点睛】本题考查对三视图的理解应用及空间想象能力.可从主视图上分清物体的上下和左右的层数,从俯视图上分清物体的左右和前后位置,综合上述分析数出小立方块的个数.二、填空题15.1410【分析】根据几何体三视图的性质分析即可【详解】∵俯视图有6个正方形∴最底层有6个正方形∵主视图第二层有3个正方形∴第二层最多有6个正方形最少有3个正方形∵主视图第三层有1个正方形∴第三层最多解析:14 10【分析】根据几何体三视图的性质分析即可.【详解】∵俯视图有6个正方形∴最底层有6个正方形∵主视图第二层有3个正方形∴第二层最多有6个正方形,最少有3个正方形∵主视图第三层有1个正方形∴第三层最多有2个正方形,最少有1个正方形∴搭这样的集合体最多需要66214++=个小立方体,最少需要63110++=个小立方体 故答案为:14,10.【点睛】本题考查了几何体三视图的问题,掌握几何体三视图的性质是解题的关键.16.【解析】【分析】仔细观察该几何体的主视图和左视图发挥空间想象能力便可得出几何体的形状【详解】仔细观察物体的主视图和左视图可知:该几何体的下面最少要有三个小正方体上面最少要有一个小正方体故该几何体最少 解析:4【解析】【分析】仔细观察该几何体的主视图和左视图,发挥空间想象能力,便可得出几何体的形状.【详解】仔细观察物体的主视图和左视图可知:该几何体的下面最少要有三个小正方体,上面最少要有一个小正方体,故该几何体最少有4个小正方体组成,故答案为:4.【点睛】本题考查了由三视图判断几何体,主视图是从物体的前面看得到的视图,左视图是从物体的左面看得到的视图,熟练掌握是关键.17.【解析】【分析】由视图知此几何体的侧视图为一个长方形故由题设条件求出侧视图的面积即可【详解】由几何体的主视图与俯视图可得几何体为三棱柱所以该几何体的左视图的面积为2×6=12故答案为:【点睛】本题考解析:2【解析】【分析】由视图知,此几何体的侧视图为一个长方形,故由题设条件求出侧视图的面积即可.【详解】由几何体的主视图与俯视图可得,几何体为三棱柱,所以该几何体的左视图的面积为=,故答案为:2.【点睛】本题考点是由三视图求几何体的面积、体积,考查对三视图的理解与应用,主要考查三视图与实物图之间的关系,用三视图中的数据还原出实物图的数据,再根据相关的公式求表面积与体积,本题求的是三视图中的侧视图面积,解决本题的关键是由题设条件得出侧视图的形状及侧视图的几何特征.求解本题的关键是准确熟练理解三视图的投影规则,其规则是:主视、俯视长对正;主视、左视高平齐,左视、俯视宽相等.18.14【分析】设水塔的高为xm 根据同一时刻平行投影中物体与影长成正比得到x:42=17:51然后利用比例性质求x即可【详解】设水塔的高为xm根据题意得x:42=17:51解得x=14即水塔的高为14m解析:14.【分析】设水塔的高为xm,根据同一时刻,平行投影中物体与影长成正比得到x:42=1.7:5.1,然后利用比例性质求x即可.【详解】设水塔的高为xm,根据题意得x:42=1.7:5.1,解得x=14,即水塔的高为14m.故答案为14.【点睛】本题考查了平行投影的知识,解题的关键是熟练的掌握投影的性质与运用.19.11【解析】综合正视图和左视图底面最多有3×3=9个小正方体第二层最多有2个小正方体那么x的最大值应该是9+2=11故答案为:11点睛:本题考查对三视图的理解应用及空间想象能力本题中虽然没有告诉俯视解析:11【解析】综合正视图和左视图,底面最多有3×3=9个小正方体,第二层最多有2个小正方体,那么x的最大值应该是9+2=11.故答案为:11.点睛:本题考查对三视图的理解应用及空间想象能力.本题中虽然没有告诉俯视图,但是说明了x取最大值也就间接的说明了俯视图的情况.20.5【解析】试题解析:5【解析】试题综合三视图可知,这个几何体的底层应该有3+1=4个小正方体,第二层应该有1个小正方体,因此搭成这个几何体所用小正方体的个数是4+1=5个,所以这个几何体的体积是5.21.圆锥【解析】试题分析:由主视图和左视图为三角形判断出是锥体由俯视图是圆形可判断出这个几何体应该是圆锥故答案为圆锥考点:由三视图判断几何体解析:圆锥【解析】试题分析:由主视图和左视图为三角形判断出是锥体,由俯视图是圆形可判断出这个几何体应该是圆锥.故答案为圆锥.考点:由三视图判断几何体.22.C【解析】试题分析:根据几何体的三视图知识几何体的主视图即从正面看到的图形此几何体从正面看到的图形为上下两层下面有两个小正方形上面靠左有一个小正方形如图C所示故选C考点:几何体的三视图解析:C.【解析】试题分析:根据几何体的三视图知识,几何体的主视图即从正面看到的图形,此几何体从正面看到的图形为上下两层,下面有两个小正方形,上面靠左有一个小正方形,如图C所示.故选C.考点:几何体的三视图.23.6【分析】根据题意画出示意图易得:Rt△EDC∽Rt△FDC进而可得;即DC2=EDFD代入数据可得答案【详解】根据题意作△EFC树高为CD且∠ECF=90°ED=3FD=12易得:Rt△EDC∽R解析:6【分析】根据题意,画出示意图,易得:Rt△EDC∽Rt△FDC,进而可得ED DCDC FD=;即DC2=ED?FD,代入数据可得答案.