数学分析二重积分的计算练习题解答
数学分析21.1二重积分的概念(含习题及参考答案)

第二十一章 重积分 1二重积分的概念一、平面图形的面积引例:若构成平面图形P 的点集是平面上的有界点集, 即存在矩形R ,使P ⊂R ,则称平面图形P 有界. 用某一平行于坐标轴的一组直线网T 分割P(如图),这时直线网T 的网眼——小闭矩形△i 可分为三类: (1)△i 上的点都是P 的内点;(2)△i 上的点都是P 的外点,即△i ∩P=Ø; (3)△i 上含有P 的边界点.将所有属于直线网T 的第(1)类小矩形(图中阴影部分)的面积加起来, 记和数为s p (T),则有s p (T)≤△R (矩形R 的面积);将所有第(1)类与第(3)类小矩形(图中粗线所围部分)的面积加起来, 记作S p (T),则有s p (T)≤S p (T). 由确界存在定理知,对于平面上所有直线网,数集{s p (T)}有上确界,数集{S p (T)}有下确界, 记Tp I sup ={s p (T)} ,Tp I inf ={S p (T)}. 显然有0≤p I ≤p I .p I 称为内面积,p I 称为外面积.定义1:若平面图形P 的内面积p I 等于它的外面积p I , 则称P 为可求面积,并称其共同值I p =p I =p I 为P 的面积.定理21.1:平面有界图形P 可求面积的充要条件是:对任给ε>0, 总存在直线网T ,使得S p (T)-s p (T)< ε.证:[必要性]设P 的面积为I p , 由面积的定义知, I p =p I =p I . ∀ε>0, 由p I 及p I 的定义知,分别存在直线网T 1与T 2,使得 s p (T 1)>I p -2ε, S p (T 2)<I p +2ε, 记T 为由T 1与T 2合并所成的直线网,则 s p (T 1)≤s p (T), S p (T 2)≥S p (T),∴s p (T)>I p -2ε, S p (T)<I p +2ε, 从而S p (T)-s p (T)<ε. [充分性]设对任给的ε>0, 存在某直线网T ,使得S p (T)-s p (T)<ε. 但s p (T)≤p I ≤p I ≤S p (T),∴p I -p I ≤S p (T)-s p (T)<ε. 由ε的任意性知,p I =p I ,∴平面图形P 可求面积.推论:平面有界图形P 的面积为零的充要条件是它的外面积p I =0,即对任给的ε>0, 存在某直线网T ,使得S p (T)<ε,或 平面图形P 能被有限个其面积总和小于ε的小矩形所覆盖.定理21.2:平面有界图形P 可求面积的充要条件是:P 的边界K 的面积为0.证:由定理21.1,P 可求面积的充要条件是:∀ε>0, ∃直线网T , 使得S p (T)-s p (T)<ε. 即有S K (T)=S p (T)-s p (T)<ε, 由推论知,P 的边界K 的面积为0.定理21.3:若曲线K 为定义在[a,b]上的连续函数f(x)的图象,则曲线K 的面积为零.证:∵f(x)在闭区间[a,b]上连续,从而一致连续. ∴∀ε>0, ∃δ>0, 当把区间[a,b]分成n 个小区间[x i-1,x i ] (i=1,2,…,n, x 0=a,x n =b)并满足 max{△x i =x i -x i-1 |i=1,2,…,n }<δ时,可使f(x)在每个小区间[x i-1,x i ]上的振幅都有ωi <ab -ε.把曲线K 按自变量x=x 0,x 1,…,x n 分成n 个小段,则 每一个小段都能被以△x i 为宽, ωi 为高的小矩形所覆盖,又 这n 个小矩形面积的总和为i ni i x ∆∑=1ω<ab -ε∑=∆ni ix1<ε,由定理21.1的推论即得曲线K 的面积为零.推论1:参数方程x=φ(t), y=ψ(t), t ∈[α,β]所表示的光滑曲线K 的面积为零.证:由光滑曲线的定义,φ’(t),ψ’(t)在[α,β]上连续且不同时为0. 对任意t 0∈[α,β],不妨设φ’(t 0)≠0,则存在t ’的某邻域U(t 0), 使得 x=φ(t)在此邻域上严格单调,从而存在反函数t=φ-1(x). 又 由有限覆盖定理,可把[α,β]分成有限段:α=t 0<t 1<…<t n =β, 在每一小区间段上,y=ψ(φ-1(x))或x=ψ(φ-1(y)),由定理21.3知, 每小段的曲线面积为0,∴整条曲线面积为零.推论2:由平面上分段光滑曲线所围成的有界闭区域是可求面积的.注:并非平面中所有的点集都是可求面积的.如D={(x,y)|x,y ∈Q ∩[0,1]}. 易知0=D I ≤D I =1, 所以D 是不可求面积的.二、二重积分的定义及其存在性 引例:求曲顶柱体的体积(如图1).设f(x,y)为定义在可求面积的有界闭区域D 上的非负连续函数. 求以曲面z=f(x,y)为顶,以D 为底的柱体体积V.用一组平行于坐标轴的直线网T 把D 分成n 个小区域σi (i=1,2,…,n). ∵f(x,y)在D 上连续,∴当每个σi 都很小时, f(x,y)在σi 上各点的函数值近似相等; 可在σi 上任取一点(ξi ,ηi ),用以f(ξi ,ηi )为高, σi 为底的小平顶柱体的体积f(ξi ,ηi )△σi 作为V i 的体积△V i ,即△V i ≈f(ξi ,ηi )△σi .把这些小平顶柱体的体积加起来, 就得到曲顶柱体体积V 的近似值: V=∑=∆n i i V 1≈i ni i i f σηξ∆∑=1),(.当直线网T 的网眼越来越细密,即分割T 的细度T =di ni ≤≤1max →0(di 为σi 的直径)时,i ni i i f σηξ∆∑=1),(→V.概念:设D 为xy 平面上可求面积的有界闭区域,f(x,y)为定义在D 上的函数. 用任意的曲线把D 分成n 个可求面积的小区域σ1, σ2,…, σn . 以△σi 表示小区域△σi 的面积,这些小区域构成D 的一个分割T , 以d i 表示小区域△σi 的直径,称T =di ni ≤≤1max 为分割T 的细度.在每个σi 上任取一点(ξi ,ηi ),作和式ini iif σηξ∆∑=1),(,称为函数f(x,y)在D 上属于分割T 的一个积分和.定义2:设f(x,y)是定义在可求面积的有界闭区域D 上的函数. J 是一个确定的数,若对任给的正数ε,总存在某个正数δ,使对于D 的任何分割T ,当它的细度T <δ时,属于T 的所有积分和都有J f ini ii-∆∑=σηξ1),(<ε,则称f(x,y)在D 上可积,数J 称为函数f(x,y)在D上的二重积分,记作:J=⎰⎰Dd y x f σ),(.注:1、函数f(x,y)在有界可求面积区域D 上可积的必要条件是f 在D 上有界.2、设函数f(x,y)在D 上有界,T 为D 的一个分割,把D 分成n 个可求面积的小区域σ1, σ2,…, σn . 令M i =iy x σ∈),(sup f(x,y), m i =iy x σ∈),(inf f(x,y), i=1,2,…,n.作和式S(T)=i n i i M σ∆∑=1, s(T)=i ni i m σ∆∑=1. 它们分别称为函数f(x,y)关于分割T 的上和与下和.定理21.4:f(x,y)在D 上可积的充要条件是:0lim →T S(T)=0lim →T s(T).定理21.5:f(x,y)在D 上可积的充要条件是:对于任给的正数ε,存在D 的某个分割T ,使得S(T)-s(T)<ε.定理21.6:有界闭区域D 上的连续函数必可积.