钢铁的物理力学性能和机械性能
钢铁家族中各种组织形貌生长特点及性能

钢铁家族中各种组织形貌生长特点及性能现代材料可以分为四大类--金属、高分子、陶瓷和复合材料。
尽管目前高分子材料飞速发展,但金属材料中的钢铁仍是目前工程技术中使用最广泛、最重要的材料,那么到底是什么因素决定了钢铁材料的霸主地位呢。
下面就为大家详细介绍吧。
钢铁由铁矿石提炼而成,来源丰富,价格低廉。
钢铁又称为铁碳合金,是铁(Fe)与碳(C)、硅(Si)、锰(Mn)、磷(P)、硫(S)以及其他少量元素(Cr、V等)所组成的合金。
通过调节钢铁中各种元素的含量和热处理工艺(四把火:淬火、退火、回火、正火),可以获得各种各样的金相组织,从而使钢铁具有不同的物理性能。
将钢材取样,经过打磨、抛光,最后用特定的腐蚀剂腐蚀显示后,在金相显微镜下观察到的组织称为钢铁的金相组织。
钢铁材料的秘密便隐藏在这些组织结构中。
在Fe-Fe3C系中,可配制多种成分不同的铁碳合金,他们在不同温度下的平衡组织各不相同,但由几个基本相(铁素体F、奥氏体A和渗碳体Fe3C)组成。
这些基本相以机械混合物的形式结合,形成了钢铁中丰富多彩的金相组织结构。
常见的金相组织有下列八种:碳溶于α-Fe晶格间隙中形成的间隙固溶体称为铁素体,属bcc结构,呈等轴多边形晶粒分布,用符号F表示。
其组织和性能与纯铁相似,具有良好的塑性和韧性,而强度与硬度较低(30-100 HB)。
在合金钢中,则是碳和合金元素在α-Fe中的固溶体。
碳在α-Fe中的溶解量很低,在AC1温度,碳的最大溶解量为0.0218%,但随温度下降的溶解度则降至0.0084%,因而在缓冷条件下铁素体晶界处会出现三次渗碳体。
随钢铁中碳含量增加,铁素体量相对减少,珠光体量增加,此时铁素体则是网络状和月牙状。
二、奥氏体碳溶于γ-Fe晶格间隙中形成的间隙固溶体称为奥氏体,具有面心立方结构,为高温相,用符号A表示。
奥氏体在1148℃有最大溶解度2.11%C,727℃时可固溶0.77%C;强度和硬度比铁素体高,塑性和韧性良好,并且无磁性,具体力学性能与含碳量和晶粒大小有关,一般为170~220 HBS、=40~50%。
钢铁材料的性能

σe
MPa
金属能保持弹性变形的最大能力
比例极限
σp
MPa
在弹性变形阶段,金属材料所受的和应变能保持正比的最大应力
弹性模量
MPa
金属在弹性范围内,外力和变形成比例地增长,既应力与应变成正比例关系时,这个比例系数就称为弹性模量
2.3塑性—材料受力后产生永久变形而不破坏的能力
伸长率(延伸率)
%
金属受外力作用被拉断以后,在标距内总伸长长度同原来标距长度相比的百分数
肖氏硬度
HSC(目测型)
与h/h0比值成正比
利用金刚石冲头自一定的高度h0mm落下,撞击金属后,冲头又回跳到某一高度hmm
表面光滑的一些精密量具或零件
HSD(指示型)
3.化学性能
名称
说明
耐腐蚀性
金属材料抵抗空气、水蒸气及其它化学介质腐蚀破坏作用的能力,称为耐腐蚀性。常见的钢铁生锈、铜生铜绿等,就是腐蚀现象。金属材料耐腐蚀性能与许多因素有关,例如金属的化学成分、加工性质、热处理条件、组织状态以及环境介质和温度条件等
抗剪强度
τ
MPa
外力与材料轴线垂直,并对材料呈剪切作用时的极限强度
抗扭强度
τb
MPa
外力是扭转时的极限强度
屈服点
σs
MPa
金属试样在拉伸过程中,负荷不再增加,而试样仍继续发生变形的现象称为“屈服”。发生屈服现象时的应力,称为屈服点或屈服极限,是金属发生明显塑性变形的抗力。
屈服强度
σ0。2
MPa