【详解】根据题意,作△EFC,树高为CD,且∠ECF=90°,ED=3,FD=12,易得:Rt△EDC∽Rt△DCF,有ED DCDC FD=,即DC2=ED×FD,代入数据可得DC2=36,DC=6,故答案为6.24.18【分析】根据主视图和俯视图得出几何体的可能堆放从而即可得出答案【详解】综合主视图和俯视图底面最多有个第二层最多有个第三层最多有个则n的最大值是故答案为:18【点睛】本题考查了三视图中的主视图和俯解析:18【分析】根据主视图和俯视图得出几何体的可能堆放,从而即可得出答案.【详解】综合主视图和俯视图,底面最多有2327++=个,第二层最多有2327++=个,第三层最多有2024++=个则n 的最大值是77418++=故答案为:18.【点睛】本题考查了三视图中的主视图和俯视图,掌握三视图的相关概念是解题关键.25.4【分析】根据图示可知该几何体有2层由俯视图可得第一层小正方图的个数由主视图可得第二层小正方体的可能的个数即可解决问题【详解】由俯视图易得最底层有3个小正方体由主视图易得第二层最少有1个最多有2个小 解析:4【分析】根据图示可知,该几何体有2层,由俯视图可得第一层小正方图的个数,由主视图可得第二层小正方体的可能的个数,即可解决问题.【详解】由俯视图易得,最底层有3个小正方体,由主视图易得,第二层最少有1个,最多有2个小正方体,那么搭成这个几何体的小正方体最少为3+1=4个,最多为3+2=5个故答案为:4【点睛】本题考查了从不同方向观察几何体,难度适中,熟练掌握根据主视图和俯视图确定小正方体的个数是解题关键.26.圆柱【分析】根据三视图的基本知识分析各个几何体的三视图然后可解答【详解】解:俯视图是圆的有球圆柱圆锥主视图是矩形的有正方体圆柱故答案为:圆柱【点睛】本题考查了简单几何体的三视图熟记简单几何的三视图是 解析:圆柱.【分析】根据三视图的基本知识,分析各个几何体的三视图然后可解答.【详解】解:俯视图是圆的有球、圆柱、圆锥,主视图是矩形的有正方体、圆柱,故答案为:圆柱.【点睛】本题考查了简单几何体的三视图,熟记简单几何的三视图是解题关键.三、解答题27.(1)长方体;(2)作图见解析;(3)12.【分析】(1)展开图都是由3对长方形组成的,每对长方形的大小完全相同.(2)观察左视图,主视图以及俯视图即可判定.(3)根据长方体的体积公式求解.【详解】(1)由题目中的图可知为长方体.(2)∵该几何体的主视图是正方形,则主视图和俯视图如图:⨯⨯=.(3)体积=长⨯宽⨯高=32212【点睛】本题考查作图-三视图、解题的关键是学会观察、搞清楚三视图的定义,求长方体体积的计算公式.28.48πcm.(1)圆柱;(2)2【分析】(1)根据该几何体的主视图与左视图是矩形,俯视图是圆可以确定该几何体是圆柱;(2)根据告诉的几何体的尺寸确定该几何体的表面积即可;【详解】(1)由三视图判断出该几何体是圆柱.(2)∵从正面看的长为10cm,从上面看的圆的直径为4cm,∴该圆柱的底面半径径为2cm,高为10cm,∴该几何体的侧面积为2=⨯⨯=,底面积为:2πr2=8πcm2.2πrh2π21040πcm∴该几何体的表面积为2+=.40π8π48πcm【点睛】本题考查了由三视图判断几何体及几何体的表面积问题,解题的关键是了解圆柱的表面积的计算方法.29.见解析.【分析】根据三视图画出图形解答即可.【详解】根据题意,如图所示:(小正方形之间的拼缝可以不画!轮廓线正确就正确)主视图左视图俯视图【点睛】本题是考查了简单图形的三视图,能正确辨认从正面、上面、左面(或右面)观察到的简单几何体的平面图形.30.详见解析.【分析】先画出上午太阳光线下的灯泡B的照射光线BE,过点C作BE的平行线,再连接下午时灯光下灯泡D的光线DE,与过点C的光线交于点G,在过点G作地面的垂线GF,即是表示小明身高的线段.【详解】如图所示,线段FG即为所求.【点睛】此题考查投影,投影分为平行投影和中心投影,解题中能正确区分两种投影的区别是解题的关键.。

人教版数学九年级下学期第29章《投影与视图》测试题含答案

人教版数学九年级下学期第29章《投影与视图》测试题含答案

人教版数学九年级下学期第29章《投影与视图》测试题(测试时间:90分钟满分:120分)一、选择题(每小题3分,共30分)1.如图所示几何体的主视图是().A. B. C. D.2.如图所示的几何体的俯视图是()A. B. C. D.3.如图用6个同样大小的立方体摆成的几何体,将立方体①移走后,所得几何体与原来几何体的()A.主视图改变,左视图改变 B.俯视图不变,左视图不变C.俯视图改变,左视图改变 D.主视图改变,左视图不变4.下列四个几何体中,它们的主视图、左视图、俯视图都是正方形的是()A. B. C. D.5.如图,是由几个小立方体所搭成的几何体的俯视图,小正方形中的数字表示在该位置上的立方体的个数,这个几何体的正视图是()A. B. C. D.6.如图所示是由六个相同的小立方块搭成的几何体,这个几何体的俯视图是().A. B. C. D.7.下列四幅图形中,表示两棵圣诞树在同一时刻阳光下的影子的图形可能是( ) 8.如图,按照三视图确定该几何体的全面积为(图中尺寸单位:cm)()A.128πcm2 B.160πcm2 C.176πcm2 D.192πcm29.如图所示的几何体的左视图是()A. B. C. D.10.如图,在房子屋檐E处安有一台监视器,房子前有一面落地的广告牌,那么监视器的盲区是()A.