汽车动力学

合集下载

汽车的动力学参数

汽车的动力学参数

汽车的动力学参数汽车的动力学参数是指影响汽车性能和行驶特性的各项参数。

这些参数涉及到汽车的加速、制动、转向、悬挂、操控等方面,对于汽车的安全性、舒适性和驾驶体验都有着重要的影响。

1. 动力参数汽车的动力参数主要包括最大功率、最大扭矩和最高转速等。

最大功率是发动机在一定转速下能够输出的最大功率,它直接决定了汽车的加速性能。

最大扭矩是发动机在一定转速下输出的最大转矩,它影响着汽车的爬坡能力和牵引力。

最高转速是发动机能够达到的最大转速,它限制了发动机的输出能力。

2. 加速参数汽车的加速参数主要包括0-100公里/小时的加速时间和百米加速时间等。

0-100公里/小时的加速时间是衡量汽车加速性能的重要指标,它直接反映了汽车的动力水平。

百米加速时间则更加直观地反映了汽车的起步能力。

3. 制动参数汽车的制动参数主要包括100-0公里/小时的制动距离和制动效果等。

100-0公里/小时的制动距离是汽车在高速行驶状态下从100公里/小时减速到停车所需要的距离,它直接影响到行车安全。

制动效果则是指汽车在制动时所产生的制动力,它决定了汽车的制动能力。

4. 转向参数汽车的转向参数主要包括转向半径和转向灵活性等。

转向半径是指汽车在转弯时所需的最小转弯半径,它决定了汽车的转弯性能和操控性。

转向灵活性则是指汽车在转向时的灵活性和响应速度,它影响着汽车的操控感受。

5. 悬挂参数汽车的悬挂参数主要包括悬挂刚度和悬挂行程等。

悬挂刚度是指汽车悬挂系统的刚度水平,它决定了汽车的悬挂舒适性和操控稳定性。

悬挂行程则是指汽车悬挂系统的行程长度,它影响着汽车通过不平路面时的通过性和舒适性。

以上这些动力学参数都直接影响着汽车的性能和行驶特性。

不同的汽车在这些参数上的表现会有所不同,因此选择一辆适合自己的汽车时需要考虑这些参数。

对于追求驾驶乐趣的人来说,动力参数和悬挂参数可能更加重要;而对于追求经济性和舒适性的人来说,加速参数和制动参数可能更加重要。

汽车动力学

汽车动力学

气阻力也算出并画上,作出汽车驱动力-行驶阻力平衡图,
并以此来确定汽车的动力性。
超速演示
汽车驱动力-行驶 阻力平衡图
表征不同车 速时驱动力和行驶 阻力之间的关系。
特征点:最高车速, 仅有滚动阻力和空 气阻力。
小于最高车 速时,汽车可用剩 余驱动力加速或爬 坡。
需等速行驶 时,发动机可工作 在部分负荷特性。
一、汽车行驶方程式
根据上面逐项分析的汽车行驶阻力,可以得到汽车
的行驶方程式为:Ft=Ff+Fw+Fi+Fj
或:
T i i tq g 0 T
Gf
CA D
u2 Gi m du
r
21.15 a
dt
为清晰而形象地表明汽车行驶时的受力情况及其平衡
关系,一般是将汽车行驶方程式用图解法来进行分析。即
在汽车驱动力图上把汽车行驶中经常遇到的滚动阻力和空
汽车的质量分为平移的质量和旋转的质量两部
分。把旋转质量的惯性力偶矩转化为平移质量的惯性
力,并以系数δ作为计入旋转质量惯性力偶矩后的汽
车质量换算系数, 因而汽车加速时的阻力:
Fj
m
du dt
δ ——汽车旋转质量换算系数,(δ>1);
m ——汽车质量,单位为kg; du ——行驶加速度。 dt
δ主要与飞轮的转动惯量、车轮的转动惯量以及传动
轮胎在硬路面上滚动 时,主要是轮胎变形。
轮胎在硬支承路面上受 径向力时的加载和减载曲线 不重合。其面积之差为能量 损失,由轮胎内摩擦产生弹 性迟滞损失。
迟滞损失表现为阻碍车 轮滚动的阻力偶。
2. 滚动阻力偶分析
▪ 车轮不滚动:地面对车轮的法向反作用力对称。
▪ 车轮滚动:处于前部d点的地面法向反力(CF)大于处 于恢复的后部d’点地面反力(DF),合力Fz前移距离a, 与法向载荷W不重合。