对某些屈服现象不明显的金属材料,测定屈服点比较困难,常把产生0.2%永久变形的应力定为屈服点,这称为屈服强度或条件屈服强度
牌号
牌号是用来识别产品的名称、符号、代码或它们的组合。钢的牌号称为钢号,是对某一具体钢种所取的名称。牌号是技术条件中的首要内容,同一牌号的材料可能有不同的保证条件、交货状态、使用加工类别、质量级别等
金工实习工程材料的基本知识

第2章工程材料的基本知识2.1 金属材料的主要性能用来制造零件的金属材料应具有优良的使用性能及工艺性能。
所谓使用性能,是指机器零件在正常工作情况下金属材料应具备的性能,它包括机械性能(或称之为力学性能)、物理和化学性能。
而工艺性能是指零件在冷、热加工制造过程中,金属材料应具备的与加工工艺相适应的性能。
2.2金属材料的机械性能所谓机械性能,是指零件在载荷作用下所反映出来的抵抗变形或断裂的性能。
机械性能指标是零件在设计计算、选材、工艺评定以及材料检验时的主要依据。
由于外加载荷性质的不同(例如拉伸、压缩、扭转、冲击及循环载荷等),所以对金属材料的机械性能指标要求也将不同。
常用的机械性能指标包括:强度、硬度、塑性、冲击韧性及疲劳强度等。
一. 强度金属材料在外力作用下抵抗破坏(过量的塑性变形或断裂)的性能叫做强度。
由于外力的作用方式有拉伸、压缩、弯曲、剪切等,所以强度也分为:抗拉强度、)抗压强度、抗弯强度、抗剪强度、屈服强度。
一般以测定材料的抗拉强度(σb 为主。
二. 硬度硬度是衡量金属材料软硬程度的指标。
目前常用的测定硬度的方法为压入法。
它是用特定的几何形状压头在一定载荷作用下,压入被测试样材料表面,根据被压入的程度来测定其硬度值。
所以硬度值的物理意义是金属材料表面抵抗局部压入塑性变形的能力。
常用的硬度的指标有:布氏硬度(HBS或HBW)及洛氏硬度(HRA、HRB、HRC)。
1. 布氏硬度布氏硬度测定原理是用一定大小的载荷将一定直径的淬火钢球或硬质合金球压求出应入被测金属表面,保持一定时间后卸载,根据载荷P和压痕的表面积F凹力值作为布氏硬度值。
布氏硬度试验法用于测定硬度不高的金属材料,如铸铁、有色金属、一般经退火、正火后的钢材等。
2. 洛氏硬度洛氏硬度测定原理是以测量压痕深度为硬度的计量指标,由于采用了不同的压头及载荷,可用来测量从极软到极硬的金属材料的硬度。
洛氏硬度的三种标度(HRA、HRB、HRC)中,常用的是HRC洛氏硬度,它采用金刚石圆锥体做压头,可用来测量硬度很高的材料,如淬火钢、调质钢等。
钢铁材料的分类、力学性能及热处理

钢铁材料的分类、力学性能及热处理一、 分类及力学性能:1. 碳素钢:按含碳量的多少可分为低碳钢(含碳量小于0.25%)、中碳钢(含碳量在0.25%~0.5%)和高碳钢(含碳量大于0.5%)。
随着含碳量的增加,钢的机械强度提高,但使它的塑性和韧性下降。
(1) 普通碳素钢:它的化学成分不准确,因而不宜进行热处理。
普通碳素钢的牌号标记如Q235(国标),表示屈服点MPa S 235=σ。
(2) 优质碳素钢:力学性能优于普通碳素钢,采用适当的热处理方法可以获得很高的内部机械强度和表面硬度。
低碳钢塑性高,焊接性好,适用于冲压、焊接零件。
采用渗碳淬火处理可提高零件表面硬度;中碳钢具有综合性能好的特点,它的机械强度、塑性和韧性均较好,可进行调质、表面淬火处理;高碳钢具有高的机械强度和良好的韧性和弹性,常制成弹性零件。
优质碳素钢的牌号如15、35、45(国标),表示含碳量平均值各为0.15%、0.35%、0.45%。