△ACE B.△ADF C.△ABD D.四边形BCED二、填空题(每小题3分,共30分)11.苏轼的诗句“横看成岭侧成峰,远近高低各不同”把此诗句用在视图上,说明的现象是________.12.如图,请写出图,图,图是从哪个方向可到的:图________;图________;图________.13.图是一个几何体的主视图、左视图和俯视图,则这个几何体是________.(填序号)14.如图,②是①中图形的________视图.②15.下列投影:①阳光下遮阳伞的影子;②灯光下小明读书的影子;③阳光下大树的影子;④阳光下农民锄地的影子;⑤路灯下木杆的影子.其中属于平行投影的是_______,属于中心投影的是_____.(填序号) 16.图(1)是一个水平摆放的小正方体木块,图(2)、(3)是由这样的小正方体木块叠放而成,按照这样的规律继续叠放下去,至第七个叠放的图形中,小正方体木块总数应是_________.17.有两根大小、形状完全相同的铁丝,甲铁丝与投影面的夹角是45°,乙铁丝与投影面的夹角是30°,那么两根铁丝在投影面的正投影的长度的大小关系是:甲____乙(填“>”“<”或“=”).18.如图,Rt△ABC中,∠ACB=90°,CD⊥AB,那么线段AC在AB上的正投影是___,线段CD在AB上的正投影是___,线段BC在AB上的正投影是___.19.如图,是一个包装盒的三视图,则这个包装盒的表面积是(结果保留π)20.如图,小明同学在非洲旅游期间想自己测出金字塔的高度,首先小明在阳光下测量出了长1 m的木杆CD的影子CE长1.5m;其次测出金字塔中心O到影子的顶部A的距离为201m。

江苏南通市九年级数学下册第二十九章《投影与视图》综合经典测试(答案解析)

江苏南通市九年级数学下册第二十九章《投影与视图》综合经典测试(答案解析)

学校:__________ 姓名:__________ 班级:__________ 考号:__________一、选择题1.“圆柱与球的组合体”如下图所示,则它的三视图是()A.B.C.D.2.由7个相同的棱长为1的小立方块拼成的几何体如图所示,它的表面积为()A.23B.24C.26D.283.一张矩形纸片在太阳光的照射下,在地面上的投影不可能是()A.正方形B.平行四边形C.矩形D.等边三角形4.由m个相同的正方体组成一个立体图形,下面的图形分别是从正面和上面看它得到的平面图形,则m能取到的最大值是()A.6 B.5 C.4 D.35.如图是由一些相同的小正方体构成的立体图形的三视图.构成这个立体图形的小正方体的个数是()A.6 B.7 C.4 D.56.如图所示立体图形,从上面看到的图形是()A.B.C.D.7.如图,该几何体的俯视图是()A.B.C.D.8.如图所示的几何体,它的左视图是()A.B.C.D.9.小亮在上午8时、9时30分、10时、12时四次到室外的阳光下观察向日葵的头茎随太阳转动的情况,无意之中,他发现这四个时刻向日葵影子的长度各不相同,那么影子最长的时刻为()A.上午8时B.上午9时30分C.上午10时D.上午12时10.小乐用一块长方形硬纸板在阳光下做投影实验,通过观察,发现这块长方形硬纸板在平整的地面上不可能出现的投影是()A.三角形B.线段C.矩形D.平行四边形11.如图是由五个相同的小正方体搭成的一个几何体,它的主视图是()A.B.C.D.12.如图所示几何体的主视图是()A.B.C.D.13.下列四个几何体中,主视图是三角形的是()A.B.C.D.14.如图是有一些相同的小正方体构成的立体图形的三视图.这些相同的小正方体的个数是()A.4 B.5 C.6 D.7二、填空题15.10个棱长为a cm的正方体摆放成如图的形状,这个图形的表面积是____________.16.如图是一个几何体的三视图,根据图中所示数据求得这个几何体的侧面积是________(结果保留 ).17.如图所示是一种棱长分别是2cm,3cm,4cm的长方体积木,现要用若干块这样的积木来搭建大长方体,如果用6块积木来搭,那么搭成的大长方体的表面积最小是________2cm.18.如图是由一些相同的小正方体构成的立体图形从三个方向看到的图形,那么构成这个立体图形的小正方体有_______个.19.如图是由若干个大小相同的小正方体堆砌而成的几何体,那么其三种视图中面积最小的是______.20.如图,身高1.6米的小丽在阳光下的影长为2米,在同一时刻,一棵大树的影长为8米,则这棵树的高度为_____米.21.如图,光源P在横杆AB的正上方,AB在灯光下的影子为CD,AB∥CD,AB=2m,CD=6m,点P到CD的距离是2.7m,则点P到AB间的距离是________.22.由n个相同的小正方体搭成的几何体的视图如图所示,则搭成这个几何体的个数是________.23.由几个相同小正方体搭成的几何体的主视图与左视图如图所示,则该几何体最少由________个小正方体搭成.AB CD,24.如图,电灯P在横杆AB的正上方,AB在灯光下的影子为CD,//CD m=,点P到CD的距离为2.7m,则AB与CD间的距离是AB m=, 4.51.5________m.25.图中几何体的主视图是().A BC D26.