汽车行驶中物理知识点总结

汽车行驶中物理知识点总结

汽车行驶中物理知识点总结汽车是一种利用发动机驱动轮胎进行运动的交通工具。

在汽车行驶过程中,涉及到许多物理知识,例如力学、热力学、机械运动等。

本文将对汽车行驶中的物理知识点进行总结。

一、汽车动力学1. 动力学基本原理汽车的行驶是由发动机提供的动力驱动的。

根据牛顿第二定律,当施加力在物体上时,物体将产生加速度,而汽车的加速度与牵引力有关。

牵引力是由发动机产生的,它足以克服阻碍汽车前进的摩擦力和空气阻力。

牵引力可以用以下公式来计算:F=ma,其中F是牵引力,m是汽车的质量,a是加速度。

依据这个公式,可以计算出汽车的最大牵引力,从而得知汽车能够实现的最大加速度。

2. 离合器和变速器的物理原理汽车的离合器和变速器对汽车的动力传递起到了至关重要的作用。

离合器的作用是将发动机和传动系统分离,以便进行换挡。

当踩下离合器踏板时,离合器压板就会与从动盘分离开来,使发动机与变速器之间断开,这样就可以换挡。

而变速器的作用是将发动机提供的动力通过不同的齿轮传递至汽车的轮胎,不同齿轮可以实现不同的速度和牵引力,从而保证汽车能够适应不同的路况和驾驶需求。

二、汽车行驶的热力学原理1. 内燃机的工作原理汽车的内燃机是通过燃烧混合气体来产生动力的。

具体来说,汽车的发动机是通过将空气和燃料混合后,压缩、点火并燃烧,然后利用爆炸的高温高压气体来驱动活塞运动,最终转变成车轮的动力。

这个过程中涉及到燃烧、热传递等热力学原理。

2. 制动系统的物理原理汽车在行驶中需要通过制动系统来减速和停车。

制动系统通过将动能转换为热能来实现汽车的减速。

当踩下刹车踏板时,制动器会施加摩擦力在车轮上,使车轮转动受到阻碍,从而汽车减速。

这是根据牛顿第一定律和能量守恒定律的物理原理。

三、汽车运动的力学原理1. 轮胎与道路的摩擦力汽车的行驶首先需要有足够的摩擦力来提供牵引力,从而使汽车能够行驶。

当车轮转动时,与地面接触的轮胎受到道路的反作用力,这就是摩擦力。

摩擦力取决于地面材料、轮胎的材料和车辆的质量等因素,摩擦力越大,汽车的牵引力越大。

汽车动力学及其控制

汽车动力学及其控制

汽车动力学及其控制
汽车动力学是研究汽车在运动状态下的力学、运动学和振动学等现象的学科,它涉及到汽车的加速、制动、操纵等方面的问题。

汽车动力学的主要目标是理解和优化汽车在不同工况下的运动性能,以提高驾驶安全性、舒适性和燃油经济性。

汽车动力学的主要内容包括:
汽车运动学:研究汽车的运动状态,包括速度、加速度、位移等。

这涉及到汽车的运动方程、轨迹规划等内容。

汽车力学:研究影响汽车运动的力,包括引擎产生的推进力、刹车产生的阻力、轮胎与路面之间的附着力等。

汽车力学是汽车动力学中的一个核心领域。

操纵稳定性:研究汽车在操纵过程中的稳定性,包括横向稳定性(转向稳定性)、纵向稳定性(加速度和刹车时的稳定性)等。

汽车振动学:研究汽车在运动过程中的振动问题,包括悬挂系统、车辆舒适性、悬挂系统的调校等。

汽车动力学与控制是将控制理论和方法应用于汽车动力学问题的学科。

在汽车动力学中,控制的目标通常包括提高汽车的稳定性、操纵性、燃油经济性等。

汽车动力学及其控制的关键问题包括:
动力系统控制:包括发动机控制、传动系统控制等,旨在优化动力系统的性能和燃油效率。

悬挂系统控制:通过主动悬挂系统,调整车辆的悬挂刚度和阻尼,
