沉淀分离法

合集下载

2沉淀分离法

2沉淀分离法
ห้องสมุดไป่ตู้
• 沉淀为硫酸盐 大多数硫酸盐都易溶于水,只有Ca,Sr,Ba,Ra 和Pb的硫酸盐难溶,利用这一性质,可从复杂样 品中将其分离出来。
容易和主沉淀共沉淀的物质见下表
2.6 均相沉淀
• 定义:如果通过适当化学反应,能在试料溶液内 均匀缓慢地生成沉淀剂,这就是均相沉淀法。
按反应类型分类: (1)pH上升及下降法。最常用的是尿素水解法。试料溶液 中加入尿素之后加热,尿素水解生成氨。
pH慢慢均匀上升。这时pH 的上升速度和数值,易由加 热速度、共存盐种类、浓度加以调节。已用于Al,Fe, Ga,Sn,Ti 等的氢氧化物、碱式盐的定量分离中。
表 8-1 氢氧化物沉淀剂 适用性与沉淀的离子 备注 (1) 主要用于两性元素与非两性元素分离。 (2) Mg2+ 、Fe3+、稀土、Th(IV) 、Zr(IV) 、 Hf(IV) 、Cu2+、Cd2+、Ag+、Hg2+、Bi3+、Co2+ 、 Mn2+、Ni2+ (1) 使高价金属离子(如 Fe3+,A13+ 等)与大部 分一、二价金属离子分离 (2) Be2+ 、Al3+、Fe3+、Cr2+、稀土、Ti(IV) 、 Zr(IV) 、Hf(IV) 、Th(IV) 、Nb(IV) 、Ta (IV) 、Sn(IV) 部分沉淀:Fe2+、Mn2+ 、 、 Mg2+ (pH=12—12.5)、 (1) 通过控制值使金属离子分离 (2) Ti(IV) 、Zr(IV) 、Th(IV) 、Cr3+、Al3+、 Sn(IV) 、Sn2+、Fe3+、Bi3+ 、Sb(III) 、Sb (V) Zn2+ 不干 扰测 定为 前提

沉淀分离技术.

沉淀分离技术.

蛋白质聚集沉淀
(1)破坏水化膜,分子间易碰撞聚集,将大量盐 加到蛋白质溶液中,高浓度的盐离子有很强的水化 力,于是蛋白质分子周围的水化膜层减弱乃至消失, 使蛋白质分子因热运动碰撞聚集。
(2)破坏水化膜,暴露出憎水区域,由于憎水区域间作用使蛋 白质聚集而沉淀,憎水区域越多,越易沉淀。
(3)中和电荷,减少静电斥力,中性盐加入蛋白质溶液后,蛋 白质表面电荷大量被中和,静电斥力降导致蛋白溶解度降低, 使蛋白质分子之间聚集而沉淀。
亲水胶体在水中的 稳定因素
水化膜
水化膜
+ + + + + + ++ +
带正电荷蛋白质 (亲水胶体) 脱水
碱 酸 等点电时的蛋白质 (亲水胶体) 脱水
碱 酸 带负电荷蛋白质 (亲水胶体) 脱水
+ + + + + + ++ +
带正电荷蛋白质 (疏水胶体)
阴离子 不稳定蛋白颗粒
阳离子
带负电荷蛋白质 (疏水胶体)
7.65 6.85
(1)忽略溶液体积的变化,若回收90%的BSA,需要加 入多少固体硫酸铵?(37.27Kg) (2)沉淀中BSA的纯度是多少?(95.34%)
KS分段盐析法
在一定pH、温度条件下,改变离子强度。 适用于早期粗提阶段的分步分离。
虽然这个理论所假定的条件并不完全适合于蛋白质分子,但该 理论对于理解破坏蛋白质溶液的稳定性仍有很大帮助,同时还 有助于针对具体蛋白质选择最合适的沉淀剂及技术。
DLVO理论
颗粒间的相互作用的位能取决于离子强度。 在低离子强度时,颗粒距离处在中间状态,双 电层斥力占优势,可看为一个凝聚的势垒;在 高离子强度时,吸引力超过排斥力,相互间的 总位能表现为吸引位能。 虽然这个理论所假定 的条件并不完全适合于蛋白质分子,但该理论 对于理解破坏蛋白质溶液的稳定性仍有很大帮 助,同时还有助于针对具体蛋白质选择最合适 的沉淀剂及技术。