由若干个相同的小正方体搭成的一个几何体从正面和从左面看到的形状图如图所示,则所需的小正方体的个数最多是______个.三、解答题27.如图,是由一些大小相同且棱长为1的小正方体组合成的简单几何体.(1)这几个简单几何体的表面积是__________.(2)该几何体的立体图如图所示,请在下面方格纸中分别画出它的左视图和俯视图(请用铅笔涂上阴影).28.如图,将一个大立方体挖去一个小立方体,请画出它的三种视图.29.数学实践小组的同学利用太阳光下形成的影子测量大树的高度.在同一时刻下,他们测得身高为1.5米的同学立正站立时的影长为2米,大树的影子分别落在水平地面和台阶上.已知大树在地面的影长为2.4米,台阶的高度均为0.3米,宽度均为0.5米.求大树的高度AB.30.在同一时刻两根木杆在太阳光下的影子如图所示,其中木杆AB=2米,它的影子BC=1.6米,木杆PQ的影子有一部分落在墙上,PM=1.2米,MN=0.8米,求木杆PQ的长度.【参考答案】一、选择题1.A2.D3.D4.B5.A6.C7.A8.D9.A10.A11.B12.D13.B14.B二、填空题15.【分析】先画出这个图形的三视图从而可得上下面前后面左右面的小正方形的个数再根据正方形的面积公式即可得【详解】由题意画出这个图形的三视图如下:则这个图形的表面积是故答案为:【点睛】本题考查了求几何体的16.24πcm²【分析】根据三视图确定该几何体是圆柱体再计算圆柱体的侧面积【详解】解:先由三视图确定该几何体是圆柱体底面半径是4÷2=2cm高是6cm圆柱的侧面展开图是一个长方形长方形的长是圆柱的底面周17.168【分析】如果用6块来搭那么搭成的大长方体表面积最小是长3×2=6cm宽4cm高3×2=6cm的长方体的表面积根据长方体的表面积公式即可求解【详解】解:长3×2=6cm宽4cm高3×2=6cm(18.7【分析】利用主视图左视图中每列中正方形的个数判断俯视图中正方形的个数然后得出结果【详解】解:主视图从左往右2列正方形的个数依次为33;左视图从左往右2列正方形的个数依次为31;则俯视图中正方形的个19.左视图【分析】根据立体图形作出三视图求出面积即可【详解】解:如图该几何体正视图是由5个小正方形组成左视图是由3个小正方形组成俯视图是由5个小正方形组成故三种视图面积最小的是左视图故答案为左视图【点睛20.64【分析】根据平行投影同一时刻物长与影长的比值固定即可解题【详解】解:由题可知:解得:树高=64米【点睛】本题考查了投影的实际应用属于简单题熟悉投影概念列比例式是解题关键21.09m【分析】根据AB∥CD易得△PAB∽△PCD根据相似三角形对应高之比等于对应边之比列出方程求解即可【详解】∵AB∥CD∴△PAB∽△PCD∴假设P到AB距离为x则=x=09故答案为09m【点睛22.【解析】【分析】从俯视图中可以看出最底层小正方体的个数及形状从主视图和左视图可以看出每一层小正方体的层数和个数从而算出总的个数【详解】综合三视图我们可得出这个几何体的底层应该有2+1=3个小正方体;23.【解析】【分析】仔细观察该几何体的主视图和左视图发挥空间想象能力便可得出几何体的形状【详解】仔细观察物体的主视图和左视图可知:该几何体的下面最少要有三个小正方体上面最少要有一个小正方体故该几何体最少24.【分析】由AB∥CD得:△PAB∽△PCD由相似三角形对应高之比等于对应边之比列出方程求解【详解】∵AB∥CD∴△PAB∽△PCD假设CD到AB距离为x则:即x=18∴AB与CD间的距离是18m;故25.C【解析】试题分析:根据几何体的三视图知识几何体的主视图即从正面看到的图形此几何体从正面看到的图形为上下两层下面有两个小正方形上面靠左有一个小正方形如图C 所示故选C考点:几何体的三视图26.7【分析】根据主视图和左视图得出这个几何体的组成即可得出答案【详解】由题意得:这个几何体是由2行2列组成所需的小正方体的个数最多的搭配是其中数字表示所在行列的小正方体的个数则故答案为:7【点睛】本题三、解答题27.28.29.30.【参考解析】一、选择题1.A解析:A【分析】根据几何体三视图的定义即可得.【详解】从正面看和从左面看得到的平面图形都是一个圆和一个矩形的组合图形,从上面看得到的平面图形是一个圆环,观察四个选项可知,只有选项A符合,故选:A.【点睛】本题考查了几何体的三视图,熟练掌握定义是解题关键.2.D解析:D【分析】从6个方向数正方形的个数,再加上层中间的两个表面,从而得到几何体的表面积.【详解】它的表面积=5+5+5+5+3+3+2=28.故选:D.【点睛】本题考查了几何体的表面积:几何体的表面积=侧面积+底面积(上、下底的面积和).3.D解析:D【分析】根据平行投影的性质求解可得.【详解】一张矩形纸片在太阳光线的照射下,形成影子不可能是等边三角形,故选:D.【点睛】本题考查了平行投影:由平行光线形成的投影是平行投影,如物体在太阳光的照射下形成的影子就是平行投影.4.B解析:B【分析】根据主视图和俯视图分析每行每列小正方体最多的情况,即可得出答案.【详解】由题中所给出的主视图知物体共两列,且左侧一列高两层,右侧一列最高一层;由俯视图可知左侧两行,右侧一行,于是,可确定右侧只有一个小正方体,而左侧可能是一行单层一行两层,可能两行都是两层.最多的情况如图所示,所以图中的小正方体最多5块.故选:B.