2. 合金钢:合金钢是在优质碳素钢中加入某些合金元素而形成的。
它具有良好的力学性能和热处理性能,随着所加合金元素的不同,还可获得不同的特殊性能。
合金钢的牌号如35Mn2、40Cr (国标),表示含碳量平均值为0.35%和0.40%,而含合金元素Mn2%及Cr 小于1.5%。
3. 铸钢:铸钢的含碳量一般在0.15%~0.60%范围内,含碳量较高,塑性很差,容易产生龟裂,故不能锻造。
铸钢的强度显著高于铸铁,但铸造性则比较差,收缩率较大。
铸钢的牌号如ZG500-270,前组数字表示抗拉强度MPa B 500=σ,后组数字表示屈服点MPa S 270=σ。
4. 铸铁:铸铁是含碳量大于2%的铁碳合金。
铸铁因含碳量高,故它的抗拉强度、塑性和韧性都较差,不能锻造,焊接性能也差。
但它有较高的抗压强度,良好的减摩性和切削性能,吸振性好,价格又较低廉。
常用的铸铁有灰铸铁(如HT150,抗拉强度MPa B 150=σ)、可锻铸铁(如KT300-6,抗拉强度MPa B 300=σ,最低伸长率为6%)和球墨铸铁(如QT500-7,抗拉强度MPa B 500=σ,最低伸长率为7%)。
钢材的物理力学性能和机械性能表

钢材的物理力学性能和机械性能表钢材的主要机械性能(也叫力学性能)通常是指钢材在标准条件下均匀拉伸.冷弯和冲击等.单独作用下所显示的各种机械性能。
钢材通常有五大主要的机械性能指标:通过一次拉伸试验可得到抗拉强度,伸长率和屈服点三项基本性能;通过冷弯试验可得到钢材的冷弯性能;通过冲击韧性试验可得到冲击韧性。
1.屈服点(σs)钢材或试样在拉伸时,当应力超过弹性极限,即使应力不再增加,而钢材或试样仍继续发生明显的塑性变形,称此现象为屈服,而产生屈服现象时的最小应力值即为屈服点。
设Ps为屈服点s处的外力,Fo为试样断面积,则屈服点σs =Ps/Fo(MPa),MPa称为兆帕等于N(牛顿)/mm2,(MPa=106Pa,Pa:帕斯卡=N/m2)2.屈服强度(σ0.2)有的金属材料的屈服点极不明显,在测量上有困难,因此为了衡量材料的屈服特性,规定产生永久残余塑性变形等于一定值(一般为原长度的0.2%)时的应力,称为条件屈服强度或简称屈服强度σ0.2。
3.抗拉强度(σb)材料在拉伸过程中,从开始到发生断裂时所达到的最大应力值。
它表示钢材抵抗断裂的能力大小。
与抗拉强度相应的还有抗压强度、抗弯强度等。
设Pb为材料被拉断前达到的最大拉力,Fo为试样截面面积,则抗拉强度σb= Pb/Fo (MPa)。
4.伸长率(δs)材料在拉断后,其塑性伸长的长度与原试样长度的百分比叫伸长率或延伸率。
5.屈强比(σs/σb)钢材的屈服点(屈服强度)与抗拉强度的比值,称为屈强比。
屈强比越大,结构零件的可靠性越高,一般碳素钢屈强比为0.6-0.65,低合金结构钢为0.65-0.75合金结构钢为0.84-0.86。
6.硬度硬度表示材料抵抗硬物体压入其表面的能力。
它是金属材料的重要性能指标之一。
一般硬度越高,耐磨性越好。
常用的硬度指标有布氏硬度、洛氏硬度和维氏硬度。
⑴布氏硬度(HB)以一定的载荷(一般3000kg)把一定大小(直径一般为10mm)的淬硬钢球压入材料表面,保持一段时间,去载后,负荷与其压痕面积之比值,即为布氏硬度值(HB),单位为公斤力/mm2 (N/mm2)。
金属材料及热处理的基本知识

金属材料及热处理的基本知识金属热处理是将金属工件放在一定的介质中加热到适宜的温度,并在此温度中保持一定时间后,又以不同速度冷却的一种工艺。
