循环伏安及能级计算

合集下载

循环伏安法定义+原理+参数设置

循环伏安法定义+原理+参数设置

一、循环伏安法(Cyclic Voltammetry)一种常用的电化学研究方法。

该法控制电极电势以不同的速率,随时间以三角波形一次或多次反复扫描,电势范围是使电极上能交替发生不同的还原和氧化反应,并记录电流-电势曲线。

根据曲线形状可以判断电极反应的可逆程度,中间体、相界吸附或新相形成的可能性,以及偶联化学反应的性质等。

常用来测量电极反应参数,判断其控制步骤和反应机理,并观察整个电势扫描范围内可发生哪些反应,及其性质如何。

对于一个新的电化学体系,首选的研究方法往往就是循环伏安法,可称之为“电化学的谱图”。

本法除了使用汞电极外,还可以用铂、金、玻璃碳、碳纤维微电极以及化学修饰电极等。

1.基本原理如以等腰三角形的脉冲电压加在工作电极上,得到的电流电压曲线包括两个分支,如果前半部分电位向阴极方向扫描,电活性物质在电极上还原,产生还原波,那么后半部分电位向阳极方向扫描时,还原产物又会重新在电极上氧化,产生氧化波。

因此一次三角波扫描,完成一个还原和氧化过程的循环,故该法称为循环伏安法,其电流—电压曲线称为循环伏安图。

如果电活性物质可逆性差,则氧化波与还原波的高度就不同,对称性也较差。

循环伏安法中电压扫描速度可从每秒种数毫伏到1伏。

工作电极可用悬汞电极,或铂、玻碳、石墨等固体电极。

2.循环伏安法的应用循环伏安法是一种很有用的电化学研究方法,可用于电极反应的性质、机理和电极过程动力学参数的研究。

但该法很少用于定量分析。

(1)电极可逆性的判断循环伏安法中电压的扫描过程包括阴极与阳极两个方向,因此从所得的循环伏安法图的氧化波和还原波的峰高和对称性中可判断电活性物质在电极表面反应的可逆程度。

若反应是可逆的,则曲线上下对称,若反应不可逆,则曲线上下不对称。

(2)电极反应机理的判断循环伏安法还可研究电极吸附现象、电化学反应产物、电化学—化学耦联反应等,对于有机物、金属有机化合物及生物物质的氧化还原机理研究很有用。

3、循环伏安法的用途(1)、判断电极表面微观反应过程(2)、判断电极反应的可逆性(3)、作为无机制备反应“摸条件”的手段(4)、为有机合成“摸条件”(5)、前置化学反应(CE)的循环伏安特征(6)、后置化学反应(EC)的循环伏安特征(7)、催化反应的循环伏安特征二、循环伏安法相关问题:1、利用循环伏安确定反应是否为可逆反应(一般这两个条件即可)①.氧化峰电流与还原峰电流之比的绝对值等于1.[有时对同一体系,扫描速率不同也会在一定程度上影响其可逆性的一般而言,扫描速度对峰电位没有影响,但扫描速率越大其电化学反应电流也就越大.]②.氧化峰与还原峰电位差约为59/n mV, n为电子转移量(温度一般是293K).[但是一般我们实验时候不是在这个温度下,因此用这个算是有误差的,一般保证其值在100mv以下都算合理的误差.]2、判断扩散反应或者是吸附反应:改变扫描速率,看峰电流是与扫描速率还是它的二次方根成正比。