定理21.7:设f(x,y)在有界闭域D 上有界,且不连续点集E 是零面积集,则f(x,y)在D 上可积.证:对任意ε>0, 存在有限个矩形(不含边界)覆盖了E ,而 这些矩形面积之和小于ε. 记这些矩形的并集为K ,则 D\K 是有界闭域(也可能是有限多个不交的有界闭域的并集). 设K ∩D 的面积为△k ,则△k <ε. 由于f(x,y)在D\K 上连续, 由定理21.6和定理21.5,存在D\K 上的分割T 1={σ1, σ2,…, σn }, 使得S(T 1)-s(T 1)<ε. 令T={σ1, σ2,…, σn , K ∩D},则T 是D 的一个分割,且 S(T)-s(T)=S(T 1)-s(T 1)+ωK △k <ε+ωε, 其中ωK 是f(x,y)在K ∩D 上的振幅,ω的是f(x,y)在D 上的振幅. 由定理21.5可知f(x,y)在D 上可积.三、二重积分的性质1、若f(x,y)在区域D 上可积,k 为常数,则kf(x,y)在D 上也可积,且⎰⎰Dd y x kf σ),(=k ⎰⎰Dd y x f σ),(.2、若f(x,y), g(x,y)在D 上都可积,则f(x,y)±g(x,y)在D 上也可积,且[]⎰⎰±Dd y x g d y x f σσ),(),(=⎰⎰Dd y x f σ),(±⎰⎰Dd y x g σ),(.3、若f(x,y)在D 1和D 2上都可积,且D 1与D 2无公共内点,则⎰⎰21),(D D d y x f σ=⎰⎰1),(D d y x f σ+⎰⎰2),(D d y x f σ.4、若f(x,y)与g(x,y)在D 上可积,且f(x,y)≤g(x,y), (x,y)∈D ,则⎰⎰Dd y x f σ),(≤⎰⎰Dd y x g σ),(.5、若f(x,y)在D 上可积,则函数|f(x,y)|在D 上也可积,且⎰⎰Dd y x f σ),(≤⎰⎰Dd y x f σ),(.6、若f(x,y)在D 上都可积,且m ≤f(x,y)≤M, (x,y)∈D ,则 mS D ≤⎰⎰Dd y x f σ),(≤MS D , 其中S D 是积分区域D 的面积.7、(中值定理)若f(x,y)在有界闭区域D 上连续,则存在(ξ,η)∈D , 使得⎰⎰Dd y x f σ),(=f(ξ,η)S D , 其中S D 是积分区域D 的面积.注:中值定理的几何意义:以D 为底,z=f(x,y) (f(x,y)≥0)为曲顶的曲顶柱体体积等于一个同底的平顶柱体的体积,这个平顶柱体的高等于f(x,y)在区域D 中某点(ξ,η)的函数值f(ξ,η).习题1、把重积分⎰⎰Dxydxd σ作为积分和的极限,计算这个积分值,其中D=[0,1]×[0,1],并用直线网x=n i, y=nj , (i,j=1,2,…,n-1)分割D 为许多小正方形,每个小正方形取其右顶点作为其节点.解:⎰⎰Dxydxd σ=2111lim n n j n i nj ni n ⋅⋅∑∑==∞→=21121lim n n j n nj n ⋅⋅+∑=∞→=224)1(lim n n n +∞→=41.2、证明:若函数f(x,y)在有界闭区域D 上可积,则f(x,y)在D 上有界. 证:若f 在D 上可积,但在D 上无界,则对D 的任一分割T={σ1, σ2,…, σn }, f 必在某个小区域σk 上无界. 当i ≠k 时,任取p i ∈σi ,令G=∑≠nki i i p f σ)(, I=⎰⎰Ddxdy y x f ),(.∵f 在σk 上无界,∴存在p k ∈σk ,使得|f(p k )|>kG I σ∆++1, 从而∑=ni iip f 1)(σ=∑≠∆+nki k k i i p f p f σσ)()(≥|f(p k )·△σk |-∑≠nki i i p f σ)(>|I|+1.又f 在D 上可积,∴存在δ>0,对任一D 的分割T={σ1, σ2,…, σn }, 当T <δ时,T 的任一积分和∑=nk k k p f 1)(σ都满足∑=-nk k k I p f 1)(σ<1,即∑=nk k k p f 1)(σ<|I|+1,矛盾!∴f 在D 上可积,则f 在D 上有界.3、证明二重积分中值定理:若f(x,y)在有界闭区域D 上连续,则存在(ξ,η)∈D ,使得⎰⎰Df =f(ξ,η)S D , 其中S D 是积分区域D 的面积.证:∵f 在有界闭区域D 上连续,∴f 在D 上有最大值M 和最小值m, 对D 中一切点有m ≤f ≤M ,∴mS D ≤⎰⎰Df ≤MS D , 即m ≤⎰⎰DDf S 1≤M.由介值性定理知,存在(ξ,η)∈D ,使得⎰⎰Df =f(ξ,η)S D .4、证明:若f(x,y)为有界闭区域D 上的非负连续函数,且在D 上不恒为零,则⎰⎰Dd y x f σ),(>0.证:由题设知存在p 0(x 0,y 0)∈D ,使f(p 0)>0,令δ=f(p 0),由连续函数的局部保号性知:∃η>0使得对一切p ∈D 1(D 1=U(p 0,η)∩D), 有f(p)>2δ. 又f(x,y)≥0且连续,∴⎰⎰Df =⎰⎰1D f +⎰⎰-1D D f ≥2δ·△D 1>0.5、证明:若f(x,y)在有界闭区域D 上连续,且在D 内任一子区域D ’⊂D 上有⎰⎰'D d y x f σ),(=0,则在D 上f(x,y)≡0.证:假设存在p 0(x 0,y 0)∈D ,使得f(p 0)≠0, 不妨设f(p 0)>0. 由连续函数的保号性知,∃η>0使得对一切p ∈D ’(D ’=U(p 0,η)∩D), 有f(p)>0,由第4题知⎰⎰'D f >0,矛盾! ∴在D 上f(x,y)≡0.6、设D=[0,1]×[0,1],证明: 函数f(x,y)=⎩⎨⎧内非有理点为皆为有理数即内有理点为D y x y x D y x ),(,0),(),(,1在D 上不可积.证: 设D 的任一分割T={σ1, σ2,…, σn }, 则每一个小区域σi 内必同时含有D 内有理点和非有理点,从而 M i =iy x σ∈),(sup f(x,y)=1, m i =iy x σ∈),(inf f(x,y)=0, i=1,2,…,n.∴S(T)=i n i i M σ∆∑=1=1, s(T)=i ni i m σ∆∑=1=0,由T 的任意性知:lim →T S(T)=1≠0=0lim →T s(T). ∴f 在D 上不可积.7、证明:若f(x,y)在有界闭区域D 上连续,g(x,y)在D 上可积且不变号,则存在一点(ξ,η)∈D ,使得⎰⎰Dd y x g y x f σ),(),(=f(ξ,η)⎰⎰Dd y x g σ),(.证:不妨设g(x,y)≥0, (x,y)∈D ,则⎰⎰Dd y x g σ),(≥0. 令M,m 分别为f 在D 上的最大、最小值,则 m ⎰⎰Dd y x g σ),(≤⎰⎰Dd y x g y x f σ),(),(≤M ⎰⎰Dd y x g σ),(.若⎰⎰Dd y x g σ),(=0, 则⎰⎰Dd y x g y x f σ),(),(=0,任取(ξ,η)∈D ,得证!若⎰⎰Dd y x g σ),(>0, 则m ≤⎰⎰⎰⎰DDd y x g d y x g y x f σσ),(),(),(≤M. 由介值性定理知,存在一点(ξ,η)∈D ,使得f(ξ,η)=⎰⎰⎰⎰DDd y x g d y x g y x f σσ),(),(),( ,即⎰⎰Dd y x g y x f σ),(),(=f(ξ,η)⎰⎰Dd y x g σ),(.8、应用中值定理估计积分:I=⎰⎰++Dyx d 22cos cos 100σ的值, 其中D={(x,y)||x|+|y|≤10}. 