【点睛】本题考查根据三视图判断小正方体个数,需要一定空间想象力,熟练掌握主视图与俯视图的定义是解题的关键.5.A解析:A【分析】利用三视图的观察角度不同得出行数与列数,结合主视图得出答案.【详解】解:如图所示:由左视图可得此图形有3行,由俯视图可得此图形有3列,由主视图可得此图形最左边一列有4个小正方体,中间一列有1个小正方体,最右边一列有1个小正方体,故构成这个立体图形的小正方体有6个.故选:A.【点睛】此题主要考查了由三视图判断几何体,利用三视图得出几何体的形状是解题关键.6.C解析:C【分析】从上面看到3列正方形,找到相应列上的正方形的个数即可.【详解】从上面看得到从左往右3列正方形的个数依次为2,1,1,故选C.【点睛】本题考查了简单组合体的三视图,解决本题的关键是得到3列正方形具体数目.7.A解析:A【解析】分析:找到从几何体的上面所看到的图形即可.详解:从几何体的上面看可得,故选:A.点睛:此题主要考查了简单几何体的三视图,关键是掌握所看的位置.8.D解析:D【解析】分析:根据从左边看得到的图形是左视图,可得答案.详解:从左边看是等长的上下两个矩形,上边的矩形小,下边的矩形大,两矩形的公共边是虚线,故选D.点睛:本题考查了简单组合体的三视图,从左边看得到的图形是左视图.9.A解析:A【分析】根据从早晨到傍晚影子的指向是:西-西北-北-东北-东,影长由长变短,再变长可知.【详解】解:根据从早晨到傍晚影子的指向是:西-西北-北-东北-东,影长由长变短,再变长.可知影子最长的时刻为上午8时.故选A.【点睛】本题考查平行投影的特点和规律.在不同时刻,同一物体的影子的方向和大小可能不同,不同时刻物体在太阳光下的影子的大小在变,方向也在改变,就北半球而言,从早晨到傍晚影子的指向是:西-西北-北-东北-东,影长由长变短,再变长.10.A解析:A【分析】根据平行投影的性质进行分析即可得出答案.【详解】将长方形硬纸的板面与投影线平行时,形成的影子为线段;将长方形硬纸板与地面平行放置时,形成的影子为矩形;将长方形硬纸板倾斜放置形成的影子为平行四边形;由物体同一时刻物高与影长成比例,且长方形对边相等,故得到的投影不可能是三角形.故选A.【点睛】本题考查了投影与视图的有关知识,是一道与实际生活密切相关的热点试题,灵活运用平行投影的性质是解题的关键.11.B解析:B【解析】【分析】主视图就是正面看去所得图形,左起第一列为两个小正方形,第二列只有一个小正方形.【详解】解:主视图从左往右,每一列的小正方形数量分别为2、1,故选择B.【点睛】本题考查了主视图的概念.12.D解析:D【解析】【分析】主视图是正面看去所得图形.【详解】解:由图可知,该几何体的主视图为D选项所示图形,故选择D.【点睛】本题考查了立体图形三视图的概念.13.B解析:B【解析】主视图是三角形的一定是一个锥体,只有B是锥体.故选B.14.B解析:B【解析】根据题意可知:第一行第一列只能有1个正方体,第二列有3个正方体,第一行第3列有1个正方体,共需正方体1+3+1=5.故选B.二、填空题15.【分析】先画出这个图形的三视图从而可得上下面前后面左右面的小正方形的个数再根据正方形的面积公式即可得【详解】由题意画出这个图形的三视图如下:则这个图形的表面积是故答案为:【点睛】本题考查了求几何体的解析:2236a cm【分析】先画出这个图形的三视图,从而可得上下面、前后面、左右面的小正方形的个数,再根据正方形的面积公式即可得.【详解】由题意,画出这个图形的三视图如下:则这个图形的表面积是()()22226262636a a cm ⨯+⨯+⨯=, 故答案为:2236a cm .【点睛】本题考查了求几何体的表面积,正确画出图形的三视图是解题关键.16.24πcm²【分析】根据三视图确定该几何体是圆柱体再计算圆柱体的侧面积【详解】解:先由三视图确定该几何体是圆柱体底面半径是4÷2=2cm 高是6cm 圆柱的侧面展开图是一个长方形长方形的长是圆柱的底面周解析:24π cm²【分析】根据三视图确定该几何体是圆柱体,再计算圆柱体的侧面积.【详解】解:先由三视图确定该几何体是圆柱体,底面半径是4÷2=2cm ,高是6cm ,圆柱的侧面展开图是一个长方形,长方形的长是圆柱的底面周长,长方形的宽是圆柱的高,且底面周长为:2π×2=4π(cm),∴这个圆柱的侧面积是4π×6=24π(cm²).故答案为:24π cm².【点睛】此题主要考查了由三视图确定几何体和求圆柱体的侧面积,关键是根据三视图确定该几何体是圆柱体.17.168【分析】如果用6块来搭那么搭成的大长方体表面积最小是长3×2=6cm 宽4cm 高3×2=6cm 的长方体的表面积根据长方体的表面积公式即可求解【详解】解:长3×2=6cm 宽4cm 高3×2=6cm (解析:168【分析】如果用6块来搭,那么搭成的大长方体表面积最小是长3×2=6cm ,宽4cm ,高3×2=6cm 的长方体的表面积,根据长方体的表面积公式即可求解.【详解】解: 长3×2=6cm ,宽4cm ,高3×2=6cm(4×6+4×6+6×6)×2=(24+24+36)×2=84×2=168(cm 2).故答案为:168.