以提高操纵性和舒适性。

刹车系统控制:通过防抱死刹车系统(ABS)等,提高刹车的效果和稳定性。

车辆稳定性控制:通过电子稳定控制系统(ESC)等,提高车辆在横向运动中的稳定性。

巡航控制:通过巡航控制系统,实现汽车在高速公路上的自动巡航。

汽车动力学及其控制在现代汽车工程中起着重要作用,它不仅关乎车辆性能的提升,还涉及到驾驶安全、能源利用效率等方面的问题。

汽车动力学_概述

汽车动力学_概述

汽车动力学_概述汽车动力学是研究汽车的力学性能和运动特性的学科,它涉及到汽车的加速、制动、转向以及牵引等方面的问题。

在汽车动力学中,有许多基本概念和理论,通过研究这些概念和理论,我们可以更好地理解和分析汽车的运动行为。

1.加速:汽车的加速性能是衡量汽车动力学性能的重要指标之一、加速性能主要与汽车的动力系统相关,包括发动机的功率和转矩输出、变速器的传动比以及车辆的重量等。

通过分析汽车的动力输出特性和传动系统的效率,可以预测和评估汽车的加速性能。

2.制动:制动性能是衡量汽车动力学性能的另一个重要指标。

制动性能主要与汽车的制动系统相关,包括刹车片的材料和摩擦系数、刹车液的性能、刹车系统的设计和调校等。

通过分析刹车系统的工作原理和性能特点,可以预测和评估汽车的制动性能。

3.转向:汽车的转向性能是指汽车在转弯时的稳定性和灵活性。

转向性能主要与汽车的悬挂系统、转向系统以及轮胎性能相关。

通过分析汽车的悬挂几何、刚度和阻尼等特性,可以预测和评估汽车的转向性能。

4.牵引:汽车的牵引性能是指汽车在起步或爬坡时的牵引能力。

牵引性能主要与汽车的动力系统、传动系统以及轮胎性能相关。

通过分析发动机的输出特性、传动系统的传动比以及轮胎的抓地力,可以预测和评估汽车的牵引性能。

在进行汽车动力学的研究和分析时,一般会使用动力学模型来描述汽车的运动行为。

动力学模型是通过对汽车的物理特性和力学原理进行数学建模得到的,常用的动力学模型有单轴模型、二轴模型和多轴模型等。

这些动力学模型可以帮助我们更好地理解和预测汽车的运动行为。

另外,在汽车动力学的研究中还会涉及到一些实验和测试方法。

常用的实验和测试方法包括制动测试、加速测试、方向盘转动测试以及悬挂系统测试等,这些测试方法可以帮助我们获得汽车动力学性能的具体数据,从而更准确地评估汽车的性能。

总之,汽车动力学是研究汽车运动行为的学科,通过对汽车的加速、制动、转向和牵引等方面的问题进行研究和分析,可以更好地理解和预测汽车的性能。

carsim的动力学模型基础方程

carsim的动力学模型基础方程

汽车动力学模型基础方程在汽车工程中,动力学模型是一个重要的概念,它描述了汽车在运动过程中的力学特性和行为。

其中,汽车动力学模型的基础方程起着至关重要的作用,它们是描述汽车动力学特性的数学表达式,是汽车工程中的核心理论基础。

一、运动方程汽车在运动中受到多种力的作用,这些力包括牵引力、阻力、重力等。

通过牛顿第二定律,可以得到描述汽车运动的基本方程:F = ma其中,F是受到的合外力,m是汽车的质量,a是汽车的加速度。

根据牵引力、阻力和重力的关系,可以得到更加细致的运动方程:F_traction - F_drag - F_roll - F_grade = ma其中,F_traction是牵引力,F_drag是阻力,F_roll是滚动阻力,F_grade是上坡或下坡时产生的力。

