车辆系统动力学 作业

合集下载

车辆系统动力学思考题

车辆系统动力学思考题

思考题
1.振动对人体的影响取决于振动的哪些因素?怎样评价汽车的平顺性
2.怎样表达路面的输入?试画出路面垂直位移,速度和加速度的空间谱和时间谱图(设
u=20m/s,路面不平度系数为2.56*10-4m3,参考空间频率为0.1m-1,要求用双对数坐标,选好坐标刻度并注明单位)。

3.与平顺性相关的部件及乘员的乘坐舒适性相关的主要部件有哪些?有何特点?
4.试写出四自由度平面模型的方程式,并分析在什么情况下可简化为2由度平面模型.
5.设车身-车轮2自由度汽车模型,其车身部分的国有频率为2Hz.它行使在波长为5m的
水泥路接缝上,求引起车身部分共振的车速?
6.某车身单质量系统的幅频用双对数表示时如下图,设该系统输入的路面不平度系数为
2.56*10-4m3,参考空间频率为0.1m-1,u=20m/s。

求车身加速度的谱密度,画出其谱图,
并计算0.1-10Hz频率范围的车速加速度的均方根值。

|z/q|
0.1 1 10
f/H z
题6图车身单质量系统的幅频特性
7.什么是车身型振动和车轮型振动,试画出该振型形态。

8.利用车身与车轮的2自由度模型,分析系统参数对振动响应量均方根值的影响。

9.谈谈你对可控悬架有怎样的了解?半主动和主动控制是怎样来改善车辆的平顺性的?
10.“人体—坐椅”系统参数的选择要考虑哪些因素?。

文档:汽车系统动力学第一次作业

文档:汽车系统动力学第一次作业

影响轮胎侧向力的三个最重要的因素是侧偏角、垂向载荷和车轮外倾角。

侧偏角由轮胎的运行条件所决定,它取决于车辆前进速度、侧向速度、横摆角速度和转向角。

轮胎垂向载荷的静态值由车辆质量分布所决定,但随着载荷在纵向和侧向的重新分配,轮胎的垂向载荷会发生变化。

车轮外倾角由转向角和通过悬架杆系作用的车身侧倾所决定,但对非独立悬架车辆来说,外倾角只取决于车轴的侧倾角。

高速转向工况下整车建模中对轮胎模型的考量:1.高速汽车转向大体可分为三种情况:1)匀速转向;2)超车(加速转向);3)避障(减速转向),因此前后左右四个轮胎的载荷将重新分配,那么轮胎模型还必须包括侧向力和轮胎垂向载荷的关系。

2.如果建模中考虑了车身侧倾角与车轮外倾角的关系(?它们之间什么关系),那么轮胎模型中必须包括车轮外倾对轮胎力的影响。

3.联合工况下魔术公式与实际测试结果有很好的拟合精度,因此采用魔术公式(pacejka89或者pacejka94)。

高速行驶时的轮胎的纵向力学特性:风阻大大增加(整车);此外由于驻波,导致滚动阻力系数增加。

转弯阻力(?老师给的电子书126节)轴承阻力,前束阻力,路面不平度阻力等较小可以略去不计。

在干燥的路面,○1曲线表示附着系数虽车速变化不大。

本课题仅考虑干燥路面。

附着椭圆(魔术公式满足)导入特性(瞬态)大家考虑一下输入和输出是什么?一是单纯轮胎的tire testing的输入输出二是整车建模的输入输出焕兄组的资料:1转向力矩形成机理与车速对其影响的定性分析影响转向力矩的因素包括轮胎花纹、气压、载荷、路面摩擦系数、前轮定位参数、转向角、前轮转向系统转动惯量、转向系统干摩擦特性、转向干涉、转向系统刚度、轮胎的力学特性、车辆系统参数等。

