位错的弹性性质-完整版

合集下载

2.4 位错的弹性性质

2.4 位错的弹性性质

2.4 位错的弹性性质位错的弹性性质是位错理论的核心与基础。

它考虑的是位错在晶体中引起的畸变的分布及其能量变化。

处理位错的弹性性质有若干种方法,主要的有:连续介质方法、点阵离散方法等。

从理论发展和取得的效果来看,连续介质模型发展得比较成熟。

我们仅介绍位错连续介质模型考虑问题的方法和计算结果,详细的数学推导不作介绍,有兴趣的同学可进一步阅读教学参考书。

一、位错的连续介质模型早在1907年,伏特拉(Volterra)等在研究弹性体形变时,提出了连续介质模型。

位错理论提出来后,人们借用它来处理位错的长程弹性性质问题。

1.位错的连续介质模型基本思想将位错分为位错心和位错心以外两部分。

在位错中心附近,因为畸变严重,要直接考虑晶体结构和原子间的相互作用。

问题变得非常复杂,因而,在处理位错的能量分布时,将这一部分忽略。

在远离位错中心的区域,畸变较小,可视作弹性变形区,简化为连续介质。

用线性弹性理论处理。

即位错畸变能可以通过弹性应力场和应变的形式表达出来。

对此,我们仅作一般性的了解。

2.应力与应变的表示方法(1)应力分量如图1所示。

物体中任意一点可以抽象为一个小立方体,其应力状态可用9个应力分量描述。

它们是:图1 物体中一受力单元的应力分析σxx σxy σxzσyx σyy σyzσzx σzy σzz其中,角标的第一个符号表示应力作用面的外法线方向,第二个下标符号表示该应力的指向。

如σxy表示作用在与yoz坐标面平行的小平面上,而指向y方向的力,显而易见,它表示的是切应力分量。

同样的分析可以知道:σxx,σyy,σzz3个分量表示正应力分量,而其余6个分量全部是切应力分量。

平衡状态时,为了保持受力物体的刚性,作用力分量中只有6个是独立的,它们是:σxx,σyy,σzz,σxy,σxz和σyz,而σxy =σyx,σxz =σzx,σyz =σzy。

同样在柱面坐标系中,也有6个独立的应力分量:σrr,σθθ,σzz,σrθ,σrz,σθz。

位错的弹性性质

位错的弹性性质

zz ( xx yy )
切应力: xy
yx
D
x(x2 y2 ) (x2 y2 )2
xz zx yz zy 0
其中:D b
2 (1 )
同时存在着正应力与切应力; 刃型位错的应力场,对称于多余半原子面; 滑移面上无正应力,只有切应力,且其切应力最大。
正刃型位错的滑移面上侧,在x方向的正应力为压应力; 滑移面下侧,在x方向上的正应力为拉应力
σθr
② 在XZ剖面上θ=0,cosθ=1
D B
③当剖面从r到(r+dr)处, 产生位移db(r)所做功:
④当剖面从r0处扩展到
R
R处,db从0变到b所功:
单位长度的刃错线总能量(应变能):
W刃
Gb2
4 (1)
ln
R r0
2)螺型位错的应变能
在XZ剖面的应力为:
单位长度的螺错线能量:
σθz
W螺
Gb2
4.1 弹性力学基础知识
1)弹性连续介质
所谓弹性连续介质,是对晶体作了简化假设之后提 出的模型:
(1) 晶体是完全弹性体,因此服从胡克定律; (2) 晶体是各向同性的,因此其弹性常数(弹性模 量、泊松比等)不随方向而变化; (3) 晶体内部由连续介质组成,因此晶体中的应力、 应变、位移可用连续函数表示。
半原子面上或与滑移面成45°的晶面上,无切应力。
2)螺型位错的应力场
① 应力场模型与函数
沿xz平面剖开使之沿z轴产生相对位移b,然后再粘合。当然 也要挖去位错线附近的严重畸变区域。
xz
zx
b 2
x2
y
y2
yz
zy
b 2
x2
x

第二章 位错的弹性性质(面缺陷)

第二章  位错的弹性性质(面缺陷)

第三节面缺陷Planar defects晶界孪晶界相界大角度晶界小角度晶界外表面内表面外表面:指固体材料与气体或液体的分界面。

它与摩擦、吸附、腐蚀、催化、光学、微电子等密切相关。

内界面:分为晶粒界面、亚晶界、孪晶界、层错、相界面等一、外表面Surface特点:外表面上的原子部分被其它原子包围,即相邻原子数比晶体内部少;表面成分与体内不一;表面层原子键与晶体内部不相等,能量高;表层点阵畸变等。

表面能:晶体表面单位面积自由能的增加,可理解为晶体表面产生单位面积新表面所作的功γ = dW/ds表面能与表面原子排列致密度相关,原子密排的表面具有最小的表面能;表面能与表面曲率相关,曲率大则表面能大;表面能对晶体生长、新相形成有重要作用。