这些力可以通过具体的公式计算得到,从而得到汽车的加速度。

二、转向方程在汽车运动中,转向是一个重要的问题。

汽车的转向能力与转向系的设计和轮胎的特性有关。

描述汽车转向行为的基础方程可以通过转向角速度、侧向力和横摆刚度等参数建立,具体方程如下:Mz = Iz * ωz + Fy * a其中,Mz是横摆力矩,Iz是车辆绕垂直轴的惯性矩,ωz是车辆的横摆角速度,Fy是轮胎的侧向力,a是车辆的横向加速度。

这个方程描述了汽车在转向过程中受到的各种力的平衡关系。

三、刹车方程刹车是汽车行驶中不可或缺的部分,汽车刹车性能与刹车系统、轮胎和路面特性等有关。

汽车刹车性能的基础方程可以描述如下:Fbrake = μ * Fz其中,Fbrake是刹车力,μ是刹车系数,Fz是轮胎受力。

刹车系数与刹车系统和轮胎的摩擦特性有关,它是刹车性能的一个重要参数。

总结通过以上的分析可以看出,汽车动力学模型的基础方程是汽车工程中的核心内容,它涉及到多个力学和运动学的概念,并且需要深入的数学和物理知识。

汽车动力学模型的基础方程不仅对汽车设计和优化具有重要意义,对于理解汽车行驶过程中的各种力学特性也有着重要意义。

汽车车辆动力学的建模与仿真

汽车车辆动力学的建模与仿真

汽车车辆动力学的建模与仿真汽车车辆动力学是指研究汽车在行驶过程中受到的各种力的作用及其对车辆运动的影响的学科。

在现代汽车工业中,为了更好地设计汽车、提高汽车性能和安全性,建模与仿真技术成为了不可或缺的工具。

本文将重点讨论汽车车辆动力学的建模与仿真,以及其在汽车工程领域的应用。

汽车车辆动力学建模是指通过数学、物理等方法描述汽车在运动中受到的各种力和力矩的作用,将汽车系统简化为一系列数学模型。

这些模型可以用来研究汽车在不同路况、驾驶方式下的运动特性,如加速度、速度、转向和悬挂系统的响应等。

建模通常包括车辆动力学、车辆悬挂、车辆转向、车辆稳定性等方面的内容。

通过建模,工程师可以更好地了解汽车在不同情况下的运动规律,为汽车设计和优化提供依据。

在建模的基础上,仿真技术则是将建立的数学模型转化为计算机模型,并进行仿真计算。

通过仿真,工程师可以模拟汽车在不同条件下的运动状态,如加速、制动、转向等,评估汽车性能、安全性和稳定性。

仿真技术还可以用来研究汽车系统的优化设计,提高汽车的性能和安全性。

通过不断调整模型参数和条件,工程师可以找到最佳的解决方案,为汽车设计和制造提供参考。

汽车车辆动力学的建模与仿真在汽车工程领域有着广泛的应用。

首先,它可以帮助工程师更好地了解汽车在不同工况下的运动特性,评估汽车的性能和安全性。

其次,建模与仿真可以帮助设计师优化汽车结构和系统,提高汽车的动力性、操控性和燃油效率。

最后,建模与仿真还可以用来研究汽车的碰撞安全、行驶稳定性、轮胎抓地力等关键问题,为汽车的主动安全和 passagive安全提供支持。

总的来说,汽车车辆动力学的建模与仿真是汽车工程领域的重要技术手段,可以帮助工程师更好地理解汽车的运动规律,优化汽车的设计和性能。

随着计算机技术的不断发展,建模与仿真技术将在未来得到更广泛的应用,为汽车工程师提供更强大的工具来设计、研发和测试新型汽车。

汽车系统动力学

汽车系统动力学

汽车系统动力学
1 什么是汽车系统动力学
汽车系统动力学是一个新兴的技术领域,它是汽车技术的分支,
专注于研究和设计汽车系统的总体行为。

该领域主要关注汽车的运动
规律、动力学和控制特性。

汽车系统动力学的研究旨在发展改善汽车
性能并适应日新月异的技术变化和社会需求。

2 动态特性
汽车系统动力学考虑多个机械系统的动态行为,以全面评估和调
整车辆的性能。

它是建立汽车的核心内容,涉及汽车的悬架系统、动
力系统、发动机、传动系统和控制系统的研究与设计。

动力学技术可
以通过实验和数值分析的方法,精确计算车辆的动力和运动特性,提
高车辆的整车性能,提高可靠性和安全性。

3 模拟与控制
把汽车系统抽象化,建立一个车辆动力学模型,可以使研究者以
虚拟的方式实现无限的试验。

运行模拟,发现汽车的动力和控制问题,这也是汽车技术发展中不可替代的方法。

同时,采用模拟技术可以大
大减少汽车系统开发周期。

4 汽车系统动力学的未来发展
汽车系统动力学是一个容易引起现代技术的新领域,随着技术的
不断更新,汽车系统动力学也在发生变化,多层次有趣的课题正在研
究,比如自动驾驶系统的研究,发动机的新能源研究等。