解:∵f(x,y)=yx 22cos cos 1001++ 在D={(x,y)||x|+|y|≤10}上连续,根据中值定理知:存在(ξ,η)∈D ,使得I=ηξ22cos cos 100++∆D, 从而102D ∆≤I ≤100D ∆, △D 为D 的面积,∴51100≤I ≤2.9、证明:若平面曲线x=φ(t), y=ψ(t), α≤t ≤β光滑 (即φ(t),ψ(t)在[α,β]上具有连续导数且φ’2(t)+ψ’2(t)≠0),则 此曲线的面积为0.证法1:该平面曲线L 的长度为l=dt t t ⎰'+'βαψϕ)()(22为有限值.对∀ε>0, 将L 分成n=⎥⎦⎤⎢⎣⎡εl +1段:L 1,L 2,…,L n , 在每段L i 上取一点P i , 使P i 与其一端点的弧长为nl 2,以P i 为中心作边长为的ε正方形△i , 则L i ⊂△i (i=1,2,…,n), 从而L ⊂n i 1= △i ,记△=ni 1= △i ,则△为一多边形.设△的面积W ,则W ≤n ε2=⎪⎭⎫ ⎝⎛+1εlε=(1+ε)ε,∴L 的面积W L ≤W ≤(1+ε)ε. 即此曲线的面积为0.证法2:在曲线上任取参数t 的点M ,∵φ’2(t)+ψ’2(t)≠0, 由隐函数存在定理知,存在σ=(t-δ,t+δ)使曲线上对应的一段可以表示成显式方程.应用有限覆盖定理,[α,β]被开区间集{σ}有限覆盖,得出有限个区间, 使曲线分成有限部分,每一部分可以表示成显式方程y=f(x)或x=g(y), 其中f,g 为连续函数,由定理21.3知光滑曲线的面积为0.。
数学分析21.2直角坐标系下二重积分的计算(含习题及参考答案)

第二十一章 重积分 2直角坐标系下二重积分的计算定理21.8:设f(x,y)在矩形区域D=[a,b]×[c,d]上可积,且对每个x ∈[a,b], 积分⎰dc dy y x f ),(存在,则累次积分⎰⎰dc ba dy y x f dx ),(也存在,且⎰⎰Dd y x f σ),(=⎰⎰dc b ady y x f dx ),(.证:令F(x)=⎰dc dy y x f ),(, 分别对区间[a,b]与[c,d]作分割: a=x 0<x 1<…<x r =b, c=y 0<y 1<…<y s =d, 按这些分点作两组直线x=x i (i=1,2,…,r-1), y=y j (j=1,2,…,s-1), 它们把矩形D 分为rs 个小矩形, 记△ij 为小矩形[x i-1,x i ]×[y j-1,y j ] (i=1,2,…,r; j=1,2,…,s); 设f(x,y)在△ij 上的上确界和下确界分别为M ij 和m ij .在区间[x i-1,x i ] 中任取一点ξi , 于是有m ij △y j ≤⎰-jj y y i dy y f 1),(ξ≤M ij △y j ,其中△y j =y j -y j-1. ∴j sj ij y m ∆∑=1≤F(ξi )=⎰dc i dy y f ),(ξ≤j sj ij y M ∆∑=1,∑∑==∆∆r i i j sj ijx y m11≤∑=∆r i i i x F 1)(ξ≤∑∑==∆∆r i i j sj ij x y M 11, 其中△x i =x i -x i-1.记△ij 的对角线长度为d ij 及T =ji ,max d ij , 由于二重积分存在,由定理21.4,当T →0时,∑∆∆ki i j ij x y m ,和∑∆∆ki i j ij x y M ,有相同的极限,且极限值等于⎰⎰Dd y x f σ),(,∴∑=→∆ri i i T x F 1)(lim ξ=⎰⎰Dd y x f σ),(. 又当T →0时,必有i ri x ∆≤≤1max →0, 由定积分定义得∑=→∆ri i i T x F 1)(limξ=⎰b adx x F )(=⎰⎰d cb ady y x f dx ),(,∴⎰⎰Dd y x f σ),(=⎰⎰dcb a dy y x f dx ),(.定理21.9:设f(x,y)在矩形区域D=[a,b]×[c,d]上可积,且对每个y ∈[c,d],积分⎰badxyxf),(存在,则累次积分⎰⎰b adcdxyxfdy),(也存在,且⎰⎰Ddyxfσ),(=⎰⎰b adcdxyxfdy),(.注:特别地,当f(x,y)在矩形区域D=[a,b]×[c,d]上连续时,有⎰⎰Ddyxfσ),(=⎰⎰d cbadyyxfdx),(=⎰⎰b adcdxyxfdy),(.例1:计算⎰⎰Ddxdyxyy)sin(, 其中D=[0,π]×[0,1].解:⎰⎰Ddxdyxyy)sin(=⎰⎰π01)sin(dxxyydy=⎰-1)]cos(1[dyyπ=1.注:对一般区域,通常可以分解为如下两类区域来进行.称平面点集D={(x,y)|y1(x)≤y≤y2(x),a≤x≤b}为x型区域(如图1)称平面点集D={(x,y)|x1(y)≤x≤x2(y),c≤y≤d}为y型区域(如图2)如图3,区域D可分解成三个区域,I, III为x型区域,II为y型区域.定理21.10:若f(x,y)在x型区域D上连续,y1(x), y2(x)在[a,b]上连续,则⎰⎰Dd y x f σ),(=⎰⎰)()(21),(x y x y ba dy y x f dx .即二重积分可化为先对y ,后对x 的累次积分.证:∵y 1(x), y 2(x)在[a,b]上连续,∴存在R=[a,b]×[c,d]⊃D(如上图1), 记定义在R 上的函数F(x,y)=⎩⎨⎧∉∈D y x ,Dy x ,y x f ),(0),(),(, 则F 在R 上可积,且⎰⎰Dd y x f σ),(=⎰⎰Rd y x F σ),(=⎰⎰dcbadyy x F dx ),(=⎰⎰)()(21),(x y x y ba dy y x F dx =⎰⎰)()(21),(x y x y ba dy y x f dx .注:同理可证f(x,y)在y 型区域D 上连续,x 1(y), x 2(y)在[c,d]上连续, 则⎰⎰Dd y x f σ),(=⎰⎰)()(21),(y x y x dc dx y x f dy .例2:设D 是直线x=0,y=1及y=x 围成的区域(如图), 试计算:I=⎰⎰-Dy d e x σ22的值.解:∵D={(x,y)|0≤x ≤y,0≤y ≤1}, ∴I=⎰⎰-Dy d ex σ22=⎰⎰-yy dx e x dy 02102=⎰-103231dy e y y =e3161-.注:若取D={(x,y)|x ≤y ≤1,0≤x ≤1},则I=⎰⎰-12102x y dy e x dx =⎰⎰-11022x y dy e dx x ,∵2y e -的原函数无法用初等函数形式表示,∴无法直接求积.例3:计算二重积分⎰⎰Dd σ, 其中D 为由直线y=2x, x=2y 及x+y=3所围的三角形区域(如图).解:(如图)D 1={(x,y)|2x ≤y ≤2x,0≤x ≤1}, D 2={(x,y)|2x ≤y ≤3-x,1≤x ≤2}, ∴⎰⎰1D d σ=⎰⎰xx dy dx 2210=⎰1023xdx =43; ⎰⎰2D d σ=⎰⎪⎭⎫ ⎝⎛-21233xdx =493-. ⎰⎰Dd σ=⎰⎰1D d σ+⎰⎰2D d σ=23.例4:求两个底面半径相同的直交圆柱所围立体的体积V. 解:设圆柱底面半径为a, 两个圆柱底面方程为 x 2+y 2=a 2与x 2+z 2=a 2.