循环伏安及能级计算

循环伏安及能级计算
2. 连接实验装置,确保气密性良好;
实验设备与操作
01
3. 设置实验参数,如扫描速率、起始和终点电位等;
02
4. 开始实验,记录电流随电位变化的曲线;
03
5. 分析实验数据,得出结论。
应用领域与限制
应用领域
循环伏安法广泛应用于电化学反应机理研究、电极过程动力学参数测定、电催化剂活性评价等方面。
限制
循环伏安法与光电子能谱的 联用
将循环伏安法与光电子能谱相结合,可以获得电极 材料的光电性能和能级结构等信息。
循环伏安法与扫描隧道显 微镜的联用
通过将循环伏安法与扫描隧道显微镜相结合 ,可以实现原子尺度的电化学性能表征和调 控。
感谢您的观看
THANKS
分子轨道计算需要输入分子的 几何结构和总电荷数、总自旋 磁矩等参数,输出分子轨道能 量和波函数等信息。
电子跃迁能级差计算
01
电子跃迁能级差是指电子从某一能级跃迁到另一能级所需的能 量差值。
02
电子跃迁能级差可以通过分子轨道计算结果进行计算,也可以
通过实验测量获得。
电子跃迁能级差对于理解分子的电子结构和性质具有重要意义,
04
量子力学方法可以精确地描述电子的运动状态,但计 算量大;分子力学方法则可以大大简化计算过程,但 精度相对较低。
03
循环伏安曲线分析
氧化还原峰的识别
氧化峰
在循环伏安曲线上,氧化峰表现 为阳极电流随电位增加而增加的 峰,通常对应于电极材料发生氧 化反应的电位区间。
还原峰
还原峰表现为阴极电流随电位增 加而增加的峰,通常对应于电极 材料发生还原反应的电位区间。
电化学能源转换与储存
燃料电池
通过循环伏安法研究燃料电池的电化学反应过程,优化电极材料 和催化剂,提高电池性能和稳定性。

循环伏安及能级计算

循环伏安及能级计算

用饱和甘汞电极(SCE)作参比电极,它相对于NHE电位为0.24eV ,则计算能级的公式为: EHOMO=eEox+4.5+0.24=eEox+4.74eV Eg=EHOMO-ELUMO 能还可以由吸收光谱得出隙:Eg= hc/λabs=1240/λabs LUMO=HOMO-Eg ELUMO=eEred+4.5+0.24=eEred+4.74eV
实例一:
The HOMO level for Ir(disppy)3 was estimated on the basis of an oxidation potential of 4.8eV(below vacuum level) for Fc/Fc+ .The onset potential of oxidation for Ir(disppy)3 was determined to be 0.60V (vs Ag/AgCl), corresponding to 0.50V(vs Fc/Fc+)
测氧化时,尽量每扫描一次,打磨一次电极,测出的峰型较好。 测还原时,先通一段时间氮气,然后再测的时候最好保持通氮气,但是不要使溶液有波动,吹 到表面即可,保持小瓶内正压,避免水气进入。 扫描还原时,一次扫描的效果可能不太好,峰型不好,可以扫多次(不是循环扫描,要区别), 扫一次保存一次,然后选其中峰型较好的峰作图。 HOMO= -[ Eox - E(Fc/Fc+) + 4.8 ] eV; LUMO= -[ Ered - E(Fc/Fc+) + 4.8 ] eV。
原理
能带理论中的带隙Eg指价带顶与导带底的能量之差,相应于最高占有分子轨道(HOMO)和最 低未占有分子轨道(LUMO)的能量之差。有机发光材料最高占有分子轨道上的电子失去所需的能 量相应于电离势Ip,此时有机发光材料发生了氧化反应;有机发光材料得到电子填充在最低未占有 分子轨道上所需的能量相应于电子亲合势EA,此时有机发光材料发生了还原反应