由于其独特
的特性,汽车系统动力学还可以发展到其他领域,如人体工程学,机
器人及空间科学等,将更多新奇的机器人及汽车系统动力学应用于日
常生活中。

汽车系统动力学融合了物理学、数学、机械工程,以及一系列的
有关技术,是一个全新的领域,它将与日俱增,未来有很大发展潜力。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
t u2
1
加速时间由积分计算或图解积分求出。 用图解积分法时,将a-ua曲线转为1/a-ua曲线,曲线 下两个速度区间的面积表示通过此速度区间的加速时间; 常将速度区间分为若干间隔,通过确定面积△1、△2…来 计算总加速时间。
BJ1040轻型载货汽车加速 时间曲线
2. 汽车爬坡能力的确定 在良好路面上克服Ff+Fw后用来克服坡度阻力时所能爬 上的坡度。此时,du/dt=0,即 Fi = Ft - ( Ff + Fw ) 紧凑型轿车的爬坡度曲线 以Gsinα作为坡度阻力, 代入表达式,得:
汽车驱动力-行驶 阻力平衡图 表征不同车 速时驱动力和行驶 阻力之间的关系。 特征点:最高车速 最高车速, 最高车速 仅有滚动阻力和空 气阻力。 小于最高车 速时,汽车可用剩 余驱动力加速或爬 坡。 需等速行驶 时,发动机可工作 在部分负荷特性。
1. 汽车加速能力的评价 在水平良好路面上行驶时能产生的加速度:不易测量。 加速时间:用直接档行驶时,由最低稳定速度加速到一 定距离或80% umax所需时间。 汽车加速度:
第1节 汽车动力性指标
从获取尽可能高的平均速度考虑,动力性指标有: 最高车速 加速பைடு நூலகம்间 最大爬坡度
1.最高车速uamax
在水平良好的路面上汽车能达到的最高行驶速度(km/h)。
2.加速时间t
表示汽车的加速能力。常用: 原地起步加速时间:汽车以1档或2档起步,并以最大加速强度 换至最高档后达到某一距离(0 402.5m或0 400m)或车速 (0 96.6km/h或0 100km/h)所需要的时间(s)。
二、汽车的行驶阻力
汽车行驶时的各种阻力: 滚动阻力——以符号Ff表示; 空气阻力——以符号Fw表示; 坡度阻力——以符号Fi表示; 加速阻力——以符号Fj表示; 因此汽车行驶的总阻力为: ∑F=Ff+Fw+Fi+Fj
(一)滚动阻力 1.组成 轮胎与路面接触区域产生的法向、切向相互作用力 轮胎和支承路面的变形 轮胎在硬路面上滚动 时,主要是轮胎变形。 轮胎在硬支承路面上受 径向力时的加载和减载曲线 不重合。其面积之差为能量 损失,由轮胎内摩擦产生弹 性迟滞损失。 迟滞损失表现为阻碍车 轮滚动的阻力偶。
2.表达式
Ft =Tt /r r—车轮半径 驱动轮转矩Tt与发动机转矩 Ttq的关系为: 故:
Ft =
Ttq ig ioηt r
3.表达式涉及的几项具体内容
1)发动机转速特性 发动机的功率Pe、转矩Tqt及燃油消耗率b与曲轴转速n 之间的函数关系。用试验曲线或拟合多项式表达。 发动机外特性曲线:发动机 发动机外特性曲线 节气门置于全开位置 发动机部分负荷特性曲线: 发动机部分负荷特性曲线 发动机节气门置于部分开启位 置 台架试验特性曲线:发动 台架试验特性曲线 机台架试验时所获得的曲线。 使用外特性曲线:带上全 使用外特性曲线 部附件时的外特性。与台架试 验特性相差5~15%。