第一封限部分的立体是曲顶柱体, 以z=22x a -为曲顶,以四分之一圆域D={(x,y)|0≤y ≤22x a -,0≤x ≤a}为底. ∴V=8⎰⎰-Dd x a σ22=8⎰⎰--220220x a ady x a dx =8⎰-adx x a 022=3316a .习题1、设f(x,y)在区域D 上连续,试将二重积分⎰⎰Dd y x f σ),(化为不同顺序的累次积分:(1)D 是由不等式y ≤x, y ≥a,x ≤b(0<a<b)所确定的区域; (2)D 是由不等式x 2+y 2≤1, x+y ≥1所确定的区域; (3)D 是由不等式y ≤x, y ≥0,x 2+y 2≤1所确定的区域;(4)D={(x,y)||x|+|y|≤1}.解:如图,(1)⎰⎰Dd y x f σ),(=⎰⎰xa ba dy y x f dx ),(=⎰⎰by b a dx y x f dy ),(.(2)⎰⎰Dd y x f σ),(=⎰⎰--21110),(x xdy y x f dx =⎰⎰--2111),(y ydx y x f dy .(3)⎰⎰D d y x f σ),(=⎰⎰xdy y x f dx 0220),(+⎰⎰-210122),(x dy y x f dx =⎰⎰-21220),(y ydx y x f dy .(4)⎰⎰Dd y x f σ),(=4⎰⎰-xdy y x f dx 1010),(=4⎰⎰-ydx y x f dy 1010),(.2、在下列积分中改变累次积分的顺序: (1)⎰⎰x x dy y x f dx 220),(;(2)⎰⎰----221111),(x x dy y x f dx ;(3)⎰⎰-axx ax ady y x f dx 22202),(;(4)⎰⎰2010),(x dy y x f dx +⎰⎰-)3(3131),(x dy y x f dx.解:如图,(1)⎰⎰xx dy y x f dx 220),(=⎰⎰y y dx y x f dy 220),(+⎰⎰2242),(y dx y x f dy .(2)⎰⎰----221111),(x x dy y x f dx =⎰⎰----221101),(y y dx y x f dy +⎰⎰---yydx y x f dy 1110),(.(3)⎰⎰-axx ax a dyy x f dx 22202),(=⎰⎰--22220),(y a a ayadx y x f dy +⎰⎰-+ay a a adx y x f dy 2022),(+⎰⎰aay a adx y x f dy 2222),(.(4)⎰⎰2010),(x dy y x f dx +⎰⎰-)3(3131),(x dy y x f dx =⎰⎰-y ydx y x f dy 2310),(.3、计算下列二重积分:(1)⎰⎰Dd xy σ2,其中D 是由抛物线y 2=2px 与直线x=2p(p>0)所围成的区域;(2)⎰⎰+Dd y x σ)(22,其中D={(x,y)|0≤x ≤1, x ≤y ≤x 2};(3)⎰⎰-Dxa d 2σ(a>0),其中D 为图中阴影部分;(4)⎰⎰Dd x σ,其中D={(x,y)|x 2+y 2≤x}.(5)⎰⎰Dd xy σ||,其中D=为圆域x 2+y 2≤a 2.解:(1)方法一:⎰⎰Dd xy σ2=⎰⎰-pxpx p dy y xdx 22220=⎰2025324pdx x p p =215p .方法二:⎰⎰Dd xy σ2=⎰⎰-2222p py pp xdx dy y =⎰-⎪⎪⎭⎫⎝⎛-p p dy p y p y 242281=215p . (2)⎰⎰+Dd y x σ)(22=⎰⎰+xxdy y x dx 22210)(=⎰⎪⎪⎭⎫ ⎝⎛+10232537dx x x =105128. (3)⎰⎰-Dxa d 2σ=⎰⎰----22)(002a x a a axa dy dx =⎰----ax a a x a a 0222)(=233822a ⎪⎭⎫⎝⎛-.(4)⎰⎰Dd x σ=⎰⎰---2210x x x x dy x dx =2⎰-11dx x x =158.(5)方法一:⎰⎰Dd xy σ||=⎰⎰adr r d 032cos sin 4θθθπ=⎰204cos sin πθθθd a=24a .方法二:⎰⎰Dd xy σ||=⎰⎰-22004x a aydy xdx =⎰-adx x a 0222)(=24a.4、求由坐标平面及x=2, y=3, x+y+z=4所围的角柱体的体积. 解:如图,V=⎰⎰--Dd y x σ)4(=⎰⎰--2020)4(dx y x dy +⎰⎰---ydx y x dy 4032)4(=⎰-20)26(dy y +⎰⎥⎦⎤⎢⎣⎡+---32222)4(816dy y y y=12-4+16-20-67+319=-591.5、设f(x)在[a,b]上连续,证明不等式2)(⎥⎦⎤⎢⎣⎡⎰ba dx x f ≤(b-a)⎰b a dx x f )(2, 其中等号仅在f(x)为常量函数时成立.证:2)(⎥⎦⎤⎢⎣⎡⎰ba dx x f =⎰⎰⋅b a b a dy y f dx x f )()(=⎰⎰D dxdy y f x f )()(≤⎰⎰+Ddxdy y f x f )]()([2122=⎰⎰⋅b a b a dx x f dy )(2=(b-a)⎰b a dx x f )(2.其中D={(x,y)|a ≤x ≤b, a ≤y ≤b}.若等号成立,则对任何(x,y)∈D ,有f 2(x)+f 2(y)=2f(x)f(y),即 [f(x)-f(y)]2=0,∴f(x)=f(y),即f(x)为常数函数.6、设平面区域D 在x 轴和y 轴的投影长度分别为l x 和l y ,D 的面积为S D ,(α,β)为D 内任一点,证明:(1)⎰⎰--Dd y x σβα))((≤l x l y S D ; (2)⎰⎰--Dd y x σβα))((≤41l x 2l y 2.证:设D 在x 轴和y 轴上的投影区间分别为[a,b]和[c,d],则 l x =b-a, l y =d-c ,且|x-α|≤l x , |y-β|≤l y.(1)⎰⎰--Dd y x σβα))((≤⎰⎰--D d y x σβα||||≤l x l y ⎰⎰Dd σ≤l x l y S D .(2)⎰⎰--Dd y x σβα))((≤⎰⎰-⋅-dc ba dy y dx x ||||βα.令x l a x -=t (0≤t ≤1), 记ρ=xl l(α-a) (0≤ρ≤1). |x-α|=|x-a+a-α|=|l x t-l x ρ|=l x |t-ρ|.⎰-b adx x ||α=l x ⎰-badx t ||ρ=l x2⎰-1||dtt ρ=l x 2⎥⎦⎤⎢⎣⎡-+-⎰⎰ρρρρ1)()(dt t dt t= l x 2⎥⎦⎤⎢⎣⎡--)1(21ρρ.∵0≤ρ≤1, ∴ρ(1-ρ)≥0,∴⎰-ba dx x ||α≤21l x 2. 同理可证,⎰-dc dy y ||β≤21l y 2. ∴⎰⎰--Dd y x σβα))((≤41l x 2l y 2.7、设D=[0,1]×[0,1],f(x,y)=⎪⎩⎪⎨⎧+中非有理点为当中有理点为当D y x ,D y x ,q q yx ),(0),(11, 其中q x 表示有理数x 化成既约分数后的分母.证明:f(x,y)在D 上的二重积分存在而两个累次积分不存在.证:∀ε>0, 只有有限个点使f(x,y)>2ε, ∴存在分割T ,使得S(T)-s(T)<ε, ∴二重积分存在且等于0.当y 取无理数时,f(x,y)≡0,∴⎰10),(dx y x f =0; 而当y 取有理数时,在x 为无理数处f(x,y)=0, 在x 为有理数处f(x,y)=y x q q 11+, 故函数f 在任何区间上振幅总大于yq 1, 即函数f(x,y)在x ∈[0,1]上关于x 的积分不存在.∴不存在先x 后y 的累次积分. 同理可证先y 后x 的累次积分不存在.8、设D=[0,1]×[0,1],f(x,y)=⎩⎨⎧=中其他点时为当时且中有理点为当D y x ,q q ,D y x ,y x ),(0),(1,其中q x 表示有理数x 化成既约分数后的分母. 证明:f(x,y)在D 上的二重积分不存在而两个累次积分存在.证:在正方形的任何部分内, f 的振幅等于1,∴二重积分不存在. 对固定的y ,若y 为无理数,则f 恒为0,若y 为有理数,则 函数仅有有限个异于0的值,因此⎰10),(dx y x f =0, ∴累次积分存在且⎰⎰110),(dx y x f dy =0,同理可证累次积分⎰⎰110),(dy y x f dx =0.。