循环伏安及能级计算

循环伏安及能级计算
二茂铁电极电势测定: 所用溶剂为二氯甲烷(5ml),电解质(四丁基六氟磷酸铵)180mg,样品2mg;二茂铁(5mg) 仪器参数设置:High E=1V, Low E= -0.5V, Scan Rate(V/s)= 0.1, Segment=4, Smple interval (V)= 0.001, Quiet Time(s)= 4, Sensitivity(A/V)=1e-4
测试方法
氧化:
所用溶剂为二氯甲烷(5ml),电解质(四丁基六氟磷酸铵)180mg,样品2mg;二氯甲烷经氢 化钙干燥,重蒸。
从图中看出在0.9V到1.1V之间有小的凸起,测试时延长通氮气时间,凸起没有消失,说明不是氧 气。有可能是二氯甲烷中的杂质。
仪器参数设置:High E=3V, Low E= 0V, Scan Rate(V/s)= 0.1, Segment=4, Smpl interval(V)= 0.001, Quiet Time(s)= 4, Sensitivity(A/V)=1e-4
还原:
所用溶剂为四氢呋喃(5ml),电解质(四丁基六氟磷酸铵)180mg,样品2mg;四氢呋喃 经金属钠干燥,二苯甲酮作指示剂,重蒸。
仪器参数设置:High E=0V, Low E= -3.5V, Scan Rate(V/s)= 0.1, Segment=4, Smpl interval(V)= 0.001, Quiet Time(s)= 4, Sensitivity(A/V)=1e-4
操作方便,并能同时给出有机光电材料的全部能带结构参数,因此应用最广泛。
原理
能带理论中的带隙Eg指价带顶与导带底的能量之差,相应于最高占有分子轨道(HOMO)和最 低未占有分子轨道(LUMO)的能量之差。有机发光材料最高占有分子轨道上的电子失去所需的能 量相应于电离势Ip,此时有机发光材料发生了氧化反应;有机发光材料得到电子填充在最低未占有 分子轨道上所需的能量相应于电子亲合势EA,此时有机发光材料发生了还原反应

循环伏安及能级计算

循环伏安及能级计算

原理
能带理论中的带隙Eg指价带顶与导带底的能量之差,相应于最高占有分子轨道(HOMO)和最 低未占有分子轨道(LUMO)的能量之差。有机发光材料最高占有分子轨道上的电子失去所需的能 量相应于电离势Ip,此时有机发光材料发生了氧化反应;有机发光材料得到电子填充在最低未占有 分子轨道上所需的能量相应于电子亲合势EA,此时有机发光材料发生了还原反应
原理
一般通过测定有机物的氧化电位Eox以直接推算HOMO能级数值,再结合光谱或能谱法测 得的带隙Eg,间接计算出LUMO能级数值。
原理
标准氢电极(NHE)电位相对于真空能级为-4.5eV,所以由电化学结果计算能级的公式为: EHOMO=Ip=eEox+4.5 ELUMO=EA=eEred+4.5
实例:
Eox=0.91eV Ered=-1.39eV
The optical band gap is estimated from the onset of the absorption edge (MLCT) of the thin film.
Eox=0.59eV Ered=-1.43eV
J.Mater.Chem.,2006, 16,1281–1286
电化学及能级计算
目录
Contents
背景介绍 原理
实例分析
背景介绍
有机电致发光材料能带的准确测定对于有机电致发光器件的研究至关重要。 表征有机光电材料能带结构的方法: 紫外吸收光谱法,这种方法只能得到带隙值Eg ; 量化计算的方法,可得到材料的 HOMO和带隙值,只适于结构简单的材料; 光电子发射谱分析可以用于 HOMO的表征,但仪器尚未普及; 电化学方法 (如循环伏安法)兼有上述三种方法的优点,所用仪器设备简单, 操作方便,并能同时给出有机光电材料的全部能带结构参数,因此应用最广泛。

循环伏安法介绍

循环伏安法介绍

循环伏安法原理

当工作电极被施加的扫描电压 激发时,其上将产生响应电流。 以该电流(纵坐标)对电位 (横坐标)作图,称为循环伏 安图。典型的循环伏安图如 (Fig.1b)所示。
Fig.1(b) 循环伏安谱
循环伏安法原理

循环伏安图中的重要参数
阳极峰电流(ipa); 阴极峰电流(ipc) 阳极峰电位(φpa); 阴极峰电位(φpc);