金属热处理是机械制造中的重要工艺之一,与其它加工工艺相比,热处理一般不改变工件的形状和整体的化学成分,而是通过改变工件内部的显微组织,或改变工件表面的化学成分,赋予或改善工件的使用性能。
其特点是改善工件的内在质量,而这一般不是肉眼所能看到的。
为使金属工件具有所需要的力学性能、物理性能和化学性能,除合理选用材料和各种成形工艺外,热处理工艺往往是必不可少的。
钢铁是机械工业中应用最广的材料,钢铁显微组织复杂,可以通过热处理予以控制,所以钢铁的热处理是金属热处理的主要内容。
另外,铝、铜、镁、钛等及其合金也都可以通过热处理改变其力学、物理和化学性能,以获得不同的使用性能。
在从石器时代进展到铜器时代和铁器时代的过程中,热处理的作用逐渐为人们所认识。
早在公元前770~前222年,中国人在生产实践中就已发现,铜铁的性能会因温度和加压变形的影响而变化。
白口铸铁的柔化处理就是制造农具的重要工艺。
公元前六世纪,钢铁兵器逐渐被采用,为了提高钢的硬度,淬火工艺遂得到迅速发展。
中国河北省易县燕下都出土的两把剑和一把戟,其显微组织中都有马氏体存在,说明是经过淬火的。
随着淬火技术的发展,人们逐渐发现淬冷剂对淬火质量的影响。
三国蜀人蒲元曾在今陕西斜谷为诸葛亮打制3000把刀,相传是派人到成都取水淬火的。
这说明中国在古代就注意到不同水质的冷却能力了,同时也注意了油和尿的冷却能力。
中国出土的西汉(公元前206~公元24)中山靖王墓中的宝剑,心部含碳量为0.15~0.4%,而表面含碳量却达0.6%以上,说明已应用了渗碳工艺。
但当时作为个人“手艺”的秘密,不肯外传,因而发展很慢。
1863年,英国金相学家和地质学家展示了钢铁在显微镜下的六种不同的金相组织,证明了钢在加热和冷却时,内部会发生组织改变,钢中高温时的相在急冷时转变为一种较硬的相。
en10293标准

en10293标准
EN 10293是欧洲标准化组织(EN)发布的一项标准,该标准规
定了钢铁产品的物理和技术性能要求。
具体而言,该标准涵盖了以下方面:
1. 化学成分:EN 10293指定了不同种类钢铁的化学成分要求,包括主要元素和杂质元素的含量限制。
2. 机械性能:该标准规定了钢铁产品的力学性能要求,例如拉伸强度、屈服强度、延伸率等。
3. 技术要求:EN 10293列出了钢铁产品的加工和制造要求,
包括材料处理、热处理、冷加工等。
4. 检测方法:该标准定义了钢铁产品的检测方法和试验程序,以确保产品符合规定的性能要求。
EN 10293适用于各种不同类型的钢铁产品,包括铸件、锻件、热轧和冷轧板材等。
这个标准的目的是确保钢铁产品在使用过程中具有良好的耐久性和性能稳定性。
钢铁的物理力学性能和机械性能

钢铁的物理力学性能和机械性能fangjym 的钢铁的物理力学性能和机械性能钢材的主要机械性能(也叫力学性能)通常是指钢材在标准条件下均匀拉伸.冷弯和冲击等.单独作用下所显示的各种机械性能。
钢材通常有五大主要的机械性能指标:通过一次拉伸试验可得到抗拉强度,伸长率和屈服点三项根本性能;通过冷弯试验可得到钢材的冷弯性能;通过冲击韧性试验可得到冲击韧性。
1.屈服点(σs)钢材或试样在拉伸时,当应力超过弹性极限,即使应力不再增加,而钢材或试样仍继续发生明显的塑性变形,称此现象为屈服,而产生屈服现象时的最小应力值即为屈服点。
设Ps为屈服点s处的外力,Fo为试样断面积,那么屈服点σs =Ps/Fo(MPa),MPa 称为兆帕等于N(牛顿)/mm2,(MPa=106Pa,Pa:帕斯卡=N/m2)2.屈服强度(σ0.2)有的金属材料的屈服点极不明显,在测量上有困难,因此为了衡量材料的屈服特性,规定产生永久剩余塑性变形等于一定值(一般为原长度的0.2%)时的应力,称为条件屈服强度或简称屈服强度σ0.2 。