二重积分习题及答案

D1
yx
D2
D1 , D2 两部分
2
D2
( x y )d xd y 2 d xd y
D
o
1 x
2 ( 2 1) 3 2 说明: 若不用对称性, 需分块积分以去掉绝对值符号.
5 计算
2 2 ( x y ) dxdy , D : x y 1 D
分析 积分区域D关于x、y轴均对称, 被积函数
f ( x, y) x y 关于x,y均是偶函数,利用对称性
去掉绝对值符号. 解 采用直角坐标 ( x y )dxdy 4 dx
D
1
1 x 2 0
0
( x y )dy 8 3
【注】在利用对称性计算二重积分时,要同时考虑被积 函数的奇偶性和积分区域的对称性,不能只注意积分区域 关于坐标轴的对称性,而忽视了被积函数应具有相应的奇
解
x r cos 在极坐标系下 y r sin 所以圆方程为 r 1, 1 直线方程为 r , sin cos
x2 y2 1
x y 1
f ( x, y )dxdy
D
2
0
d
1
1 sin cos
f ( r cos , r sin )rdr .
8
计算 ( x y )dxdy ,其 D 为由圆
2 2 D
x 2 y 2 2 y , x 2 y 2 4 y 及直线 x 3 y 0 , y 3 x 0 所围成的平面闭区域. 解 y 3x 0 2
3
x y 4 y r 4 sin
2 1
4. 计算二重积分
二重积分习题答案

二重积分习题答案 Revised by BLUE on the afternoon of December 12,2020.第八章二重积分习题答案练习题1.设D:0y ≤0x a ≤≤,由二重积分的几何意义计算d Dx y解:d Dx y=200d πθ⎰⎰=222001()2r d a r πθ=--⎰⎰2. 设二重积分的积分区域为2214x y ≤+≤,则2dxdy =⎰⎰ 解:2dxdy =⎰⎰22126d rdr πθπ=⎰⎰练习题1.2d Dx σ⎰⎰其中D 是两个圆,y x 122=+与,y x 422=+围成的环型区域.解:2d Dx σ⎰⎰=22222301001515cos [cos2]84d r dr d d πππθθθθθπ=+=⎰⎰⎰⎰ 2计算二重积分σd yx D)341(--⎰⎰,其中D 是由直线2,,2=-=x x ;1,1=-=y y 围成的矩形。
解:σd y x D)341(--⎰⎰= 221211212(1)[(1)]4346x y x y dx dy y dx ------=--⎰⎰⎰=222(1)84xdx --=⎰3. 应用二重积分,求在xy 平面上由曲线224x x y x y -==与所围成的区域D 的面积.解:22242202320(42)28(2)|33x x xDA dxdy dx dy x x x x -===-=-=⎰⎰⎰⎰⎰4. 求旋转抛物面224z x y =--与xy 平面所围成的立体体积 解: 2222220(4)(4)48DV x y d d r rdr d ππσθθπ=--=-==⎰⎰⎰⎰⎰习 题 八一.判断题1.d Dσ⎰⎰等于平面区域D 的面积.(√)2.二重积分 100f(x,y)d ydy x ⎰⎰交换积分次序后为11f(x,y)d xdx x ⎰⎰ (×)二.填空题1.二重积分的积分区域为2214x y ≤+≤,则4dxdy =⎰⎰12π12π.2.二重积分d d Dxy x y ⎰⎰的值为112,其中2:0D y x ≤≤,01x ≤≤.1123.二重积分10(,)ydy f x y dx ⎰⎰交换积分次序后为11(,)xdx f x y dy⎰⎰. 11(,)xdx f x y dy ⎰⎰4.设区域D 为1x ≤,1y ≤,则⎰⎰(sin x x -)d d x y =0.05.交换积分次序1d (,)y f x y dx ⎰=211(,)(,)x dx f x y dy f x y dy+⎰⎰.211(,)(,)x dx f x y dy f x y dy +⎰⎰6.设D 是由221x y +≤所确定的区域。
数学分析课本-习题及答案第二十一章

第十一章 重积分§1 二重积分的概念1.把重积分⎰⎰D xydxdy 作为积分和的极限,计算这个积分值,其中D=[][]1,01,0⨯,并用直线网x=n i ,y=nj (i,j=1,2,…,n-1)分割这个正方形为许多小正方形,每一小正方形取其右上顶点为其界点.2.证明:若函数f 在矩形式域上D 可积,则f 在D 上有界.3.证明定理:若f 在矩形区域D 上连续,则f 在D 上可积.4.设D 为矩形区域,试证明二重积分性质2、4和7.性质2 若f 、g 都在D 上可积,则f+g 在D 上也可积,且()⎰+D g f =⎰⎰+D D g f . 性质4 若f 、g 在D 上可积,且g f ≤,则 ⎰⎰≤D Dg f , 性质7(中值定理) 若f 为闭域D 上连续函数,则存在()D ,∈ηξ,使得()D ,f f D∆ηξ=⎰. 5.设D 0、D 1和D 2均为矩形区域,且210D D D =,∅=11D int D int , 试证二重积分性质3.性质3(区域可加性) 若210D D D =且11D int D int ∅=,则f 在D 0上可积的充要条件是f 在D 1、D 2上都可积,且⎰0D f =⎰⎰+21D D f f , 6.设f 在可求面积的区域D 上连续,证明:(1)若在D 上()0y ,x f ≥,()0y ,x f ≠则0f D>⎰; (2)若在D 内任一子区域D D ⊂'上都有⎰'=D 0f ,则在D 上()0y ,x f ≡。