【点睛】考查了几何体的表面积,关键是熟练掌握长方体的表面积公式,难点是得到搭成的大长方体的长宽高.18.7【分析】利用主视图左视图中每列中正方形的个数判断俯视图中正方形的个数然后得出结果【详解】解:主视图从左往右2列正方形的个数依次为33;左视图从左往右2列正方形的个数依次为31;则俯视图中正方形的个解析:7【分析】利用主视图、左视图中每列中正方形的个数,判断俯视图中正方形的个数,然后得出结果.【详解】解:主视图从左往右2列正方形的个数依次为3,3;左视图从左往右2列正方形的个数依次为3, 1;则俯视图中正方形的个数如下图示:即小正方体有7个,故答案为:7.【点睛】考查对三视图掌握程度和灵活运用能力,同时也体现了对空间想象能力方面的考查.如果掌握口诀“俯视图打地基,主视图疯狂盖,左视图拆违章”就更容易得到答案.19.左视图【分析】根据立体图形作出三视图求出面积即可【详解】解:如图该几何体正视图是由5个小正方形组成左视图是由3个小正方形组成俯视图是由5个小正方形组成故三种视图面积最小的是左视图故答案为左视图【点睛解析:左视图【分析】根据立体图形作出三视图,求出面积即可.【详解】解:如图,该几何体正视图是由5个小正方形组成,左视图是由3个小正方形组成,俯视图是由5个小正方形组成,故三种视图面积最小的是左视图.故答案为左视图【点睛】本题考查了图形的三视图,属于简单题,画出三视图是解题关键.20.64【分析】根据平行投影同一时刻物长与影长的比值固定即可解题【详解】解:由题可知:解得:树高=64米【点睛】本题考查了投影的实际应用属于简单题熟悉投影概念列比例式是解题关键解析:6.4【分析】根据平行投影,同一时刻物长与影长的比值固定即可解题.【详解】解:由题可知:1.628=树高,解得:树高=6.4米.【点睛】本题考查了投影的实际应用,属于简单题,熟悉投影概念,列比例式是解题关键.21.09m【分析】根据AB∥CD易得△PAB∽△PCD根据相似三角形对应高之比等于对应边之比列出方程求解即可【详解】∵AB∥CD∴△PAB∽△PCD∴假设P 到AB距离为x则=x=09故答案为09m【点睛解析:0.9m【分析】根据AB∥CD,易得,△PAB∽△PCD,根据相似三角形对应高之比等于对应边之比,列出方程求解即可.【详解】∵AB∥CD,∴△PAB∽△PCD,∴ 2.7ABx CD=,假设P到AB距离为x,则2.7x=26,x=0.9.故答案为0.9m.【点睛】考查了相似三角形的性质和判定.本题考查了相似三角形的判定和性质,常用的相似判定方法有:平行线,AA,SAS,SSS;常用到的性质:对应角相等;对应边的比值相等;相似三角形对应高之比等于对应边之比;面积比等于相似比的平方.解此题的关键是把实际问题转化为数学问题(三角形相似问题).22.【解析】【分析】从俯视图中可以看出最底层小正方体的个数及形状从主视图和左视图可以看出每一层小正方体的层数和个数从而算出总的个数【详解】综合三视图我们可得出这个几何体的底层应该有2+1=3个小正方体;解析:5【解析】【分析】从俯视图中可以看出最底层小正方体的个数及形状,从主视图和左视图可以看出每一层小正方体的层数和个数,从而算出总的个数.【详解】综合三视图,我们可得出,这个几何体的底层应该有2+1=3个小正方体;第二层应该有1个小正方体;第三层应有1个小正方体;因此搭成这个几何体的小正方体的个数是3+1+1=5个.故答案为5.【点睛】本题主要考查了由三视图判断几何体,关键是掌握口诀“俯视图打地基,正视图疯狂盖,左视图拆违章”就容易得到答案.23.【解析】【分析】仔细观察该几何体的主视图和左视图发挥空间想象能力便可得出几何体的形状【详解】仔细观察物体的主视图和左视图可知:该几何体的下面最少要有三个小正方体上面最少要有一个小正方体故该几何体最少解析:4【解析】【分析】仔细观察该几何体的主视图和左视图,发挥空间想象能力,便可得出几何体的形状.【详解】仔细观察物体的主视图和左视图可知:该几何体的下面最少要有三个小正方体,上面最少要有一个小正方体,故该几何体最少有4个小正方体组成,故答案为:4.【点睛】本题考查了由三视图判断几何体,主视图是从物体的前面看得到的视图,左视图是从物体的左面看得到的视图,熟练掌握是关键.24.【分析】由AB∥CD得:△PAB∽△PCD由相似三角形对应高之比等于对应边之比列出方程求解【详解】∵AB∥CD∴△PAB∽△PCD假设CD到AB距离为x则:即x=18∴AB与CD间的距离是18m;故解析:1.8【分析】由AB∥CD得:△PAB∽△PCD,由相似三角形对应高之比等于对应边之比,列出方程求解.【详解】∵AB∥CD,∴△PAB∽△PCD,假设CD到AB距离为x,则:2.72.7AB xCD-=即1.52.74.5 2.7x-=,x=1.8,∴AB与CD间的距离是1.8m;故答案是:1.8.【点睛】考查了中心投影,用到的知识点是相似三角形的性质和判定,相似三角形对应高之比等于对应边之比.解此题的关键是把实际问题转化为数学问题(三角形相似问题).25.C【解析】试题分析:根据几何体的三视图知识几何体的主视图即从正面看到的图形此几何体从正面看到的图形为上下两层下面有两个小正方形上面靠左有一个小正方形如图C所示故选C考点:几何体的三视图解析:C.【解析】试题分析:根据几何体的三视图知识,几何体的主视图即从正面看到的图形,此几何体从正面看到的图形为上下两层,下面有两个小正方形,上面靠左有一个小正方形,如图C所示.故选C.