转向力矩是由于地面和转向轮之间的相互作用以及转向系统内部摩擦而产生的。

地面对转向轮的作用力主要包括侧向力、纵向力与垂向力。

构成转向力矩的主要部分是侧向力与轮胎拖距之积形成的轮胎自回正力矩及侧向力与主销后倾距之积形成的侧向力回正力矩 ,其次是重力回正力矩和纵向力回正力矩。

车辆系统动力学第二次作业

车辆系统动力学第二次作业

第二次作业柏满飞1. 设计要求1.1 汽车参数1.2 性能要求2. 牵引电动机量值的设计2.1参考一些相关资料,可以取如下电动机参数:2.2电机额定功率值汽车轮胎半径:0.2794r m = 则齿轮传动的传动比:,max max=3.2930m g n ri V π=则车辆转动惯量系数:2121 1.07g i δδδ=++=,式中10.04δ=,20.0025δ=则电机的额定功率值:()2222177.45235t fb r f a D f f aMP VV Mgf V C A V kW t δρ=+++= 取整可以选额定功率值:80t P kW =2.3电机外特性曲线由以上参数得该电机的外特性曲线如图2.1所示。

图 2.1 电机外特性曲线3. 加速性能的检验基于牵引电机的转矩-转速特性、齿轮传动比以及车辆的参数,可以计算车辆的加速性能即加速时间和距离与车速之间的对应关系。

计算0100/km h -加速时间:100210.2112a p g r a D f M t dV sT i MGf C A V rδηρ==--⎰满足性能要求。

4. 爬坡能力的检验应用电机的转矩-转速特性、齿轮传动比,以及车辆的参数,并由行驶过程中汽车驱动力和阻力关系式:p g t T i F rη=()21cos sin 2r r a D f F Mg f C A V ααρ=++由此可计算得出牵引力和阻力与车速之间的关系,如图4.1所示。

从而可计算出车辆的爬坡能力。

图 4.1 不同坡度下牵引力与车速之间的关系图 4.2 爬坡能力与车速之间的关系根据图4.1和4.2,车辆在100/km h的速度行驶时可以有15%左右的爬坡能力,低速时有43%左右的爬坡能力,符合设计要求。

5. 发动机/发电机量值的设计这里发动机额定功率的设计要求能够承载车辆在平坦路面上,以高速公路的最高速度130/km h行驶的需要。

km h的恒定行驶速度下,考虑传动装置(效率为90%)、电动机(效率为图5.1表明在130/90%)以及发电机(效率为85%),所需发动机的功率为32.5kW。

(完整word版)车辆系统动力学试卷

(完整word版)车辆系统动力学试卷

1、系统动力学有哪三个研究内容?(1)优化:已知输入和设计系统的特性,使得它的输出满足一定的要求,可称为系统的设计,即所谓优化。

就是把一定的输入通过选择系统的特性成为最优化的输出。

(2)系统识别:已知输入和输出来研究系统的特性。

(3) 环境预测。

已知系统的特性和输出来研究输入则称为环境预测。

例如对一振动已知的汽车,测定它在某一路面上行驶时所得的振动响应值(如车身上的振动加速度),则可以判断路面对汽车的输入特性,从而了解到路面的不平特性。

车辆系统动力学研究的内容是什么?(1)路面特性分析、环境分析及环境与路面对车辆的作用;(2)车辆系统及其部件的运动学和动力学;车辆内各子系统的相互作用;(3)车辆系统最佳控制和最佳使用;(4)车辆—人系统的相互匹配和模型研究、驾驶员模型、人机工程等。

2、车辆建模的目的是什么?(1)描述车辆的动力学特性;(2)预测车辆性能并由此产生一个最佳设计方案;(3)解释现有设计中存在的问题,并找出解决方案.车辆系统动力学涉及哪些理论基础?(1)汽车构造(2)汽车理论(3)汽车动力学(4)信号与系统在“时间域”及“频率域"下研究时间函数x(t)及离散序列x(n)及系统特性的各种描述方式,并研究激励信号通过系统时所获得的响应.(5)自动控制理论(6)系统辨识(7)随机振动分析研究随机振动中物理量的描述方法(相关函数、功率谱密度),讨论受随机激励的振动系统的激励、系统特性、响应三者统计规律性之间的关系.(8)多体系统动力学建立车辆系统动态模型的方法主要有哪几种?数学模型(1)各种数学方程式:微分方程式,差分方程,状态方程,传递函数等.(2)用数字和逻辑符号建立符号模型-方框图。