.7.证明:若f 在可求面积的有界闭域D 上连续,,g 在D 上可积且不变号,则存在一点()D ,∈ηξ,使得()()⎰⎰D dxdy y ,x g y ,x f =()ηξ,f ()⎰⎰Ddxdy y ,x g .8.应用中值定理估计积分⎰⎰≤-++10y x 22ycos x cos 100dxdy 的值§2 二重积分的计算1.计算下列二重积分:(1)()⎰⎰-Ddxdy x 2y ,其中D=[][]2,15,3⨯;(2)⎰⎰D2dxdy xy ,其中(ⅰ)D=[][]3,02,0⨯,(ⅱ)D=[]3,0 []2,0⨯; (3)()⎰⎰+Ddxdy y x cos ,其中D=[]π⨯⎥⎦⎤⎢⎣⎡π,02,0; (4)⎰⎰+D dx dy x y 1x ,其中D=[][]1,01,0⨯. 2. 设f(x,y)=()()y f x f 21⋅为定义在D=[]⨯11b ,a []22b ,a 上的函数,若1f 在[]11b ,a 上可积,2f 在[]22b ,a 上可积,则f 在D 上可积,且⎰D f =⎰⎰⋅1122b a b a 21f f . 3.设f 在区域D 上连续,试将二重积分()⎰⎰Ddxdy y ,x f 化为不同顺序的累次积分:(1)D 由不等式x y ≤,a y ≤,b x ≤()b a 0≤≤所确的区域:(2)D 由不等式222a y x ≤+与a y x ≤+(a>0)所确定的区域;(3)D=(){}1,≤+y x y x .4.在下列积分中改变累次积分的顺序:(1) ()⎰⎰20x 2x dy y ,x f dx ; (2) ()⎰⎰----11x 1x 122dy y ,x f dx ; (3)()⎰⎰10x 02dy y ,x f dy +()()⎰⎰-31x 3210dy y ,x f dx .5.计算下列二重积分:(1)⎰⎰D2dxdy xy ,其中D 由抛物线y=2px 与直线x=2p (p>0)所围的区域; (2)()⎰⎰+D 22dxdy y x,其中D=(){1x 0y ,x ≤≤, y x ≤ }x 2≤; (3)⎰⎰-D x a 2dx dy (a>0),其中D 为图(20—7)中的阴影部分; (4)⎰⎰Ddxdy x ,其中D=(){}x y x y ,x 22≤+; (5)⎰⎰D dxdy xy ,其中为圆域222a y x ≤+.6.写出积分()⎰⎰ddxdy y ,x f 在极坐标变换后不同顺序的累次积分:(1)D 由不等式1y x 22≤+,x y ≤,0y ≥所确定的区域;(2)D 由不等式2222b y x a ≤+≤所确定的区域;(3)D=(){}0x ,y y x y ,x 22≥≤+.7.用极坐标计算二重积分: (1) ⎰⎰+D22dxdy y x sin ,其中D=(){222y x y ,x +≤π }24π≤; (2)()⎰⎰+Ddxdy y x ,其中D=(){}y x y x y ,x 22+≤+; (3)()⎰⎰+'D22dxdy y x f ,其中D 为圆域222R y x ≤+.8.在下列符号分中引入新变量后,试将它化为累次积分:(1) ()⎰⎰--20x 2x 1dy y ,x f dx ,其中u=x+y,v=x-y;(2) ()dxdy y ,x f D⎰⎰,其中D=(){a y x y ,x ≤+,0x ≥, }0y ≥,若x=v cos U 4, v sin U y 4=.(3)()⎰⎰dxdy y ,x f ,其中D=(){a y x y ,x ≤+,0x ≥, }0y ≥,若x+y=u,y=uv.9.求由下列曲面所围立体V 的体积:(1) v 由坐标平面及x=2,y=3,x+y+Z=4所围的角柱体;(2) v 由z=22y x +和z=x+y 围的立体; (3) v 由曲面9y 4x Z 222+=和2Z=9y 4x 22+所围的立体.11.试作适当变换,计算下列积分:(1)()()⎰⎰-+Ddxdy y x sin y x ,D=(){π≤+≤y x 0y .x }π≤-≤y x 0;(2)⎰⎰+D y x y dxdy e,D=(){1y x y ,x ≤+,0x ≥,}0y ≥.12.设f:[a,b]→R 为连续函数,应用二重积分性质证明:()≤⎥⎦⎤⎢⎣⎡⎰2b a dx x f ()()⎰-b a 2dx x f a b , 其中等号仅在f 为常量函数时成立。
二重积分典型例题解析.doc

高等数学(2)第11章重积分典型例题解析例1 填空(1)根据二重积分的几何意义,⎰⎰--Dy x y x d d R 222= 。
(其中{}222),(R y x y x D ≤+=)(2)累次积分⎰⎰xxy y x f x d ),(d 1交换积分次序后,得到的积分为 。
(3)已知积分区域D x y x y =≤+≤{(,),}111,二重积分f x y x y D(,)d d ⎰⎰在直角坐标系下化为累次积分的结果是 。
解(1)由二重积分的几何意义,⎰⎰--Dy x y x d d R 222表示球心在圆点,半径为R 的上半球体的体积,故为332R π。
应该填写:332R π。
(2)由已知的累次积分,得积分区域为⎩⎨⎧≤≤≤≤x y x x 10,若变换积分次序,即先积x 后积y ,则积分变量y 的上、下限必须是常量,而积分变量x 的积分上、下限必须是常量或是y 的函数,因此积分区域应表为⎩⎨⎧≤≤≤≤102y y x y ,于是交换后的积分为⎰⎰yyx y x f y 2d ),(d 10。
应该填写:⎰⎰yy x y x f y 2d ),(d 10。
(3)由已知的积分区域为D x y x y =≤+≤{(,),}111可知区域D 满足联立不等式组⎩⎨⎧≤+≤-≤≤-11111y x ,即而解得⎩⎨⎧≤≤-≤≤-0211y x ,因为两个积分变量的上、下限都是常量,所以可随意选择积分的顺序,若先积x 后积y ,则应填⎰⎰--0211d ),(d x y x f y ,反之应填d d x f x y y (,)--⎰⎰211。
应该填写:d d x f x y y (,)--⎰⎰2011或⎰⎰--0211d ),(d x y x f y例2 单项选择 (1)二重积分x x y x y 2d d 1422≤+≤⎰⎰可表达为累次积分( )。
A. d d θθπr r 321202cos ⎰⎰; B.r r 321202d d cos θθπ⎰⎰;C.d d 2x x y xx ----⎰⎰442222; D.d d 2y x x yy ----⎰⎰111122(2)由曲面z x y =--422和z =0及柱面x y 221+=所围的体积是( )。
二重积分习题答案精编WORD版

二重积分习题答案精编W O R D版IBM system office room 【A0816H-A0912AAAHH-GX8Q8-GNTHHJ8】第八章二重积分习题答案练习题8.11.设D :0y ≤,0x a ≤≤,由二重积分的几何意义计算d Dx y解:d Dx y =20d πθ⎰⎰=22201()2r d a r πθ=--⎰⎰2. 设二重积分的积分区域为2214x y ≤+≤,则2dxdy =⎰⎰ 解:2dxdy =⎰⎰22126d rdr πθπ=⎰⎰练习题8.21.2d Dx σ⎰⎰其中D 是两个圆,y x 122=+与,y x 422=+围成的环型区域.解:2d Dx σ⎰⎰=22222301001515cos [cos2]84d r dr d d πππθθθθθπ=+=⎰⎰⎰⎰ 2计算二重积分σd yx D)341(--⎰⎰,其中D 是由直线2,,2=-=x x ;1,1=-=y y 围成的矩形。