确定 i p 的方法是:沿基线 做切线外推至峰下,从峰 顶做垂直线至切线,其间 高度即为ip ,φp可直接从 横轴与封顶对应处读取。
Fig.2
循环伏安法原理

峰电流方程式:
i p 2.6910 n AD v c
5 32 12 12

( 1 )
峰电势方程式:
RT φ p φ1 2 1.1 nF

而苯醌在较负的电位上被 还原为对苯二酚形成峰 3 。
循环伏安法的应用

再一次阳极扫描时,对苯二酚被氧化为苯醌,形成峰 4; 而峰5与峰1的过程相同,即对-氨基苯酚被氧化为对-亚氨 基苯醌。

为证明峰 3和峰 4是苯醌和对苯二酚的还原和氧化过程, 可制备对苯二酚的溶液作循环伏安图加以证实。
循环伏安法的应用
循环伏安法原理

Fig.1(a) 循环电位扫描
循环伏安法是以线性扫描 伏安法的电位扫描到头后,再 回过头来扫描到原来的起始电 位值,所得的电流-电压曲线为 基础的分析方法。其电位与扫 描时间的关系,如 (Fig.1a) 所 示,由图可知,扫描电压呈等 腰三角形。如果前半部扫描 (电压上升部分)为电活性组 分在电极上被还原的阴极过程, 则后半部扫描(电压下降部分) 为还原产物重新被氧化的阳极 过程。因此,一次三角波扫描 完成一个还原过程和氧化过程 的循环,故称为循环伏安法。

循环伏安及能级计算讲解学习

循环伏安及能级计算讲解学习

原理
在电化学池中当给工作电极施加一定的正电位相对于参比电极电位时,吸附在电极表面的有机 发光材料分子失去其价带上的电子发生电化学氧化反应,当施加更高的正电位时,电极表面上 电化学氧化反应继续进行。此时工作电极上有机发光材料发生电化学氧化反应的起始电位Eox即 对应于HOMO能级。同样地,当给工作电极施加一定的负电位相对于参比电极电位时,吸附在 电极表面的有机发光材料分子将在其导带上得到电子发生电化学还原反应,当继续增加此负电 位时电极表面上,电化学还原反应继续进行。此时工作电极上有机发光材料发生电化学还原反 应的起始电位Ered即对应于LUMO能级。
循环伏安及能级计算
目录
Contents
背景介绍 原理
实例分析 总结
背景介绍
有机电致发光材料能带的准确测定对于有机电致发光器件的研究至关重要。
表征有机光电材料能带结构的方法: 紫外吸收光谱法,这种方法只能得到带隙值Eg ; 量化计算的方法,可得到材料的 HOMO和带隙值,只适于结构简单的材料; 光电子发射谱分析可以用于 HOMO的表征,但仪器尚未普及; 电化学方法 (如循环伏安法)兼有上述三种方法的优点,所用仪器设备简单,
原 料:二茂铁(Fc)、待测样品
测试仪器
1红
铂丝对电极 CE
2绿
玻璃碳电极(工作电
极) WE
3白 Ag/Ag+(参比电极) RE
4
移液管
5
容量瓶
6
氮气
测试方法
➢三电极系统:
工作电极不 要过长(接绿线)
辅助电极(对电极):铂丝电极;(接红线) 参比电极:银电极(Ag/AgNO3—乙腈溶液),0.01M,避光密封。(禁止超声)(接白线)
实验步骤

循环伏安法

循环伏安法

结果呢?用恒电位库仑法测得电金反应的电子数为 2。
通常,

判定哪个基团的还原。
还原时均获得2个电子,难以
抗痫灵的循环伏安图如图所示。 起始电位-0.70V (vs.Ag/ AgCl)。搅拌富集时间45s,正扫 得一尖形还原峰,Ep=-0.94V, 反扫无氧化峰(图a),表明电极过 程不可逆。当其它条件相同,正 扫至-1.02V处静止富集lmin时, 反扫也未发现峰(图b);静止富集 时间延长到2min。反扫仍无峰 (图 c)。
例如,四苯基叶啉(TPP) 溶于碳酸乙酰(MC)中,可 得到如图所示的循环伏安 图,出现两个电流响应, 一个是TPP被还原后的阴 离子再被氧化;另一个是 阳离子被还原后再被氧化。