沉淀分离法的原理及应用

沉淀分离法的原理及应用

沉淀分离法的原理及应用1. 简介沉淀分离法是一种常用的分离纯化技术,通过将混合物中的目标物质与其它成分之间的相互作用转化为沉淀的形式,实现目标物质的分离与纯化。

本文将介绍沉淀分离法的基本原理和在化学、生物学等领域中的应用。

2. 原理沉淀分离法的原理基于悬浮液中固体颗粒的沉降速度与固体颗粒的质量、形状、密度和悬浮液的性质有关。

其基本过程包括:•混合物的制备:将待分离的混合物溶解或悬浮于适当的溶剂中,形成悬浮液。

•沉淀生成:通过物理、化学手段使目标物质发生沉淀,将其与悬浮液中的其它成分分离出来。

常用的方法包括调节pH值、加入沉淀剂等。

•沉淀分离:通过离心、过滤、沉淀等操作将沉淀物与悬浮液分离。

3. 应用沉淀分离法在化学、生物学等领域中有广泛的应用,以下是一些常见的应用领域:3.1 化学实验在化学实验中,沉淀分离法常用于分离和纯化化合物。

通过调节pH值、加入沉淀剂可以使目标化合物沉淀,从而与混合物中的其它成分分离开来。

例如,可以使用盐酸将铅离子与氯离子反应生成沉淀物(氯化铅),从而完成铅离子的分离。

3.2 食品加工沉淀分离法在食品加工中也有一定的应用,特别是在液体分离和浊液澄清方面。

例如,在醋酸制备过程中,可以通过沉淀分离法将产生的沉淀物与溶液分离,从而得到纯净的醋酸。

3.3 生物学研究在生物学研究中,沉淀分离法常用于分离和纯化生物大分子,如蛋白质和核酸。

通过调节溶液的条件,例如盐浓度、温度等,可以使目标生物大分子发生沉淀,从而与其它组分分离开来。

例如,在蛋白质纯化过程中,可以通过加入盐类使蛋白质发生沉淀,然后使用离心等方法将其与溶液分离。

4. 总结沉淀分离法是一种常用的分离纯化技术,其原理基于悬浮液中固体颗粒的沉降速度与其它因素之间的关系。

沉淀分离法在化学、生物学等领域有广泛的应用,包括化学实验、食品加工和生物学研究等。

熟悉沉淀分离法的原理和应用,可以为相关领域的分离纯化工作提供理论和实践指导。

沉淀分离法及应用

沉淀分离法及应用

沉淀分离法及应用
沉淀分离法是化学实验中常用的一种分离方法,主要通过生成沉淀物来实现对不同物质的分离。

沉淀分离法的基本步骤如下:
1. 将待分离物质溶解在适当的溶剂中,制备溶液。

2. 在溶液中加入适量的沉淀剂(通常是饱和溶液)。

3. 沉淀剂与待分离物质发生反应,生成沉淀物。

4. 将溶液与沉淀物分离,通常可通过过滤或离心将沉淀物从溶液中分离出来。

沉淀分离法的应用范围非常广泛,包括但不限于以下几个方面:1. 分离杂质:当溶液中含有杂质时,可以通过添加适量的沉淀剂,使杂质与沉淀剂发生反应生成沉淀物,从而分离出纯净的溶液。