3、路面不平度功率谱密度的表达式有几种?各有何特点?试举出2种以上路面随机激励方法,并说明其特点。

(10分)路面功率谱密度的表达形式分为幂函数和有理函数两种(1)路面不平度的幂函数功率谱密度ISO/DIS8608和国家标准GB7031-1987《车辆振动输入路面平度表示方法》中建议采用垂直位移单边功率谱密度来描述路面平度的统计特性:式中:n为空间频率,是波长的倒数,表示每米长度上变化的次数,;为参考空间频率,=0。

汽车系统动力学试卷(大全5篇)

汽车系统动力学试卷(大全5篇)

汽车系统动力学试卷(大全5篇)第一篇:汽车系统动力学试卷考试内容:1汽车系统动力学的研究范围、研究方法、特点及发展趋势。

2.轮胎侧偏动力学。

掌握轮胎侧偏特性的定义、影响因素、模型类型,能够建立轮胎侧偏特性简化理论模型。

3.汽车前轮转向和四轮转向动力学。

对于前轮转向汽车,能够推导其数学模型,掌握表征汽车稳态响应的参数及影响因素,瞬态响应和频率响应特性的分析;对于四轮转向汽车,能够推导其数学模型,掌握汽车四轮转向系统的控制方法。

4.驾驶员汽车闭环系统动力学。

掌握驾驶员模型类型,闭环系统研究特点。

5.悬架系统动力学。

掌握悬架的分类、特点、评价指标,被动悬架、主动悬架系统模型的建立,悬架系统特性分析。

6.控制技术在汽车系统动力学研究中的应用。

了解PID控制、最优控制、自适应控制、模糊控制、神经网络控制等技术在汽车系统动力学研究中的应用。

第二篇:汽车系统动力学1、全主动悬架和半主动悬架的工作原理及评价指标半主动悬架就是指可以根据汽车运行时的振动及工况变化情况,对悬架阻尼参数进行自动调整的悬架系统。

为了减少执行元件所需的功率,一般都采用调节减振器的阻尼,使阻尼系数在几毫秒内由最小变至最大,使汽车振动频率被控制在理想的范围内。

半主动悬架为无源控制,在汽车转向、起步及制动等工况时,不能对悬架的刚度和阻尼进行有效的控制。

全主动悬架简称主动悬架,是一种有源控制悬架,所以它包括有提供能量的设备和可控制作用力的附加装置。

它可根据汽车载质量、路面状况(振动情况),行驶速度、起动、制动、转向等工况变化时,自动调整悬架的刚度和阻尼以及车身高度,从而能同时满足汽车行驶平顺性和稳定性等各方面的要求。

其评价指标有悬架动行程、轮胎动载荷、车身加速度。

2、什么是系统动力学,系统动力学研究的内容是什么?系统动力学是一门分析研究信息反馈系统的学科,也是一门认识系统问题和解决系统问题的交叉综合学科。

汽车系统动力学研究所有与车辆系统运动有关的学科,包括空气动力学,纵向运动及其子系统的动力学响应,垂向和横向两个方面的动力学内容,既行驶动力学和操纵动力学,行驶动力学主要研究由路面的不平激励,通过悬架和轮胎垂向力引起的车身跳动和俯仰以及车轮的运动,操纵动力学研究车辆的操纵特性,主要与轮胎侧向力有关,并由此引起车辆侧滑、横摆和侧倾运动。

汽车系统动力学习题答案

汽车系统动力学习题答案

汽车系统动⼒学习题答案1.汽车系统动⼒学发展趋势随着汽车⼯业的飞速发展,⼈们对汽车的舒适性、可靠性以及安全性也提出越来越⾼的要求,这些要求的实现都与汽车系统动⼒学相关。