两个电流响应信号表明。 反应得到的阴离子和阳离
图3.3
子均稳定,否则不会得到
循环伏安图上的两个峰.
又例如,由四个铁、 四个五茂环和四个一 氧化碳组成的金属有 机化合 物 ,如将其溶于乙 中,
可逆过程峰电位与标准电极电位的关系,可 由前式得到
标准电极电位等于两个峰电位之和两除以2。只要电极过程可逆,反应 产物稳定,用循环伏安法测定标准电极电位是很方便的。
3.2.2 电极过程产物的鉴别
循环伏安法不仅可发现、 鉴定电极过程的中间产物, 还可获得不少关于中间产 物电化学及其它性质的信 息。
图3.11 CdX-循环伏安图
以实验所得第一波(动力波)的峰电流ip实对按式
计则的i算消p实的耗/峰,ip电其理应流效与果ip理v相的无当比关于值。C与这dX扫相-速当直v于接作C在图d电X。-极如立上前刻还行离原C解d。以X-补离充解C反d2应+在速电率极很表大面, 这种情形应得图中虚线.但实际上,随v增加,峰电流比值下降,如图中
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

测试方法
二茂铁电极电势测定: 所用溶剂为二氯甲烷(5ml),电解质(四丁基六氟磷酸铵)180mg,样品2mg;二茂铁(5mg)
仪器参数设置:High E=1V, Low E= -0.5V, Scan Rate(V/s)= 0.1, Segment=4, Smple interval (V)= 0.001, Quiet Time(s)= 4, Sensitivity(A/V)=1e-4
测试方法
氧化: 所用溶剂为二氯甲烷(5ml),电解质(四丁基六氟磷酸铵)180mg,样品2mg;二氯甲烷经氢 化钙干燥,重蒸。 从图中看出在0.9V到1.1V之间有小的凸起,测试时延长通氮气时间,凸起没有消失,说明不是氧 气。有可能是二氯甲烷中的杂质。 仪器参数设置:High E=3V, Low E= 0V, Scan Rate(V/s)= 0.1, Segment=4, Smpl interval(V)= 0.001, Quiet Time(s)= 4, Sensitivity(A/V)=1e-4 还原:
Inorganica Chimica Acta.362(2009)5017–5022
实例八:
Dyes and Pigments.83(2009)218–224
总结
常用的电解质:四丁基高氯酸铵(TBAP)或 四丁基六氟磷酸盐等 常用的溶剂:无水 乙腈(AN)、DMF、DMSO、DCM、THF、氯仿等 参比电极:玻璃碳电极、SCE、Ag/AgCl、Ag/Ag+
实例一:
The HOMO level for Ir(disppy)3 was estimated on the basis of an oxidation potential of 4.8eV(below vacuum level) for Fc/Fc+ .The onset potential of oxidation for Ir(disppy)3 was determined to be 0.60V (vs Ag/AgCl), corresponding to 0.50V(vs Fc/Fc+)
测氧化时,尽量每扫描一次,打磨一次电极,测出的峰型较好。 测还原时,先通一段时间氮气,然后再测的时候最好保持通氮气,但是不要使溶液有波动,吹 到表面即可,保持小瓶内正压,避免水气进入。 扫描还原时,一次扫描的效果可能不太好,峰型不好,可以扫多次(不是循环扫描,要区别), 扫一次保存一次,然后选其中峰型较好的峰作图。 HOMO= -[ Eox - E(Fc/Fc+) + 4.8 ] eV; LUMO= -[ Ered - E(Fc/Fc+) + 4.8 ] eV。