二、晶界和亚晶界grain boundary and sub-grain boundary晶界Grain boundary:在多晶粒物质中,属于同一固相但位向不同的晶粒之间的界面称为晶界。

是只有几个原子间距宽度,从一个晶粒向另外一个晶粒过渡的,且具有一定程度原子错配的区域。

晶粒平均直径:0.015-0.25mm亚晶粒Sub-grain:一个晶粒中若干个位向稍有差异的晶粒;平均直径:0.001mm亚晶界Sub-grain boundary:相邻亚晶粒之间的界面晶界分类(根据相邻晶粒位相差)小角度晶界:(Low-angle grain boundary)相邻晶粒的位相差小于10º亚晶界一般为2º左右。

大角度晶界:(High-angle grain boundary)相邻晶粒的位相差大于10º大角度晶界小角度晶界相邻晶粒各转θ/2同号刃位错垂直排列相互垂直的两组刃位错垂直排列两组螺位错构成§θ<10°§由位错构成§位错密度↑——位向差↑——晶格畸变↑——晶界能↑位错密度——决定位向差与晶界能注:位错类型与排列方式——决定小角晶界的类型Ni3(Al-Ti)中的倾斜晶界——旋转10°——10°以上,一般在30°~40°重合点阵模型↓重合点阵+台阶模型↓重合点阵+台阶+小角晶界模型重合位置点阵模型Coincidence site lattice model当两个相邻晶粒的位相差为某一值时,若设想两晶粒的点阵彼此通过晶界向对方延伸,则其中一些原子将出现有规律的相互重合。

第二章 位错的弹性性质A0318

第二章  位错的弹性性质A0318

t
t
Fd
t
Fd
t
若在外正应力 的作用下,对刃型位错来说,会在垂直 于滑移面的方向运动,即发生攀移,也称为攀移力(climb force) Fy。 Fy = - b
Fy 的方向与位错线攀移方向一致 为拉应力时,Fy向下

Fy
公式推导
外力τ使长为l的位错移动了ds, τ作功dw1
dw1 (t l ds)b
位错间的作用力
通过彼此的应力场实现:
1)两平行螺位错的交互作用
由于应力场中只有切应力分量,所以只受到径向作用力fr:
fr
t1b2

Gb1b2
2 r
排斥
吸引

2)两平行刃位错的交互作用
在位错e1的应力场中存在切应 力和正应力,分别导致e2沿x方 向滑移和沿y方向攀移
沿x方向的切应力分量(滑移):
dW

1 2

z
z
dV
dV 2r dr L
z

Gb
2r
z

b
2r
dW 1 Gb b 2r dr L 2 2r 2r
Gb 2 dr L
4r
3 作用在位错上的力 force on a dislocation
在外切应力 t 的作用下,位错的移动可以理解为有一个垂直于位错线 的力 Fd 作用于位错线上。Fd = t b
结果:
应变:y

b
2r
— —仅轴向有应变
应力: z
z
Gz

Gb
2r
rr zz r r ry yr 0

位错的弹性性质

位错的弹性性质

(2) 位错的应变能
位错附近的原子离开了正常的平衡位置,使点 阵发生了畸变,导致晶体的能量增加,增加的能量 称为畸变能或应变能。其包括位错中心区域的应变 能和位错应力场引起的弹性应变能。
其中位错中心区域点阵畸变很大,不能用线弹 性理论计算其弹性应变能。据估计,这部分能量大 约占总应变能的10%左右,故通常予以忽略。
0 L r0 4 r
(1) 单位长度螺型位错的弹性应变能Ws为:
Ws
W L
s
Gb2
4
ln
R r0
(2) 刃位错的弹性应变能计算较复杂,其单位长 度刃位错的弹性应变能WE为:
WE
W L
E
Gb2
4 1
ln
R r0
(3) 混合位错的弹性应变能等于螺位错的弹性能和 刃位错的弹性能之和。
r0为位错中心区域的半径,可取 r0 b 2.5108cm R为位错应力场的最大作用半径,在实际晶体中 受亚晶的限制,可取 R 104cm ,则单位长度位 错的应变能为:
3.2.3 位错的弹性性质
晶体中有位错存在时,位错线及其周围的晶格 产生严重畸变,畸变处的晶体原子偏离平衡位置, 能量增高。位错线及其周围区域产生弹性应变和应 力场。
采用弹性力学方法来分析位错线周围的应力分 布,所得结果不适于位错中心区(中心区的原子排 列特别紊乱,既不能看成连续介质,也不是小位移, 超出了弹性变形的范围,因此,虎克定律不再适 用),它只适于位错中心区以外的区域(直到无穷 远处)。
形成刃位错时没有轴向位移,只有径向位移, 因而位移是二维的(平面应变)。但刃位错应力场 比螺位错复杂,此处不加讨论。其最后结果如下:
xx
D
y 3x2 x2
y2 y2 2