汽车系统动⼒学是研究所有与汽车系统运动有关的学科,它涉及的范围较⼴,除了影响车辆纵向运动及其⼦系统的动⼒学响应,还有车辆在垂向和横向两个⽅⾯的动⼒学内容,随着多体动⼒学的发展及计算机技术的发展,使汽车系统动⼒学成为汽车CAE技术的重要组成部分,并逐渐朝着与电⼦和液压控制、有限元分析技术集成的⽅向发展,主要有三个⼤的发展⽅向:(1)车辆主动控制车辆控制系统的构成都将包括三⼤组成部分,即控制算法、传感器技术和执⾏机构的开发。

⽽控制系统的关键,控制律则需要控制理论与车辆动⼒学的紧密结合。

(2)多体系统动⼒学多体系统动⼒学的基本⽅法是,⾸先对⼀个由不同质量和⼏何尺⼨组成的系统施加⼀些不同类型的连接元件,从⽽建⽴起⼀个具有合适⾃由度的模型;然后,软件包会⾃动产⽣相应的时域⾮线性⽅程,并在给定的系统输⼊下进⾏求解。

汽车是⼀个⾮常庞⼤的⾮线性系统,其动⼒学的分析研究需要依靠多体动⼒学的辅助。

(3)“⼈—车—路”闭环系统和主观与客观的评价采⽤⼈—车闭环系统是未来汽车系统动⼒学研究的趋势。

作为驾驶者,⼈既起着控制器的作⽤,⼜是汽车系统品质的最终评价者。

假如表达驾驶员驾驶特性的驾驶员模型问题得到解决后,“开环评价”与“闭环评价”的价值差别也许就不存在了。

因此,在⼈—车闭环系统中的驾驶员模型研究,也是今后汽车系统动⼒学研究的难题和挑战之⼀。

除驾驶员模型的不确定因素外,就车辆本⾝的⼀些动⼒学问题也未必能完全通过建模来解决。

⽬前,⼈们对车辆性能的客观测量和主观之间的复杂关系还缺乏了解,⽽车辆的最终⽤户是⼈。

因此,对车辆系统动⼒学研究者⽽⾔,今后⼀个重要的研究领域可能会是对主观评价与客观评价关系的认识2.⽬前汽车系统动⼒学的研究现状汽车系统动⼒学研究内容范围很⼴,包括车辆纵向运动及其⼦系统的动⼒学响应,还有车辆垂向和横向动⼒学内容。

汽车系统动力学范文

汽车系统动力学范文

汽车系统动力学范文汽车系统动力学涵盖了车辆的各个方面。

首先是动力学性能。

这包括加速度、最高时速、制动距离等指标的研究。

汽车的动力学性能直接影响了车辆的加速、刹车等操作。

了解车辆的动力学性能有助于驾驶员更好地控制汽车,确保行车安全。

例如,在紧急情况下,了解汽车的制动性能可以帮助驾驶员更好地应对突发情况,避免碰撞事故的发生。

其次是操纵性能。

汽车的操纵性能包括转弯半径、转向灵活度等指标的研究。

汽车的操纵性能直接关系到驾驶员对车辆的操控。

了解车辆的操纵性能可以帮助驾驶员更好地预判并应对道路情况,避免车辆失控。

例如,在急转弯的情况下,了解车辆的操纵性能可以帮助驾驶员更好地判断车辆的转向灵活度,减少侧滑的风险。

最后是舒适性能。

舒适性是指车辆在行驶过程中给驾驶员和乘客带来的舒适感。

车辆的舒适性能包括悬挂系统、座椅、噪音和振动等方面的研究。

了解车辆的舒适性能可以帮助车辆设计师设计出更加舒适的座椅和悬挂系统,提供更好的乘坐体验。

同时,减少噪音和振动有助于提高驾驶员的专注力和乘车的舒适度。

汽车系统动力学的研究还涉及到其他一些方面。

例如,研究车辆的空气动力学性能有助于提高车辆的油耗和降低风阻;研究车辆的碰撞安全性能有助于设计更安全的车身结构;研究车辆的轮胎性能有助于提高车辆的抓地力和操纵性能等等。