2. 滚动阻力偶分析 车轮不滚动:地面对车轮的法向反作用力对称。 车轮滚动:处于前部d点的地面法向反力(CF)大于处 于恢复的后部d’点地面反力(DF),合力Fz前移距离a, 与法向载荷W不重合。
滚动阻力偶矩Tf=Fza 从动轮:欲使从动轮在硬路面上等速滚动,必须在车轮 中心加一推力Fp1,根据力矩平衡,若令 f=a/r,可将Fp1值 写作Fp1= Wf 或 f = Fp1 /W, f 称为滚动阻力系数。
δ主要与飞轮的转动惯量、车轮的转动惯量以及传动 系的传动比有关。 I i 2i 2η 根据推导
1 ΣI w 1 δ = 1+ + 2 m r m
f g 0
T
r2
若不知道准确的If、∑Iw值,也可按下述经验公式估算 δ值: δ=1+δ1+δ2i2g 式中δ1≈δ2=0.03~0.05。 故,汽车的行驶方程式 行驶方程式为: 行驶方程式 Ft=Ff+Fw+Fi+Fj
可见滚动阻力系数是车轮在一定条件下滚动时所 需之推力与车轮负荷之比,即单位汽车重力所需之推力, Ff=Wf =Tf /r。 驱动轮:由驱动轮的力矩平衡得 FX2r = Tt-Tf 故 FX2 = Ft-Ff 其中, FX2为驱动力矩所引起 得道路对车轮的切向反作用力。 即实际作用在驱动轮上的切向 力为驱动力减滚动阻力。 滚动阻力系数由试验确定。 滚动阻力系数与路面的种类、 行驶车速以及轮胎的构造、材 料、气压等有关 。
(三)坡度阻力 当汽车上坡行驶时,爬坡演示 爬坡演示汽车重力沿坡道的分 爬坡演示 力表现为汽车坡度阻力 i,Fi=Gsinα 坡度阻力F 坡度阻力 其中,G—作用于汽车上的重力(N),G=mg,m为汽 车质量(kg),g为重力加速度。 一般路面上坡度较小,此时 Fi=Gsinα≈ Gtgα =Gi 由于坡度阻力与滚动阻力均属于与道路有关的阻力, 且均与汽车重力成正比,故可把这两种阻力合在一起称 作道路阻力,以Fψ表示,即Fψ= Ff+Fi= fGcosα+Gsinα, 当α不大时,cosα≈1,sinα≈i,Fψ=Gf+Gi=G(f+i),令 f+i=ψ,ψ称为道路阻力系数 ψ=Gψ。 道路阻力系数F 道路阻力系数
超车加速时间: 用最高档或次高 档由某一较低车 速(30km/h或 40km/h)全力加 速至某一高速所 需时间(s)。 如:部分轿 车的原地起步加 速过程曲线
3.最大爬坡度imax 汽车的上坡能力。以1档满载时汽车在良好路 面上的最大爬坡度表示。是极限爬坡能力。 轿车:一般不强调 货车: imax =30%(约16.5°) 越野汽车:imax =60% 有时也以汽车在一定坡道上必须达到的车速 来表示爬坡能力。如:美国对轿车爬坡要求,能 以104 km/h车速通过6%的坡道。
第4节 汽车行驶的驱动-附着条件与汽车的附着力
一、汽车行驶的驱动条件 Ft≥Ff+Fw+Fi 上式为汽车的驱动条件,可以采用增加发动机转矩、加 大传动比等措施来增大汽车驱动力。汽车行驶除受驱动条件 制约外,还受轮胎与地面附着条件 轮胎与地面附着条件的限制。 轮胎与地面附着条件 二、汽车行驶的附着条件 地面对轮胎切向反作用力的极限值称为附着力 φ,在硬 附着力F 附着力 路面上与驱动轮法向反作用力FZ成正比,常写成 FXmax= Fφ = FZ·φ 其中, FZ—作用于所有驱动轮上的地面法向反作用力; φ—附着系数 附着系数,由路面和轮胎决定。 附着系数
1 Fw = C D Aρur2 2