2. 分离混合物:当混合物中含有不同成分时,可以利用沉淀分离法将其中一种或几种成分分离出来。

3. 分离纯度不同的物质:当溶液中含有不同纯度的物质时,可以通过沉淀分离法将其中高纯度的物质分离出来,从而提高物质的纯度。

4. 提取目标物质:当需要提取特定物质时,可以利用沉淀分离法将目标物质从复杂的混合物中提取出来。

沉淀分离法是一种简单有效的分离方法,在化学实验和工业生产中有着广泛的应用。

沉淀的分离的方法

沉淀的分离的方法

沉淀的分离的方法
沉淀分离是一种常用的分离方法,适用于固体和液体之间的分离。

下面是几种常见的沉淀分离方法:
1. 重力沉淀:利用物质的密度差异,引入重力将悬浮在液体中的颗粒沉淀到底部。

2. 离心沉淀:通过高速旋转离心机,可加速颗粒的沉降速度,从而更快地进行分离。

3. 过滤:将混合物通过滤纸或其他滤膜进行过滤,使得固体颗粒被滤出,而液体透过滤膜。

4. 沉淀剂法:添加一种特定的化学物质(沉淀剂),能够与溶液中的物质发生反应生成沉淀,使其从溶液中沉淀出来。

5. 蒸发结晶:将溶液加热蒸发,使得固体物质从溶液中结晶出来,实现固液分离。

6. 电沉积:利用电解作用,通过外加电压或电流将带电的物质沉积到电极上进行分离。

需要根据具体的实验要求和分离对象选择适合的方法。

第二章 沉淀分离法详解

第二章    沉淀分离法详解

一、沉淀为氢氧化物
1.沉淀与溶液pH关系 溶度积Ksp →物质开始生成沉淀时的大约pH值
例: [Fe3+]=0.010 mol.L-1, Fe(OH)3沉淀时的pH
值条件?
3 3 38 [ Fe ][ OH ] K 4 10 当 sp
开始生成沉淀
[OH ] 1.6 1012 mol.L1
CH3CSNH2 + 2H2O + H+ = CH3COOH + H2S + NH4+ CH3CSNH2 + 3OH- = CH3COO- + S2- +H2O + NH3
与金属离子发生均相沉淀,获得的硫化 物沉淀性能就有所改善,易于过滤、洗涤, 分离效果较好。
三、其他沉淀形式
1.沉淀为硫酸盐
Ca2+、Sr2+、Ba2+、Ra2+、Pb2+
酒石酸铵 丁二酮 溶液 肟
Be、Fe、Ni、Pd、Pt2+
Al、As、Sb、Cd、Cr、 Co、Cu、Fe、Pb、 Mn、Mo、Sn、Zn
8-羟基 喹啉
Sb5+、As、Ge、Ce、 乙酸铵溶 Al、Bi、Cr、Cu、Co、Ga、 液 In、Fe、Hg、Mo、Ni、Nb、 Pt、Se、Te Pd、Ag、Ta、Th、Ti、W、U、 Zn、Zr 氨性溶液 Al、Be、Bi、Cd、Ce、Cu、 pH7.5 Ga、In、Fe、Mg、Mn、Hg、 Nb、Pd、Sc、Ta、Th、Ti、U、 Zr、Zn、RE Cr、Au
(2)氨水+铵盐缓冲溶液
调节溶液的pH值为8~10,高价金属离子沉淀,与大部 分一、二价金属离子分离。
另一方面,Ag+、Cu2+、Co2+等离子因形成氨络阴离子 留于溶液中。

3沉淀分离法

3沉淀分离法
Ca
2
大量
Pd
2
痕量(被测)
CaCO3 沉淀
Ca CO3
2
2
CaCO3
Pd2+离子附着在CaCO3沉淀的表面,形成共沉淀。
① 无机共沉淀剂
● 氢氧化物沉淀: 如,Fe(OH)3,Al(OH)3,MnO(OH)2等,主要利用 表面吸附作用使痕量金属离子共沉淀。 ● 硫化物沉淀: 如,PbS、HgS等,共沉淀是除吸附、吸留作用 外还有后沉淀作用。 ● 某些晶形沉淀: 如,BaSO4,SrSO4,SrCO3等,可与生成相似晶 格的离子形成混晶(如BaSO4-RaSO4、BaSO4PbSO4等)而共沉淀。
提高氢氧化物沉淀分离的方法
(1) 采用“小体积”沉淀法——小体积、大浓度且
有大量对测定没有干扰的盐存在下进行沉淀。如:
在大量NaCl存在下,NaOH分离Al3+与Fe3+。 (2)加入掩蔽剂提高分离选择性。 (3) 控制pH值选择合适的沉淀剂 不同金属形成氢氧化物的pH值及介质不同。 (4)采用均匀沉淀法或在较热、浓溶液中沉淀并且热 溶液洗涤消除共沉淀。
(3)逐渐除去溶剂
• 如果将试液与有机沉淀剂在某种水溶液混合,然后慢慢蒸 发除去溶剂,即可在适当的缓冲条件下进行均相沉淀。 • 例如,用8-羟基喹啉沉淀Al3+时,可在Al3+ 试液中加入醋酸
胺缓冲溶液、8-羟基喹啉的丙酮溶液,在70-80℃加热3h,
使丙酮挥发,15min 后即有8-羟基喹啉铝的晶形沉淀析出, 此沉淀易于过滤、洗涤。
均相沉淀的优点: 这样的沉淀不但吸附的杂质少,沉淀较纯净, 而且不必陈化,过滤、洗涤液较方便。 均相沉淀的途径
(1)试剂水解 (2)在溶液中直接产生出沉淀剂 (3)逐渐除去溶剂 (4)破坏可溶性的络合物