N+ F F B- F F tetrabutyl ammonium fluoroborate C16H36BF4N Mass: 329.29
原 料:二茂铁(Fc)、待测样品
测试仪器
1红 2绿
铂丝对电极 CE 玻璃碳电极(工作电极) WE
3白
4 5 6
Ag/Ag+(参比电极) RE
移液管 容量瓶 氮气
HOMO=-5.30eV Eg=2.59eV LUMO=-(5.30-2.59)eV=-2.71eV
Organic Electronics.10(2009)1066–1073
实例三:
Organic Electronics 10(2009)247-255
实例四:
Dyes and Pigments.85(2010)143-151
所用溶剂为四氢呋喃(5ml),电解质(四丁基六氟磷酸铵)180mg,样品2mg;四氢呋喃 经金属钠干燥,二苯甲酮作指示剂,重蒸。 仪器参数设置:High E=0V, Low E= -3.5V, Scan Rate(V/s)= 0.1, Segment=4, Smpl interval(V)= 0.001, Quiet Time(s)= 4, Sensitivity(A/V)=1e-4
三个电极使用前再使用氮气吹扫。
实验步骤
4. 准备电解液的配制:称取180 mg的电解质4份;分别量取5ml的(DCM)和(THF)各2份;将4 份电解质分别加入上述4份溶剂中,配成电解液。(电解质溶液浓度为0.11mol/L)
5. 标准物溶液的配制:称取5mg的二茂铁2份;分别将二茂铁加入溶剂为DCM和THF的电解质溶液 中,配成标准物溶液。(大于10-3M即可,可以不用称量)。将配置好的各种溶液用封口膜封口。
7. 称取2mg DPF-C2DAFO样品2份。
8. 取无盖的25×40 mm大小的电解质瓶(与四氟乙烯的测试支架上盖子严格密封);使用前用有机 溶剂清洗并烘干,冷却到室温(可以放在干燥器中冷却或在封口膜的保护下冷却)
9. CV测试: 首先,保证开机、操纵软件正常,线路连接正确。 其次,迅速将三个电极放入待测的电解液中,氮气鼓泡3分钟。然后,正确连接电极与测试系统 (线上有RE、WE、CE的标识)。最后,打开软件系统,设置参数,并开始测试。
原理
在电化学池中当给工作电极施加一定的正电位相对于参比电极电位时,吸附在电极表面的有机 发光材料分子失去其价带上的电子发生电化学氧化反应,当施加更高的正电位时,电极表面上 电化学氧化反应继续进行。此时工作电极上有机发光材料发生电化学氧化反应的起始电位Eox即 对应于HOMO能级。同样地,当给工作电极施加一定的负电位相对于参比电极电位时,吸附在 电极表面的有机发光材料分子将在其导带上得到电子发生电化学还原反应,当继续增加此负电 位时电极表面上,电化学还原反应继续进行。此时工作电极上有机发光材料发生电化学还原反 应的起始电位Ered即对应于LUMO能级。
2. Ag/AgNO3溶液的参比电极(RE)制备:称取AgNO3(分析纯,黑色包装,进口)9.8mg; (应在黑色包装中称取AgNO3,以防AgNO3见光分解)在棕色瓶中将AgNO3加入5.8ml乙腈溶剂 (HPLC)配成浓度为0.01mol/L的溶液,并用锡纸包起来。(AgNO3溶液放置在阴凉环境下) 3. 准备电极:玻璃碳电极(WE),铂丝对电极(CE),套装含Ag/AgNO3溶液的参比电极(RE)。 WE处理方法:首先,在玻璃砖上的圆纱布上垂直打磨(画“8”,0.05μm的铝粉和水作为摩 擦剂);其次,清水冲洗掉白铝,使用干净的丙酮超声1分钟,并用洗耳球吹干。 CE处理方法:使用水和丙酮冲洗干净,凉干。 RE处理方法:如果使用时间过长,更换Ag/AgNO3溶液(溶液量一般为电极长度的2/3),有 机溶剂将表面冲洗干净,凉干(不能使用超声超洗)。