考点:几何体的三视图.26.7【分析】根据主视图和左视图得出这个几何体的组成即可得出答案【详解】由题意得:这个几何体是由2行2列组成所需的小正方体的个数最多的搭配是其中数字表示所在行列的小正方体的个数则故答案为:7【点睛】本题解析:7【分析】根据主视图和左视图得出这个几何体的组成即可得出答案.【详解】由题意得:这个几何体是由2行2列组成,所需的小正方体的个数最多的搭配是3121,其中,数字表示所在行列的小正方体的个数,则31217+++=,故答案为:7.【点睛】本题考查了三视图中的主视图和左视图,掌握理解三视图的相关概念是解题关键.三、解答题27.(1)22;(2)见解析【分析】(1)直接利用几何体的表面积求法,分别求出各侧面即可;(2)利用从不同角度进而得出观察物体进而得出左视图和俯视图.【详解】解:(1)这个几何体的表面积为2×4+2×4+2×3=22,故答案为:22.(2)如图所示:【点睛】此题主要考查了几何体的表面积求法以及三视图画法,注意观察角度是解题关键.28.见解析【分析】直接利用三视图的观察角度分别得出视图即可.【详解】如图所示:.【点睛】此题考查几何体的三视图的画法,能会看几何体根据几何体得到各面的形状是解题的关键,注意不可见的棱线需要画成虚线.29.3.45米【分析】根据平行投影性质可得:1.50.92MN=;1.52 4.6AB=.【详解】解:延长DH交BC于点M,延长AD交BC于N.可求 3.4BM =,0.9DM =. 由1.50.92MN=,可得 1.2MN =. ∴ 3.4 1.2 4.6BN =+=. 由1.52 4.6AB =,可得 3.45AB =. 所以,大树的高度为3.45米.【点睛】 考核知识点:平行投影.弄清平行投影的特点是关键.30.2.3米【分析】先根据同一时刻物高与影长成正比求出QD 的影长,再根据此影长列出比例式即可【详解】解:如图,过点N 作ND ⊥PQ 于D ,则DN=PM ,∴△ABC ∽△QDN ,AB QD BC DN∴=. ∵AB=2米,BC=1.6米,PM=1.2米,NM=0.8米, 2 1.21.6AB DN QD BC ⨯===1.5(米), ∴PQ=QD+DP=QD+NM=1.5+0.8=2.3(米).答:木杆PQ 的长度为2.3米.【点睛】此题考查相似三角形的应用和平行投影,解题关键在于掌握运算法则。

荆州市九年级数学下册第二十九章《投影与视图》经典测试(含答案)

荆州市九年级数学下册第二十九章《投影与视图》经典测试(含答案)

一、选择题1.如图是由大小相同的小正方体搭成的几何体,将其中的一个小正方体①去掉,则三视图不发生改变的是()A.主视图B.俯视图C.左视图D.俯视图和左视图2.如图所示的几何体的主视图是()A.B.C.D.3.一个几何体是由若干个相同的正方体组成的,其主视图和左视图如图所示,则这个几何体最多可由多少个这样的正方体组成()A.12B.13C.14D.154.如图是由6个同样大小的正方体摆成的几何体.将正方体①移走后,所得几何体()A.主视图改变,左视图改变B.俯视图不变,左视图不变C.俯视图改变,左视图改变D.主视图改变,左视图不变5.如图是由五个相同的小正方体搭成的一个几何体,它的主视图是()A.B.C.D.6.有6个相同的立方体搭成的几何体如图所示,则它的主视图是( )A.B.C.D.7.如图,是一块带有圆形空洞和正方形空洞(圆面直径与正方形边长相等)的小木板,则下列物体中既可以堵住圆形空洞,又可以堵住方形空洞的可能是().A.B.C.D.8.如图,路灯距地面8m,身高1.6m的小明从点A处沿AO所在的直线行走14m到点B时,人影长度()A.变长3.5m B.变长2.5m C.变短3.5m D.变短2.5m9.某展厅要用相同的正方体木块搭成一个展台,从正面、左面、上面看到的形状如图所示,请判断搭成此展台共需这样的正方体().A.6个B.5个C.4个D.3个10.下列命题是真命题的是()A.如果两个三角形相似,相似比为4:9,那么这两个三角形的周长比为2:3B .如果两个三角形相似,相似比为4:9,那么这两个三角形的周长比为4:9C .如果两个三角形相似,相似比为4:9,那么这两个三角形的面积比为2:3D .如果两个三角形相似,相似比为4:9,那么这两个三角形的面积比为4:911.如图所示几何体的左视图是( )A .B .C .D .12.如图是由5个大小相同的正方体组成的几何体,则该几何体的主视图是( )A .B .C .D . 13.路边有一根电线杆AB 和一块长方形广告牌,有一天,小明突然发现在太阳光照射下,电线杆顶端A 的影子刚好落在长方形广告牌的上边中点G 处,而长方形广告牌的影子刚好落在地面上E 点(如图),已知5BC =米,长方形广告牌的长4HF =米,高3HC =米,4DE =米,则电线杆AB 的高度是( )A .6.75米B .7.75米C .8.25米D .10.75米 14.下面四个立体图形,从正面、左面、上面对空都不可能看到长方形的是( ) A . B . C . D . 15.如图所示的立体图形的主视图是( )A .B .C .D .二、填空题16.在一快递仓库里堆放着若干个相同的正方体快递件,管理员从正面看和从左面看这堆快递如图所示,则这正方体快递件最多有_____件.17.如图,小明站在距离灯杆6m的点B处.