总的来说,汽车系统动力学是一门综合性的学科,涉及到车辆设计、驾驶、行车安全等方方面面。

了解汽车系统动力学对于提高车辆的性能、安全性和舒适性都有着重要的作用。

通过不断地研究和创新,汽车制造商可以不断提高汽车的动力学性能,提高驾驶员和乘客的行车体验。

同时,驾驶员也应该了解汽车的动力学性能,掌握正确的驾驶技巧,保证行车安全。

车辆系统动力学复习题(前八章)

车辆系统动力学复习题(前八章)

《车辆系统动力学》复习题(前八章)(此复习题覆盖大部分试题。

考试范围以课堂讲授内容为准。

)一、概念题1.约束和约束方程(19)2.完整约束和非完整约束(19)3.车轮滑动率(30-31)4.轮胎侧偏角(31)5.轮胎径向变形(31)6.轮胎的滚动阻力系数(40)7.轮胎驱动力系数(50)8.边界层(70)9.压力系数(74)10.风洞的堵塞比(77)11.雷诺数(79)12.空气阻力系数(82-83)13.旋转质量换算系数(88)14.后备驱动力(92)15.驱动附着率和制动附着率(101-102,105)16.驱动效率(103)17.制动效率(105)二、问答题1.将车辆系统动力学分成三个方向(纵向、横向、垂向)分别研究的依据和缺陷是什么?(5)2.车辆动力学研究中运动方程的建立方法有哪几类?(17-18)3.多体动力学的研究方法有哪几种?(23-24)4.轮胎坐标系是如何定义的?何谓轮胎六分力?(30)5.从新倍力公司不同时期轮胎产品的研发目标介绍现代车辆对轮胎性能要求。

(33-34 图3-6)6.轮胎模型是如何分类的?(34-35)7.简单介绍轮胎幂指数模型的原理和特点。

(35-36)8.简单介绍“魔术公式”轮胎模型及其形式,模型的特点是什么?(36-37)9.车轮滚动阻力包括那些阻力分量?轮胎滚动阻力指的是什么?(38)10.轮胎的“驻波现象”是如何形成的?对轮胎的使用有哪些危害?(39)11.简单分析轮胎滚动阻力系数的影响因素。

(41-42载荷气压车速结构)12.画图说明轮胎驱动力系数与车轮滑转率之间的关系。

(50)13.推导并解释Julien的驱动力与充气轮胎滑转率关系的理论模型。

(52-54)14.推导解释轮胎“刷子模型”纵向力的分析过程。

(56-58)15.轮胎的垂向刚度分为哪三种?(59)轮胎滚动动刚度的影响因素有哪些?是如何影响的?(61车速结构气压)16.结合某斜交轮胎和子午线轮胎的垂向加速度频率响应特性分析二者的振动特性。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

车辆系统动力学作业课程名称:车辆系统动力学学院名称:汽车学院专业班级:2013级车辆工程(一)班学生姓名:***学生学号:**********作业题目:一、垂直动力学部分以车辆整车模型为基础,建立车辆1/4模型,并利用模型参数进行: 1)车身位移、加速度传递特性分析; 2)车轮动载荷传递特性分析; 3)悬架动挠度传递特性分析;4)在典型路面车身加速度的功率谱密度函数计算; 5)在典型路面车轮动载荷的功率谱密度函数计算; 6)在典型路面车辆行驶平顺性分析; 7)在典型路面车辆行驶安全性分析;8)在典型路面行驶速度对车辆行驶平顺性的影响计算分析; 9)在典型路面行驶速度对车辆行驶安全性的影响计算分析。

模型参数为:m 1 = 25 kg ;k 1 = 170000 N/m ;m 2 = 330 kg ;k 2 = 13000 (N/m);d 2 =1000Ns/m二、横向动力学部分以车辆整车模型为基础,建立二自由度轿车模型,并利用二自由度模型分析计算: 1) 汽车的稳态转向特性; 2) 汽车的瞬态转向特性;3)若驾驶员以最低速沿圆周行驶,转向盘转角0sw δ,随着车速的提高,转向盘转角位sw δ,试由20sw sw u δδ-曲线和0sw y sw a δδ-曲线分析汽车的转向特性。