3.抗拉强度(σb)材料在拉伸过程中,从开场到发生断裂时所到达的最大应力值。
它表示钢材抵抗断裂的能力大小。
与抗拉强度相应的还有抗压强度、抗弯强度等。
设Pb为材料被拉断前到达的最大拉力,Fo为试样截面面积,那么抗拉强度σb=Pb/Fo (MPa)。
4.伸长率(δs)材料在拉断后,其塑性伸长的长度与原试样长度的百分比叫伸长率或延伸率。
5.屈强比(σs/σb)钢材的屈服点(屈服强度)与抗拉强度的比值,称为屈强比。
屈强比越大,构造零件的可靠性越高,一般碳素钢屈强比为0.6-0.65,低合金构造钢为0.65-0.75合金构造钢为0.84-0.86。
6.硬度硬度表示材料抵抗硬物体压入其外表的能力。
它是金属材料的重要性能指标之一。
一般硬度越高,耐磨性越好。
常用的硬度指标有布氏硬度、洛氏硬度和维氏硬度。
⑴布氏硬度(HB)以一定的载荷(一般3000kg)把一定大小(直径一般为10mm)的淬硬钢球压入材料外表,保持一段时间,去载后,负荷与其压痕面积之比值,即为布氏硬度值(HB),单位为公斤力/mm2 (N/mm2)。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
钢铁的物理力学性能和机械性能
fangjym 的钢铁的物理力学性能和机械性能
钢材的主要机械性能(也叫力学性能)通常是指钢材在标准条件下均匀拉伸.冷弯和冲击等.
单独作用下所显示的各种机械性能。
钢材通常有五大主要的机械性能指标:通过一次拉伸试验可得到抗拉强度,伸长率和屈服点三项基本性能;
通过冷弯试验可得到钢材的冷弯性能;
通过冲击韧性试验可得到冲击韧性。
1.屈服点(σs)
钢材或试样在拉伸时,当应力超过弹性极限,即使应力不再增加,而钢材或试样仍继续发生明显的塑性变形,称此现象为屈服,而产生屈服现象时的最小应力值即为屈服点。
设Ps为屈服点s处的外力,Fo为试样断面积,则屈服点σs =Ps/Fo(MPa),MPa称为兆帕等于N(牛顿)/mm2,(MPa=106Pa,Pa:帕斯卡=N/m2)
2.屈服强度(σ0.2)
有的金属材料的屈服点极不明显,在测量上有困难,因此为了衡量材料的屈服特性,规定产生永久残余塑性变形等于一定值(一般为原长度的0.2%)时的应力,称为条件屈服强度或简称屈服强度σ0.2 。
3.抗拉强度(σb)
材料在拉伸过程中,从开始到发生断裂时所达到的最大应力值。
它表示钢材抵抗断裂的能力大小。
与抗拉强度相应的还有抗压强度、抗弯强度等。
设Pb为材料被拉断前达到的最大拉力,Fo为试样截面面积,则抗拉强度σb= Pb/Fo (MPa)。
4.伸长率(δs)
材料在拉断后,其塑性伸长的长度与原试样长度的百分比叫伸长率或延伸率。
5.屈强比(σs/σb)
钢材的屈服点(屈服强度)与抗拉强度的比值,称为屈强比。
屈强比越大,结构零件的可靠性越高,一般碳素钢屈强比为0.6-0.65,低合金结构钢为0.65-0.75合金结构钢为0.84-0.86。
6.硬度
硬度表示材料抵抗硬物体压入其表面的能力。
它是金属材料的重要性能指标之一。
一般硬度越高,耐磨性越好。
常用的硬度指标有布氏硬度、洛氏硬度和维氏硬度。
⑴布氏硬度(HB)
以一定的载荷(一般3000kg)把一定大小(直径一般为10mm)的淬硬钢球压入材料表面,保持一段时间,去载后,负荷与其压痕面积之比值,即为布氏硬度值(HB),单位为公斤力/mm2 (N/mm2)。