其中,ua—汽车车速(km/h),A—迎风面积(m²), CD—空气阻力系数。故降低CD值是降低空气阻力的主要 手段,措施有:
(1)车身前部:发动机盖下倾,圆柱状棱角,减少 凸出物。 (2)整车:车身前倾1~2,前端半圆、后收、鼓腰。 (3)汽车后部:舱背式或直背式好,加扰流板;如 为折背式,用鸭尾式结构。 (4)车身底部:下平面尽量平整。 (5)发动机冷却进风系统:仔细选择进出风口位置。
第2节 汽车的驱动力与行驶阻力
根据沿行驶方向作用于汽车的各种外力, 可以计算汽车的最高车速、加速度、最大爬坡 度。由力平衡关系得: Ft=ΣF Ft—驱动力; ΣF—行驶阻力之和 汽车行驶方程
一、驱动力 1.定义
发动机产生的转矩,经传动系至驱动轮,转矩Tt对地面 产生圆周力Fo,地面对驱动轮的反作用力Ft即为驱动力。
(四) 加速阻力 汽车的质量分为平移的质量和旋转的质量两部 分。把旋转质量的惯性力偶矩转化为平移质量的惯性 力,并以系数δ作为计入旋转质量惯性力偶矩后的汽 汽 车质量换算系数, 车质量换算系数 因而汽车加速时的阻力:
du Fj = δ m dt
δ ——汽车旋转质量换算系数,(δ>1); m ——汽车质量,单位为kg; du ——行驶加速度。 dt
(二)空气阻力 汽车直线行驶时受到的空气作用力在行驶方向上的 分力称为空气阻力。空气阻力分为压力阻力(一般轿车 占91%)与摩擦阻力(9%)两部分。压力阻力又分为四 部分:形状阻力(58%)、干扰阻力(14%)、内循环 阻力(12%)和诱导阻力(7%)。 空气阻力:
2 C D Aua Fw = 21.15
第3节 汽车驱动力—行驶阻力平衡图与动力特性图 一、汽车行驶方程式
根据上面逐项分析的汽车行驶阻力,可以得到汽车 的行驶方程式 行驶方程式为:Ft=Ff+Fw+Fi+Fj 行驶方程式 或: Ttq ig i0ηT C A du = Gf + D u a2 + Gi + δm r 21 .15 dt 为清晰而形象地表明汽车行驶时的受力情况及其平衡 关系,一般是将汽车行驶方程式用图解法来进行分析。即 在汽车驱动力图上把汽车行驶中经常遇到的滚动阻力和空 气阻力也算出并画上,作出汽车驱动力-行驶阻力平衡图 汽车驱动力汽车驱动力 行驶阻力平衡图, 并以此来确定汽车的动力性。 超速演示
汽车动力学
第一章 汽车动力性
汽车的动力性: 汽车的动力性: 汽车在良好路面上直线行驶时由汽车受到的纵向外 力决定的,所能达到的平均行驶速度。 基本概念: 基本概念: 动力性的评价指标 汽车的驱动力与各种行驶阻力 汽车行驶的驱动—附着条件 重点内容: 重点内容: 驱动力-行驶阻力平衡图 分析汽车动力性的方法 (图解法) 动力特性图 功率平衡图
三、汽车的附着力与地面反作用力 汽车的附着力决定于附着系数和地面作用于驱动 轮的法向反作用力。 1. 附着系数 由路面种类、状况、车速等决定。平均值: 良好的混凝土或沥青路面: 干燥时,φ=0.7~0.8 φ 0.7~0.8 潮湿时,φ=0.5~0.6 土路:干燥时,φ=0.5~0.6 潮湿时,φ=0.2~0.4 2. 驱动轮地面法向反作用力 与汽车的总体布置、车身形状、行驶状况、道路坡 度有关。
Ft − ( Ff + Fw ) α = arcsin G
利用驱动力-行驶阻力 平衡图,可求出汽车能爬上 的坡道角。最大爬坡度imax 为1档时的最大爬坡度,对 货车尤其重要。
相关文档
最新文档