原理
能带理论中的带隙Eg指价带顶与导带底的能量之差,相应于最高占有分子轨道(HOMO)和最 低未占有分子轨道(LUMO)的能量之差。有机发光材料最高占有分子轨道上的电子失去所需的能 量相应于电离势Ip,此时有机发光材料发生了氧化反应;有机发光材料得到电子填充在最低未占有 分子轨道上所需的能量相应于电子亲合势EA,此时有机发光材料发生了还原反应
Fc/Fc+为标准,Ag/Ag+为参比,则:A
Fc/Fc+ b
a
Ag/A
b-a+4.8
测试前要鼓氮除氧 HOMO=eEox+4.5(NHE为参比) HOMO=eEox+4.8(v Ag/Ag+)-EoxFc/Fc+ 能隙Eg可由紫外吸收谱起始位置计算:Eg=hc/λ abs=1240/λabs LUMO可由还原电位Ered计算: HOMO=eEred+4.5 HOMO=eEred+4.8(v Ag/Ag+)-EredFc/Fc+ 或LUMO=HOMO-Eg
实例六:
EHOMO=-(Eoxonset→SCE+4.4eV)=-(Eox+4.4eV+0.34eV) ELUMO=-(Eredonset→SCE+4.4eV)=-(Ered+4.4eV+0.34eV)
J.Phys.Chem.B,Vol.114,No.1,2010.141-150
实例七:
HOMO=-(0.83+4.8-0.49)eV=-5.14eV Eg=2.0eV LUMO=-3.14eV
测试方法
三电极系统:
工作电极:铂碳电极,用时要用铝粉打磨;轻拿轻放,禁摔。可以超声除去表面杂质,但超声时间不 要过长(接绿线) 辅助电极(对电极):铂丝电极;(接红线) 参比电极:银电极(Ag/AgNO3—乙腈溶液),0.01M,避光密封。(禁止超声)(接白线)
实验步骤
1. 准备CV使用的溶剂:还原过程使用THF,氧化过程使用DCM;THF需要钠丝泡过,并回流; DCM需要使用CaH2回流24小时才能使用。(现为回流2小时,即现蒸现用)
电化学及能级计算
目录
Contents
背景介绍 原理
实例分析
总结
背景介绍
有机电致发光材料能带的准确测定对于有机电致发光器件的研究至关重要。 表征有机光电材料能带结构的方法: 紫外吸收光谱法,这种方法只能得到带隙值Eg ; 量化计算的方法,可得到材料的 HOMO和带隙值,只适于结构简单的材料; 光电子发射谱分析可以用于 HOMO的表征,但仪器尚未普及; 电化学方法 (如循环伏安法)兼有上述三种方法的优点,所用仪器设备简单, 操作方便,并能同时给出有机光电材料的全部能带结构参数,因此应用最广泛。
测试前准备
需准备的仪器:铂丝对极、玻璃碳电极、Ag/Ag+电极、超声仪、吹风机、容量瓶、移液管、长针头、 废液桶,滴膜用注射器,气球(多只,鼓氮用) 需准备的溶剂:二氯甲烷、丙酮、去离子水 测试用溶剂:二氯甲烷(DCM)、四氢呋喃(THF)、乙腈(MeCN)等 。实验前须经过无水处理。 电解质:Tetrabutylammonium hexafluorophosphate(四丁基六氟磷酸铵)(0.1M)
用饱和甘汞电极(SCE)作参比电极,它相对于NHE电位为0.24eV ,则计算能级的公式为: EHOMO=eEox+4.5+0.24=eEox+4.74eV Eg=EHOMO-ELUMO 能还可以由吸收光谱得出隙:Eg= hc/λabs=1240/λabs LUMO=HOMO-Eg ELUMO=eEred+4.5+0.24=eEred+4.74eV
相关文档
最新文档