沉淀分离法1

沉淀分离法1

§3-1 概 述
三、沉淀的类型
1. 晶形沉淀
d > 0.1 m
颗粒大, 结构紧密,体积小, 杂质少, 易过滤洗涤。 如BaSO4、草酸钙等。 2.无定形沉淀
d < 0.02 m
3.凝乳状沉淀
d: 0.02 ~ 0.1 m
含水多, 结构疏松,体积大, 杂质多, 难过滤洗涤。 如 Fe2O3•xH2O等
也能生长。将一颗小 的现成的硫酸铜晶体 悬着浸入其饱和溶液 中,晶体会缓慢地 “生长”。如果在烧 杯中继续倒入饱和硫 酸铜溶液,则结晶体 的增长会持续几周甚 至几个月。你将会得 到一颗美丽的大晶体。
§3-1 概 述

无论是晶形沉淀还是非晶形沉淀,当粒子非常细 小时(1~100μm)就变成胶体,胶体溶液很难过 滤。 为使胶体溶液较易过滤,可在溶胶中加入一定的 电解质,夺取胶体粒子周围的水分可促进凝结。
如:亚砷酸水溶液中,通入H2S生成的As2S3 ,很 难过滤,加入HCl或NaCl等电解质,过滤就容易 多了。


§3-1 概 述
六、沉淀分离法的类型:
无机沉淀剂分离法、有机沉淀剂分离分含量极微时,多采用共沉淀分离法
沉淀的纯度
分类
沉 淀 分 离 法

溶解度 S ( mol· L-1 或 g /100g水)
溶度积
BaSO 4 (s)
溶解 沉淀
Ba (aq) SO (aq)
2 2 4
2
2 4
Ksp (BaSO 4 ) c(Ba ) c(SO )
Ksp — 溶度积常数,简称溶度积
An Bm (s) nA (aq) mB (aq)
2 3
S 3
K sp 4
例:K sp (Ag2 CrO4 ) 1.1 10 S 3
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
含水多,疏松,体积大,杂质多,难过滤洗涤。
如Fe2O3.xH2O等
凝乳状沉淀 d: 0.02 ~ 0.1 m 性质介于二者之间 如AgCl等
沉淀分离法分类
无机沉淀分离 有机沉淀分离 共沉淀分离
沉淀为氢氧化物 沉淀为硫化物
其他无机沉淀物
沉淀为螯合物 沉淀为简单配合物
当待测组 分极微时,
多采用 共沉淀法
➢ 利用分步沉淀可分离溶液中的离子,但要求他 们的Ksp有足够的差值,才能使溶度积小的先 沉淀出来,而其他离子后析出。
➢ 不同的金属离子开始沉淀和沉淀完全时的pH不 同,可通过控制pH值来控制离子的沉淀。
➢ 两种金属离子能否完全分离取决于两种沉淀溶 解度的相对大小。完全分离的标准是后沉淀离 子开始沉淀时,先沉淀的离子已沉淀完全(即 在溶液中浓度小于10-4C0).
表 各种金属离子氢氧化物开始沉淀和沉淀完全时的 pH 值
开始沉淀时
沉淀完全时
氢氧化物
Sn(OH)4 TiO(OH)2 Sn(OH) 2 Fe(OH) 3 Al(OH) 3 Cr(OH) 3 Zn(OH) 2 Fe(OH) 2 Ni(OH) 2 Mn(OH) 2 Mg(OH) 2
溶度积 KSP
1×10-57 1×10-29 1×10-27 1×10-38 1×10-32 1×10-31 1×10-17 1×10-15 1×10-18 1×10-13 1×10-11
沉淀为多元络合物
无机共沉淀
吸附共沉淀 混晶共沉淀
有机共沉淀 胶体凝聚共沉淀
固溶体共沉淀
无机沉淀分离法
➢ 在一定条件下采用无机沉淀剂与一些组分发生沉淀反 应,生成溶解度极小的物质,形成沉淀析出,而与其 他组分分离的方法。
➢ 无机沉淀剂是最早使用的沉淀剂,主要用于金属离子
的分离。
➢ 主要形式有:氢氧化物、硫化物、硫酸盐、草酸盐、 氯化物等
[例] 铝和铁的分离
➢ 含Al3+和Fe3+的HCl 溶液100mL以甲基红为 指示剂,滴加250mg/LNaOH溶液,过量约 15mL,低温煮沸数分钟,保温放置,使Fe3+沉 淀后过滤。
➢ 用30g/L的热NaOH溶液洗涤沉淀,洗涤液与滤 液合并,滴加2mol/L HCl至微酸性后用于测定 铝。