⑵洛氏硬度(HR)
当HB>450或者试样过小时,不能采用布氏硬度试验而改用洛氏硬度计量。
它是用一个顶角120°的金刚石圆锥体或直径为1.59、3.18mm的钢球,在一定载荷下压入被测材料表面,由压痕的深度求出材料的硬度。
根据试验材料硬度的不同,分三种不同的标度来表示:
HRA:是采用60kg载荷和钻石锥压入器求得的硬度,用于硬度极高的材料(如硬质合金等)。
HRB:是采用100kg载荷和直径1.58mm淬硬的钢球,求得的硬度,用于硬度较低的材料(如退火钢、铸铁等)。
HRC:是采用150kg载荷和钻石锥压入器求得的硬度,用于硬度很高的材料(如淬火钢等)。
⑶维氏硬度(HV)
以120kg以内的载荷和顶角为136°的金刚石方形锥压入器压入材料表面,用材料压痕凹坑的表面积除以载荷值,即为维氏硬度值(HV)
脆性:用于描述材料在未施加明显外力以及没有明显变形的情况下发生断裂的性能。
耐压强力:施加于材料上使其长度变短,截面积变大的外力,与拉伸强力相对应。
传导性:材料传输热能或者电能的速度。
蠕变:材料在压力条件下产生缓慢的变形量。
延展性:是金属受外力变形,当外力消除之后又恢复其原有形状的一中性质。
疲劳强度:材料承受重复作用外力的能力。
燃烧点:金属或其蒸气开始燃烧的最低温度点。
吸湿:易于吸收并且保持水分的金属。
冲击强度:金属吸收突然撞击能量的能力。
柔韧性:在压力条件下材料容易发生永久性变形而不断裂的能力。
可塑性:材料在较低压力条件下容易发生永久性变形的能力。
多孔性:材料内部空隙的体积占据材料整体体积的比率。
切变强度:两股方向相反的外力同时施加于材料表面,使其中一部分与另一部分相互滑移,材料发生断裂时的外力大小即为该材料的切变强度。
比重:一定体积材料的重量与相同体积四摄氏度的水的重量之比。
比热:加热1克某种金属使其温度升高一摄氏度所需要的能量。
硬挺性:材料承受变形的能力,以压力与变形位移为平定基础。
静强度:材料承受导致变形的外加应力的能力。
应力:拉伸应力,压缩应力以及剪切应力都是外部施加于材料,导致材料断裂的作用力。
拉伸强度:材料被拉伸所能承受的最大作用力。
与压缩强度对应。
热胀率:温度变化与材料规格变化之间的比率。
韧性:材料吸收冲击能量而不断裂的能力。
原材料机械性能表
铸件、棒材、铜合金的原材料化学成份,机械性能表铸件化学成份、机械性能表
表中单位:(1)化学成份% (2)力学性能:抗拉强度σb:MPa 、屈服强度σs:MPa 、延长率δ%、断面收缩率ψ%、αk :J/cm2
铸件化学成份、机械性能表
表中单位:(1)化学成份% (2)力学性能:抗拉强度σb:MPa 、屈服强度σs:MPa 、延长率δ%、断面收缩率ψ%、αk :J/cm2
棒材化学成份、机械性能表
表中单位:(1)化学成份% (2)力学性能:抗拉强度σb:MPa 、屈服强度σs:MPa 、延伸率δ%、收缩率ψ%、αk :J/cm2
棒材化学成份、机械性能表
表中单位:(1)化学成份% (2)力学性能:抗拉强度σb:MPa 、屈服强度σs:MPa 、延
伸率δ%、收缩率ψ%、αk :J/cm2铸件化学成份、机械性能表
表中单位:(1)化学成份% (2)力学性能:抗拉强度σb:MPa 、屈服强度σs:MPa 、延长率δ%、断面收缩率ψ%、αk :J/cm2
铜合金化学成份、机械性能表
表中单位:(1)化学成份% (2)力学性能:抗拉强度σb:MPa 、屈服强度σs:MPa 、延伸率δ%、收缩率ψ%、αk :J/cm2。