解:σd yx D)341(--⎰⎰= 221211212(1)[(1)]4346x y x y dx dy y dx ------=--⎰⎰⎰=222(1)84xdx --=⎰3. 应用二重积分,求在xy 平面上由曲线224x x y x y -==与所围成的区域D 的面积.解:22242202320(42)28(2)|33x x xDA dxdy dx dy x x x x -===-=-=⎰⎰⎰⎰⎰4. 求旋转抛物面224z x y =--与xy 平面所围成的立体体积解: 222222(4)(4)48DV x y d d r rdr d ππσθθπ=--=-==⎰⎰⎰⎰⎰习 题 八一.判断题1.d Dσ⎰⎰等于平面区域D 的面积.(√)2.二重积分 100f(x,y)d ydy x ⎰⎰交换积分次序后为11f(x,y)d xdx x ⎰⎰ (×)二.填空题1.二重积分的积分区域为2214x y ≤+≤,则4dxdy =⎰⎰12π12π.2.二重积分d d Dxy x y ⎰⎰的值为112,其中2:0D y x ≤≤,01x ≤≤.1123.二重积分10(,)ydy f x y dx ⎰⎰交换积分次序后为11(,)xdx f x y dy⎰⎰. 11(,)xdx f x y dy ⎰⎰4.设区域D 为1x ≤,1y ≤,则⎰⎰(sin x x -)d d x y =0.05.交换积分次序1d (,)y f x y dx ⎰=211(,)(,)x dx f x y dy f x y dy+⎰⎰⎰⎰.211(,)(,)x dx f x y dy f x y dy +⎰⎰6.设D 是由221x y +≤所确定的区域。
二重积分习题解答

二重积分习题解答(一) 选择题(在每小题给出的四个选项中,只有一项符合题目要求,选出正确的选项) 1.12200I dy x y dx =⎰,则交换积分次序后得 C 。
(A)1220I dy x y dy =⎰; (B)12203I x y dy =⎰;(C )2112203x I dx x y dx -=⎰⎰; (D )2112203x I dx x y dy +=⎰⎰。
2.设积分域为{(,)|11,11}D x y x y =-≤≤-≤≤,则x yDedxdy +=⎰⎰ D. .(A)2)1(-e , (B)21)(2--e e , (C) 42)1(-e , (D) 21)(--e e ;3. 设积分域D 由直线,2,2y x x y x =+==围成,则(,)D f x y dxdy =⎰⎰ C(A)120(,)xx dx f x y dy -⎰⎰, (B) 21(,)yydyf x y dx -⎰⎰, (C) 212(,)xxdx f x y dy -⎰⎰, (D) 1(,)xdx f x y dy ⎰⎰.;4.22x y DI e dxdy --=⎰⎰,D :221x y +≤,化为极坐标形式是 D 。
(A )221[]r I e dr d πθ-=⎰⎰;(B )2124[]r I e dr d πθ-=⎰⎰;(C )21202[]r I e rdr d πθ-=⎰⎰;(D )221[]r I e rdr d πθ-=⎰⎰。
5. 2DI xy d σ=⎰⎰, 其中22:1D x y +≤的第一象限部分,则 C 。
(A)120I dy dy =⎰; (B )1120I dx xy dy =⎰⎰;(C)12I dx dy =⎰;(D )1232cos sin I d r dr πθθθ=⎰⎰。
填空题1.交换二次积分次序,1(,)xI f x y dy =⎰= 。
故211(,)(,)yxy I dx f x y dy dy f x y dx ==⎰⎰⎰2.设积分域D 由11,22,x y -≤≤-≤≤围成,则3(2)Dx y dxdy +=⎰⎰ 0 3.设积分域为22{(,)|14,}D x y x y y x =≤+≤≥,则积分22()Df xy dxdy +=⎰⎰在极坐标下的二次积分为 。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2009大专A 班数学分析第13章二重积分的计算练习题解答一、求下列二重积分: 1.22()d d Rx y x y +⎰⎰, 其中R :11x -≤≤,11y -≤≤. 解:13111222221111()d d d ()d d 3Ry x y x y x x y y x y x ----⎡⎤+=+=+⎢⎥⎣⎦⎰⎰⎰⎰⎰ 13121028(2)d 4()3333x x x x -=+=+=⎰.2.(32)d d Rx y x y +⎰⎰,其中R 是由坐标轴与2x y +=所围成的闭区域.解: 如图,积分区域可以表示为x 型区域: 02y x ≤≤-,02x ≤≤.于是有(32)d d Rx y x y +⎰⎰22222000d (32)d 3d xxx x y y xy y x --⎡⎤=+=+⎣⎦⎰⎰⎰ 220(422)d x x x =+-⎰2320220(4)33x x x =+-=. 3.cos()d d Rx x y x y +⎰⎰,其中R 是以(0,0)(π,0)(π,π)为顶点的三角形区域.解: 如图,积分区域可以表示为x 型区域: 0y x ≤≤,0x π≤≤.于是有cos()d d Rx x y x y +⎰⎰[]00d cos()d sin()d x xx x x y y x x y x ππ=+=+⎰⎰⎰001(sin 2sin )d d(cos cos 2)2x x x x x x x ππ=-=-⎰⎰ 001113(cos cos 2)(cos cos 2)d (102222x x x x x x ππππ⎡⎤=---=---=-⎢⎥⎣⎦⎰.4.d Rx y ⎰⎰,其中R 是由2y x =与y =所围成的闭区域. 解: 如图.积分区域可以表示为x型区域: 2x y ≤≤,01x ≤≤.于是有d Rx y⎰⎰311202d [3x x x y x y x ==⎰⎰714402()d 3x x x =-⎰111542416()311555x x =-=. xyπxy225.(+)d d Rx y x y ⎰⎰, 其中R :1x y +≤.解:如图,积分区域为两个x 型区域1R 与2R 之并,其中1R :11x y x --≤≤+, 10x -≤≤, 1R 2R2R :11x y x -≤≤-, 01x ≤≤.于是有12(+)d d (+)d d (+)d d RR R x y x y x y x y x y x y =-+⎰⎰⎰⎰⎰⎰01111101d ()d d ()d xxxx x y x y x x y y +-----=-++⎰⎰⎰⎰011122111011()d ()d 22x xx x y x x y x x +----+-=-++⎰⎰ 012210112[1(21)]d [1(21)]d 223x x x x -=-++--=⎰⎰. 6.22()d d Rxy x x y +-⎰⎰,其中R 是由直线2y =,y x =及2y x =所围成的闭区域.解: 如图,积分区域可以表示为y 型区域:2yx y ≤≤,02y ≤≤. 于是有22()d d Rx y x x y +-⎰⎰ 322222222d ()d d 32yy y y x x y x y x x y x y ⎡⎤=+-=+-⎢⎥⎣⎦⎰⎰⎰232019313()d 2486y y y =-=⎰. 7.d d 1Rxx y y +⎰⎰,其中R 是由21y x =+,2y x =及0x =所围成的闭区域. 解:如图,积分区域可以表示为x 型区域: 221x y x ≤≤+,01x ≤≤.于是有d d 1Rxx y y +⎰⎰22111120201d d [ln(1)]d 1x x x xx x y x y x y ++==++⎰⎰⎰ 1120ln(2)d ln(21)d x x x x x x =+-+⎰⎰91ln 3ln 282=--.xy1y 18.sin d d Rx x y x ⎰⎰,其中R 是由直线y x =,2xy =及2x =所围成的闭区域. 解:将二重积分化为先y 后x 的累次积分.积分区域可表示为x 型区域: 2xy x ≤≤,02x ≤≤(如图).