模型的有关参数如下:总质量 1818.2m kg = 绕z O 轴转动惯量 23885z I kg m =⋅ 轴距 3.048L m = 质心至前轴距离 1.463a m =质心至后轴距离 1.585b m = 前轮总侧偏刚度 162618/k N rad =- 后轮总侧偏刚度 2110185/k N rad =- 转向系总传动比 20i =1、建立车辆1/4模型、确定基本参数由题目的已知条件可知,建立一个车辆四分之一模型,该模型为一个双质量系统(图1),其中m 1 = 25 kg ;k 1 = 170000 N/m ;m 2 = 330 kg ;k 2 = 13000 (N/m);d 2 =1000Ns/m 。

图1由车辆1/4模型,可以建立出相关的双质量系统的微分方程: 由振动基础理论知识可知无耦合无阻尼固有圆频率 车轮(1m ): 1211m k k v +=车身(2m ): 222m k v =车身衰减常数2σ:2222m d =σ 由车身无阻尼固有圆频率2v 和车身衰减常数2σ可得车身有阻尼固有圆频率2d v :22222σ-=v v d)()()()(1221222211112212211{=-+-+=+----z z k z z d z m hk z k z z k z z d z m激励的激振频率为πω2/=f 。

车身位移、加速度传递特性分析由《汽车动力学》B 篇车辆振动可知,常用的激励和扰动函数是简谐函数:)sin(ˆξω+=t hh ω—激振圆频率。

在汽车动力学分析中,通常将简谐激励函数用复数形式表示,以便于求解:t j e hh ωˆ= (1) 式中hˆ为复振幅。

因为在线性系统和简谐扰动的情况下,强迫运动和力也是简谐的,因此,非齐次双质量系统方程组的解可以写成:t j e zz ω11ˆ= (2) t j e zz ω22ˆ= (3) 质量和位移有着和扰动一样的圆频率ω,不同的仅仅是其复振幅。

将式(1),(2),(3)代入到双质量系统方程组中,得:122222221222112221ˆ)(ˆ)(ˆˆ)(ˆ)({z k jd z k jd m h k zkjd z k k jd m +=++-=+-+++-ωωωωωω求解方程组得:ωωω22222221ˆˆjd k jd k m z z+++-= 车轮位移1z 对h 的幅频响应函数为:)(ˆˆ322321122121222222142112212211ωωωωωωωωωd m d m k d j k k k m k m k m m m k jd k k m k h z --++---++-= 车身位移2z 对h 的幅频响应函数为:)(ˆˆ322321122121222222142112212ωωωωωωωωd m d m k d j k k k m k m k m m m k jd k k h z --++---+= 车身位移的传递函数为:32232112212122222214211221)(2s d m s d m s k d k k s k m s k m s k m s m m sk d k k s G z ++++++++=令 212211k k m k A +-=ω ω211d k B = 212122222214211k k k m k m k m m m C +---=ωωωω 322321121ωωωd m d m k d D --=212k k A = ω212d k B = 212122222214212k k k m k m k m m m C +---=ωωωω 322321122ωωωd m d m k d D --= 整理得:j D C j B A h z22222ˆˆ++=(4)对式(4)求模即可得到车身位移的幅频特性即:222222222ˆˆD C B A h z ++= (5)又因为: t j t j e z e zz ωωω2222ˆˆ-== (6) 同理)(ˆˆ32232112212122222214213122212ωωωωωωωωωd m d m k d j k k k m k m k m m m k jd k k h z --++---+= 车身加速度的传递函数为:3223211221212222221421312221)(2s d m s d m s k d k k s k m s k m s k m s m m s k d s k k s G z ++++++++= 故,由式(5)、(6)整理可得车身加速度幅频特性:222222222222ˆˆˆˆD C B A hz hz++==ωω (7)将已知条件代入式(5),并且激振频率f 取0到10Hz ,通过MATLAB 计算并绘制出车身位移在激振频率为0到10Hz 内的幅频特性曲线(图2)。