若小明的身高AB=1.5m,灯杆CD=6m,则在灯C的照射下,小明的影长BE=______m.18.如图是由几个相同的小正方体搭建而成的几何体的主视图和俯视图,则搭建这个几何体所需要的小正方体至少为____个.19.如图,光源P在横杆AB的正上方,AB在灯光下的影子为CD,AB∥CD,AB=2m,CD=6m,点P到CD的距离是2.7m,则点P到AB间的距离是________.20.长方体的主视图与左视图如图所示,则这个长方体的表面积是________cm2.21.如图是由几个小立方块所搭成几何体的从上面、从正面看到的形状图.这样搭建的几何体最多需要__________个小立方块.22.如图是某几何体的三视图,则该几何体左视图的面积为_________.23.身高相同的小明和小华站在灯光下的不同位置,如果小明离灯较远,那么小明的投影比小华的投影_________.(填长或短)24.由一些完全相同的小正方体组成的几何体,从正面看和左面看的图形如图所示,则组成这个几何体的小正方体的个数至少是_____个.25.将四个棱长为1的正方体如图摆放,则这个几何体的表面积是________.26.写出两个三视图形状都一样的几何体:__________、__________.三、解答题27.根据要求完成下列题目(1)图中有______块小正方体;(2)请在下面方格纸中分别画出它的主视图、左视图和俯视图;(3)用小正方体搭一几何体,使得它的俯视图和主视图与你在上图方格中所画的图一致,a b的值为___________.若这样的几何体最少要个a小正方体,最多要b个小正方体,则28.如图是由几个边长为1个单位的正方体搭成的几何体.(1)请画出这个几何体的三视图;(2)这个几何体的体积为______个立方单位;(3)若保持上述正方体搭成的几何体的俯视图不变,各位置的正方体个数可以改变(正方体的总数目不变),则搭成的几何体的表面积最大为_____个平方单位.29.如图是一个几何体从三个方向看所得到的形状图.(1)写出这个几何体的名称;(2)画出它的一种表面展开图;(3)若从正面看的高为4cm,从上面看三角形的边长都为3 cm,求这个几何体的侧面积.30.(1)如图是由10个同样大小棱长为1的小正方体搭成的几何体,请分别画出它的主视图、左视图和俯视图(2)这个组合几何体的表面积为个平方单位(包括底面积)(3)用小立方体搭一几何体,使得它的俯视图和左视图与你在上图方格中所画的图一致,则这样的几何体最多要个小立方体.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

九年级数学第二十九章投影与视图综合测试名校习题(含答
案)
在圆柱、正三棱锥、正方体、球四个几何体中,其主视图与左视图不相同的几何体是()
A.B.C.D.
【答案】B
【解析】
【分析】
根据主视图是从正面看到的图形,可得主视图,从左面看到的图形是左视图,可得答案.
【详解】
解:A、主视图、左视图都是矩形,故A错误;
B、底面是正三角形的正三棱锥的左视图与主视图都是等腰三角形,但是底边不相等,符合题意.
C、主视图、左视图都是正方形,故C错误;
D、主视图、左视图都是圆,故D错误;
故选B.
【点睛】
本题考查了简单组合体的三视图,从正面看得到的图形是主视图,从左面看得到的图形是左视图.
37.如图,矩形ABCD中,对角线AC、BD交于点O,如果OB=4,∠AOB
=60°,那么矩形ABCD的面积等于()
A.8 B.16 C.D.
【答案】D
【分析】
由矩形的性质得出OA=BO,证△AOB是等边三角形,得出AB=OB=4,由勾股定理求出AD,即可求出矩形的面积.
【详解】
△四边形ABCD是矩形
△△BAD=90°,AO=CO=1
2
AC,BO=DO=1
2
BD,AC=BD=2OB=8,
△OA=OB=4,
△△AOB=60°,
△△AOB是等边三角形,
△AB=OB=4,

==
△矩形ABCD的面积=AB×AD=4×
故选:D.
【点睛】
本题考查了矩形的性质,等边三角形的判定和性质,勾股定理等知识;熟练掌握矩形的性质和勾股定理,证明△AOB为等边三角形是解题的关键.38.一个几何体的三视图如图所示,则这个几何体是()
A.圆柱B.圆锥C.长方体D.正方体
【答案】A
【解析】
【分析】
主视图、左视图、俯视图是分别从物体正面、左面和上面看,所得到的图形.【详解】
由主视图和左视图为长方形可得此几何体为柱体,由俯视图为圆可得此几何体为圆柱.
故选:A.
【点睛】
本题是一道由三视图判断几何体形状的题目,解题的关键是掌握常见几何体的三视图;
39.如图,水平放置的空心圆柱体的主视图为()
A.B.C.D.
【答案】C
【分析】
根据主视图是从前面看到的图形解答即可.
【详解】
水平放置的空心圆柱的主视图是矩形,中间有两条画虚线,
故选C.
【点睛】
此题主要考查了三视图的画法,正确掌握三视图之间的数量关系是解决问题的关键. 主视图与俯视图长对正,主视图与左视图高平齐,左视图与俯视图宽相等,结合俯视图与左视图的定义画出即可.
40.如图,在一本书上放置一个乒乓球,则此几何体的俯视图是()
A.B.C.
D.
【答案】B
【解析】
从上面看可得到一个矩形里面有一个圆,
故选:B.。

相关文档
最新文档