故sin d d Rxx y x ⎰⎰22002sin 11d d sin d (1cos 2)22x x x x y x x x ===-⎰⎰⎰. 9.2sin d d Ry x y ⎰⎰,其中R 是由直线y x =,1y =及0x =所围成的闭区域.解:将二重积分化为先x 后y 的累次积分.积分区域可表示为y 型区域: 0x y ≤≤,01y ≤≤(如图).故2sin d d Ry x y ⎰⎰11220001sin d d sin d (1cos1)2y y y x y y y ===-⎰⎰⎰. 10.2d d yRe x y -⎰⎰,其中R 是由直线1y x =-,2y =及1x =所围成的闭区域. 解:将二重积分化为先x 后y 的累次积分.积分区域可表示为y 型区域: 11x y ≤≤+,02y ≤≤(如图).故2d d y Rex y -⎰⎰222124011d d d (1)2yy y ey x yey e +---===-⎰⎰⎰.二、将二重积分(,)d d Rf x y x y ⎰⎰化为不同次序的累次积分,其中区域R 分别是:1.由直线y x =及抛物线24y x =所围成. 解:积分区域如图.(1) 将二重积分化为先x 后y 的累次积分积分区域为y 型区域: 24y x y ≤≤,04y ≤≤,于是有(,)d d Rf x y x y ⎰⎰2404d (,)d yy y f x y x =⎰⎰.(2) 将二重积分化为先y 后x 的累次积分积分区域为x型区域: x y ≤≤,04x ≤≤,于是有(,)d d Rf x y x y⎰⎰4d (,)d xx f x y y =⎰⎰.y22xy11yy2312.由x 轴及半圆周222x y r +=(0)y ≥所围成. 解:积分区域如图,有(,)d d Rf x y x y⎰⎰0d (,)d rrx f x y y -=⎰d (,)d ry f x y x =⎰.3.环形闭区域:2214x y ≤+≤.解:积分区域如图.可分成4个小的x 型区域(或y 型区域),于是有(,)d d Rf x y x y⎰⎰1111d (,)d d (,)d x f x y y x f x y y --=+⎰⎰⎰1221d (,)d d (,)d x f x y y x f x y y --++⎰⎰.或(,)d d Rf x y x y⎰⎰1111d (,)d d (,)d y f x y x y f x y x --=+⎰⎰⎰1221d (,)d d (,)d y f x y x y f x y x --++⎰⎰.4.由双曲线2xy =,抛物线21y x =+及直线2x =所围成. 解:积分区域如图.表示为x 型区域:221y x x≤≤+,12x ≤≤, 有(,)d d Rf x y x y ⎰⎰22121d (,)d x xx f x y y +=⎰⎰.表示为两个y 型区域: 1R :22x y≤≤,12y ≤≤; 2R2x ≤≤,25y ≤≤,有(,)d d Rf x y x y⎰⎰2252212d (,)d d (,)d yy f x y x y f x y x =+⎰⎰⎰.5.由圆222x y x +=,224x y x +=及直线y x =,0y =所围成. 解:积分区域如图.可以表示为两个x 型区域: 1Ry x ≤≤,12x ≤≤;2R:0y ≤≤24x ≤≤,xyxy15221x有(,)d d Rf x y x y⎰⎰2412d (,)d d (,)d x x f x y y x f x y y =+⎰⎰.可以表示为两个y 型区域:1R:12x +≤≤,01y ≤≤; 2R:2y x ≤≤, 12y ≤≤,有(,)d d R f x y x y ⎰⎰1222011d (,)d d (,)d yy f x y x y f x y x =+⎰⎰⎰⎰.三、改变下列累次积分的积分次序: 1.1d (,)d yy f x y x ⎰⎰.解: 所给累次积分为先x 后y 的积分,积分区域为:0x y ≤≤,01y ≤≤,(如图).改变积分次序,积分区域可以表示为: 1x y ≤≤,01x ≤≤,于是有10d (,)d yy f x y x ⎰⎰(,)d d Df x y x y =⎰⎰11d (,)d xx f x y y =⎰⎰.2.2220d (,)d yyy f x y x ⎰⎰.解: 所给累次积分为先x 后y 的积分,积分区域为:22y x y ≤≤,02y ≤≤,(如图).改变积分次序,积分区域可以表示为:2xy ≤≤,04x ≤≤,于是有 2220d (,)d y yy f x y x ⎰⎰402d (,)d x x f x y y =⎰⎰.3.ln 1d (,)d exx f x y y ⎰⎰.解: 所给累次积分为先y 后x 的积分,积分区域为:0ln y x ≤≤,1x e ≤≤,(如图).x改变积分次序,积分区域可以表示为:ye x e ≤≤,01y ≤≤,于是有ln 1d (,)de xx f x y y ⎰⎰10d (,)d y eey f x y x =⎰⎰.4.πsin 0sin2d (,)d xx x f x y y -⎰⎰.解: 所给累次积分为先y 后x 的积分,积分区域为:sinsin 2xy x -≤≤,0x π≤≤,(如图). 改变积分次序, 积分区域为两个y 型区域1D 与2D 之并,其中1D :arcsin arcsin y x y π≤≤-, 01y ≤≤,2D :2arcsin y x π-≤≤, 10y -≤≤,于是有 πsin 0sin2d (,)d xx x f x y y -⎰⎰1arcsin 00arcsin 12arcsin d (,)d d (,)d yyyy f x y x y f x y x ππ---=+⎰⎰⎰⎰.5.12201d (,)d d (,)d xxx f x y y x f x y y -+⎰⎰⎰⎰.解: 所给累次积分为两个先y 后x 的积分之和,故积分区域为两个x 型区域1D 与2D 之并,其中1D :0y x ≤≤, 01x ≤≤;2D :02y x ≤≤-, 12x ≤≤.改变积分次序,积分区域可以表示为:2y x y ≤≤-,01y ≤≤,于是有12201d (,)d d (,)d xxx f x y y x f x y y -+⎰⎰⎰⎰120d (,)d y yy f x y x -=⎰⎰.6.11d (,)d x f x y y ⎰.解: 积分区域如图,有原式2121d (,)d d (,)d y y f x y x y f x y x =+⎰⎰⎰.7.12330010d(,)d d(,)dy yy f x y x y f x y x-+⎰⎰⎰⎰.解: 积分区域如图.原式232d(,)dxxx f x y y-=⎰⎰.8.14(4)d(,)dyy f x y x-⎰⎰.解: 积分区域如图.原式204224d(,)dxxx f x y y--+=⎰⎰.9.02222022d(,)d d(,)dx xx f x y y x f x y y +--+⎰⎰⎰⎰.解: 积分区域如图.原式1221200221d(,)d d(,)d d(,)dyyy f x y x y f x y x y f x y x--=++⎰⎰⎰⎰.10.21101d(,)dyyy f x y x+-⎰⎰.解: 积分区域如图.化为先y后x的累次积分,积分区域为两个x型区域1D与2D之并,其中1D:11x y-≤≤, 01x≤≤;2D1y≤≤, 12x≤≤.故原式1121011d(,)d d(,)dxx f x y y x f x y y-=+⎰⎰⎰.xy32y1xyyy=1y x=-。