图2同理,将已知条件代入式(7)即可得到车身加速度在激振频率f 为0到20Hz 内的幅频特性曲线(图3)。

图32 车轮动载荷传递特性由第一问中二质量系统方程求得车轮位移1z 对h 的幅频响应函数为:)(ˆˆ322321122121222222142112212111ωωωωωωωωωd m d m k d j k k k m k m k m m m k jd k k m k h z --++---++-= 又因为车轮动载荷1d F 与1z 的关系为: )(111h z k F d -= 故车轮动载荷1d F 对h 的幅频响应函数为:)())((ˆ)ˆˆ(ˆˆ32232112212122222214213223212222122212114211111ωωωωωωωωωωωωωωd m d m k d j k k k m k m k m m m d m d m j k m k m k m m k m m k hh z k h F d --++---+++++--=-=同时,车轮动载荷的传递函数为:32232112212122222214213223212222122212114211)()(1s d m s d m s k d k k s k m s k m s k m s m m s d m s d m s k m s k m s k m s m k s m m k s G d F +++++++-----+-=令 )(22221222121142113ωωωωωk m k m k m m k m m k A +++--= )(32232113ωωd m d m k B +=212122222214213k k k m k m k m m m C +---=ωωωω 322321123ωωωd m d m k d D --=整理得: j D C j B A hF d 33331ˆˆ++= 故由上式可得车轮动载荷的幅频特性为:232323231ˆˆD C B A hF d ++= (8) 将已知条件代入式(8)即可得到车车轮动载荷在激振频率f 为0到20Hz 内的幅频特性曲线(图4)。

图43悬架动挠度的传递特性在该二质量系统中,悬架的动挠度12z z f d -=,在前两个已经讨论的问题中,我们已经分别得到1z 和2z 对h 的幅频响应函数,因此代入上述悬架动挠度公式可以得到悬架动挠度的幅频响应函数:)(ˆˆˆˆˆ322321122121222222142122112ωωωωωωωωd m d m k d j k k k m k m k m m m m k hz z h f d--++---=-=同理,悬架动挠度的传递函数为3223211221212222221421221)(s d m s d m s k d k k s k m s k m s k m s m m s m k s G d f +++++++-=悬架动挠度的幅频特性为2121212122222222ˆˆD C B A D C B A hf d++-++= (9) 将已知条件代入式(9)即可得到车车轮动载荷在激振频率f 为0到20Hz 内的幅频特性曲线(图5)。

图54典型路面车身加速度的功率谱密度函数计算4.1激励响应功率谱密度函数的推导由《汽车动力学》B 篇第九章内容可得连续路面不平度振幅谱为⎰+∞∞-Ω-ΩΩ=d e hx h x j )(ˆ)(又因为vt x =、Lvv πω2=Ω=(注:Ω—行程圆频率,L —路面谱波长,v —车速) 所以,通过以上式子可求的与时间相关的不平度函数:⎰⎰+∞∞-+∞∞-=Ω=ωωωωωd e h vd e h t h t j t j )(ˆ)(ˆ)( 上式中:)(ˆ1)(ˆΩ=h vhω,且ΩΩ=d h d h )(ˆ)(ˆωω 故车辆对不平度的响应表达式为;ωωωωωωd e h h q d e qt q t j t j )(ˆˆˆ)(ˆ)(⎰⎰∞+∞-∞+∞-⎥⎦⎤⎢⎣⎡== (10) 为了进一步回答舒适性,安全性程度的问题,需要看系统在一个较长的时间间隔内是怎样被激励的,对于一个模型在一个足够长的时间T 来说,其均值⎰=Tdt t q T q 0)(1其均方根值为:)()(1~02有效值eff Tq dt t q Tq==⎰(11)标准差为: dt q t q TT q ⎰-=02])([1σ 将(10)式代入(11)式可得:ωωπd q Tq T 202))(ˆ(4lim ~⎰∞∞→= (12) (12)式中的被积分部分记为 2))(ˆ(4lim)(ωπωq TT q ∞→=Φ )(ωq Φ即为对路面激励响应的功率谱密度函数。

相关文档
最新文档