晶体缺陷5-位错的弹性性质

晶体缺陷5-位错的弹性性质

1)单位长度位错线的应变能U为:
U=αGb2
取值中限0.75
=0.75×4×1010×(2.5×10-10)2
=18.75×10-10J/m
2)严重变形金属,单位体积(cm3)内位错应变能为: U=18.75×10-10×1011 =187.5J/cm3
换算成单位质量(g)铜晶体内位错的应变能为: U=(187.5/8.9)J/g
4
ln r0
3、混合位错的弹性能
U刃
1
1
U螺
3 2 U螺
U混
Gb2
4k
ln
R r0
Gb2
其中:k=1-v/(1-vcos2θ),0.5≤α≤1
结论
UT U el Gb 2
(1)总应变能 UT=U0+Uel
Uel∝lnR/r0
长程,
U0
1 10
UT
可忽略。
(2)UT∝b2,晶体中稳定的位错具有最小的柏氏矢
似:对圆柱体上各点产生两种切应力,即 tz t z
t z t θz
t z t θz
从这个圆柱体中取一个半径为r的薄壁圆筒展开,
便能看出在离开中心r处的切应变为
t z
t z
G
Gb
2r
b 2 r
yL
r0
z
r P tz θ t z b
t z
L
x
过P点取平面展开
t z
b
2 r
P
z
t z t z
t z
课前复习
1.什么是应力,其表达式是什么?
应力是作用在单位面积上的力 σ=F/A
2.螺位错应力场的应力分量的极坐标表示。
0 0

位错理论3-位错的弹性性质资料

位错理论3-位错的弹性性质资料

x2
x
y2
s xx s yy s zz s xy s yx 0
11
Stress field of screw dislocation ➢螺位错应力场特点:
只有切应力( sqz、szq分量),无正
应力分量 应力场对称于螺位错的位错线——轴
对称:切应力分量大小只与距位错线 中心的距离r有关,与q无关。
➢ 因为只有sqz和eqz:
➢ 所以:
W V
1 2
s
qz
e qz
1 Gb
2 2r
b
2r
Gb 2
8 2r 2
➢ 考虑位错微元:半径为r,厚度dr,长度L的管
状体元
dW
1 2
s
eqz qz
dV
1 2
Gb
2r
b
2r
d (2r dr L)
Gb 2L
4r
dr
➢ 设位错中心半径为r0,应力场范围半径为R,所
s ii s ij
Eeii Geij
G
E
2(1
)
6
目录
➢弹性理论基础 ➢位错的应力场 ➢位错的应变能 ➢位错所受的力 ➢位错的线张力 ➢位错间的相互作用力
7
Stress field of dislocation
➢ 位错晶格畸变应力场 ➢ 以位错中心的某点为定点,应力场描述为:
or
4
Basis of elasticity theory
➢应变分量(应变张量strain tensor):
➢只err,有eq6q个, e独zz, 立erq分, e量rz,:eqez;xx, eyy, ezz, exy, exz, eyz;

位错的弹性性质

位错的弹性性质

一般情况下,任意一点存在36个常数cij值。晶体的对称 性越强,独立的弹性常数数目越少。在弹性连续介质中, 只有2个独立的cij值,工程上分别用E、G标记:
E为正应变弹性模量,也叫杨氏模量: iiEii
G为切应变弹性模量,也叫切变模量: iiGii
E和G之间存在如下关系:E=G/2(1-ν),其中ν是表示
优点 缺点
模型简单
中心区不适用,忽略晶体结构的影响
.
11
1)刃位错的应力场
① 应力场模型
1. 在圆柱体中心挖出一 个半径为rO的小洞
2. 沿xoz平面从外部切 通至中心
3. 在切开的两面上加外 力,使其沿x轴作相 对位移b;再把切开的 面胶合起来
4. 撤去外力
这样的圆柱体与包含一个刃型位错的晶体相似。
W螺
4
ln r0
.
18
3)混合位错的应变能
单位长度的混合位错能量:
W混
Gb2
4k
lnR r
0
k 1v1cvo2s
R—位错应力场最大作用范围的半径
r0 —位错中心区域的半径 θ—混合位错的柏氏矢量与位错线的夹角
α—由位错的类型、密度(R值)决定,其值0.5~1.0
上述公式可简化为: WGb2
.
19
W1 W2
F l D l D b
F b
.
29
特点
➢ 作用在单位位错线上的力F与外加切应力τ 及柏氏矢量b成正比,由于同一位错线各 点柏氏矢量b相同,所以当外加切应力均 匀作用在晶体上时,位错线各点所受力的 大小是相同的。
➢ 作用于位错线上的力F与外加切应力τ的方
向不一定是一致的(纯刃型位错与τ同向,
讨论
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相关文档
最新文档