➢ 最有代表性的无机沉淀剂有NaOH、NH3、H2S等。
一、沉淀为氢氧化物
选择性差,共 沉淀现象严重
大部分金属能生成沉淀,溶解度差大,控制pH选择性 沉淀
1、单一金属离子氢氧化物沉淀与溶液pH的关系
由KSP可估算Mn+开使析出M(OH)n沉淀时的pH
例: Ksp,Fe(OH)3 = 4×10-38, 若[Fe3+]=0.01mol/L,则 要沉淀就必须:
第一节 沉淀分离法
以沉淀反应为基础,选择合适的沉淀剂, 有选择性的沉淀某些离子,使欲分离的组分与 其他成分分离的方法。
原理:以沉淀反应为基础,即根据溶度积原 理,利用待测组分或干扰组分与沉淀剂反应, 把待测组分沉淀出来,或将干扰组分沉淀析出 而除去。
原理简单,不需特别的装置、经典,在工 厂和实验室广泛应用。
的 pH 值 [M+]=0.01
mol·L-1 0.5 0.5 1.7 2.2 4.1 4.6 6.5 7.5 6.4 8.8 9.6
的 pH 值 [M+]=0.01
mol·L-1 1.3 2.0 3.7 3.5 5.4 5.9 8.5 9.5 8.4 10.8 11.6
2. 混合离子沉淀的分离
➢ 如果溶液中同时含有几种离子,而且这些离子 均可与适当的试剂反应生成难溶物,溶度积小 的将先沉淀出来,溶度积大的将后沉淀 1.6 1012 mol/L
0.01
pOH<11.8;
pH>2.2 (开始沉淀)
在常量分离中,当溶液中还剩下10-6mol/L, 便可认 为已经分离完全。
[OH ] 3
4 1038 106
3.4 1011
pOH=10.5
pH=3.5 (沉淀完全)
Ksp随沉淀的变化, 如刚析出时与陈化 后,沉淀的晶态有 变化,Ksp不同
[注意]:上面的计算是近似的。
(1)无定形沉淀的KSP与沉淀的形态、陈化情况有关。
(2)KSP应考虑,用活度积。
多种羟基络合 物、多核络合
物及其他络合
(3)溶液中不仅有[Fe3+],还有Fe(OH)2+、物
Fe(OH)+2等,实际的溶解度要大得多。 实际上,为了使某种离子沉淀完全,所需的pH值
往往比计算的要高。如Fe(OH)3要沉淀完全pH实际在 4 以上,而不是 3.5.
PbO22 `
SnO32`
GeO 32 `
Co2+、Ni2+、Mn2+、 Ta( Ⅴ ) GaO2` BeO2` SiO32`
稀土等
WO
2 4
`
MoO42`
VO3 .
大部分非两性金属离子能完全沉淀,只有Ca(OH)2 , Sr(OH)2 等 部分沉淀,而两性金属与非金属离子留在溶液中
(2)氨水加铵盐作沉淀剂
pH=8-10用于沉淀
高价与1、2价 M及易与NH3 配位的M分离
氨水作沉淀剂的分离情况
不与NH3络合的Mn+
定量沉淀的离子 部分沉淀 溶液中存留的离子
Hg2+、Be2+、Fe3+、 Al3+、Cr3+、Bi3+、Sb3+、 Mn2+、
Mg2+、Ca2+、Sr2+、Ba2+及
Sn4+、Ga3+、Ti4+、 Zr4+、Hf4+、Th4+、 Mn4+、Nb(Ⅴ)、Ta ( Ⅴ )、U(Ⅵ)、 稀土等
对沉淀反应的要求: 所生成的沉淀溶解度小、纯度高、稳定.
优点:
1.简单、价廉; 2.可大批量处理; 3.(和重量法结合)准.
缺点:
1.对大多数金属选择性不强; 2.耗时.
沉淀的类型
晶形沉淀 d>0.1m 颗粒大,结构紧密,体积小,杂质少,易过滤洗涤。
如BaSO4 , CaC2O4 无定形沉淀 d < 0.02 m
常用的沉淀剂
控制 pH≥12
(1)NaOH作沉淀剂------两性金属与非两性金属分离
NaOH作沉淀剂分离情况
定量沉淀离子 部分沉淀离子 溶液中存留的离子
Mg2+、Cu2+、Ag+、 Au+、Cd2+、Hg2+、
Ca2+、Sr2+、 Ba2+(碳酸
AlO 2`
CrO2` ZnO22`
Ti4+、Zr4+、Hf4+、 盐)、 Th4+、Bi3+、Fe3+、 Nb(Ⅴ)、
相关文档
最新文档