高速列车制动盘材料的研究进展

高速列车制动盘材料的研究进展
高速列车制动盘材料的研究进展

《汽车制动盘》编制说明

《汽车用制动盘》(征求意见稿) 编制说明 1 工作简况(包括任务来源、主要工作过程、主要参加单位和工作组成员及其所做的工作等) 1.1 任务来源 国家标准化管理委员会下达的2012年第2批国家标准制修订计划,项目编号为20121243-T-339。 1.2 主要工作过程 2012年10月,接到国家标准化管理委员会任务后,立即成立了以国家机动车配件产品质量监督检验中心(烟台)为牵头的标准起草小组,并编制了标准制定计划。在收集了相关的国际、国内标准以及与本标准相关的国内外的法规、大型企业的技术材料等相关资料后,于2013年3月在烟台召开了首次讨论会议,并初步形成了本标准制定的统一意见,即:本标准以ECE法规、国外先进国家的标准为基础,结合我国的实际情况,且适应国内相关标准进行编制。 在反复研究和初步调查的基础上,于2013年6月第二次召开标准讨论会,完成初稿的编写工作。2013年11月,工作组在行业内召开意见听取会议,邀请中国铸协、一汽集团等国内相关技术专家对《汽车用制动盘》的标准初稿提出意见及建议,通过工作组全体成员和相关专家对标准初稿的认真讨论,并结合国内具有一定规模的生产厂家的生产、控制经验,对部分技术参数指标进行相应的改动,完成对初稿的第二次修改。会后由国家机动车配件产品质量监督检验中心对标准初稿第二次修改版中所涉及的全部项目参数进行检验验证。 2014年6月,工作组组织进行了第三次标准讨论会议,由国家机动车配件产品质量监督检验中心完成了产品台架试验的验证,通报全体工作组成员后,确定了更合理的技术指标。 根据项目计划,起草小组于2014年9月完成标准征求意见稿报全国汽车标准化技术委员会制动分技术委员会秘书处,根据汽标委制动分委会秘书处审查意见,对标准征求意见稿又进行了修改完善,于2014年10月15日再次上报汽标委制动分委会秘书处。 1.3 主要起草单位和工作组成员 主要起草单位:国家机动车配件产品质量监督检验中心、胜地汽车零部件有限公司、莱州三力机械制造公司、烟台美丰机械有限公司、龙口裕东机械制造厂、山东隆基机械股份有限公司。 工作组成员:李洪、周洪涛、崔兰芳、郑云霞、张宝芝、王平、杨伟尧、王松、孙振林。 2 标准编制原则 制动盘机械性能和材料要求以我国相关的材料国家标准为基础,并通过理论验证、结合国内主要制动盘生产厂的实际经验进行确定。几何尺寸及几何特征参数要求主要参照GB/T 7216和国外的相关标准,如SAE J431、DIN 1561等。台架性能试验方法和要求主要参照ECE R90相关内容。 标准的编排格式按照 GB/T 1.1-2009的规定进行编制。 3 标准主要内容(包括技术指标、参数、公式、性能要求、试验方法、检验规则等论据,解决的主要问题等。) 本标准主要由范围、术语和定义、分类、技术要求和检验方法等组成。 3.1 范围

制动盘技术条件

浙江吉利控股集团有限公司企业标准Q/JL J164003-20142014-06-20发布 代替Q/JL J164003—2012 制动盘技术条件 2014-06-20 发布

2014-07-20 实施

浙江吉利控股集团有限公司发布 本标准替代Q/JL J164003—2012《制动盘技术条件》,本标准与Q/JL J164003—2012 的主要差异为: ——修改了技术要求4.1 技术要求; ——修改技术要求4.3.1,制动盘硬度范围要求,同时增加单个制动盘硬度检测波动范围要求; ——修改技术要求4.4.1,新增实心制动盘静不平衡量要求;——修改技术要求4.4.3,修改制动盘端面跳动要求; ——增加了试验方法4.4.7~4.4.8; ——修改了试验方法5.8 盐雾试验内容;“转向节”修改为“制动盘”; ——新增试验内容5.9~5.i0;本标准由浙江吉利控股集团有限公司提出。本标准由浙江吉利汽车研究院有限公司底盘开发部负责起草。本标准起草人:石彬、庞士伟。 本标准于2014年6月发布。 本标准所替代的标准更替情况为: ——Q/JL J164003—2012(2012年12月第一次修订) ——Q/JL J164003—2012(2009 年1 月10 日首次发布);Q/JLY

J7110681A-2012(2012年9 月14 日第一次修订) JLYY—JT152—08(2008年6月20日首次发布) 1范围制动盘技术条件 本标准规定了盘式制动器用制动盘的结构型式、技术要求、试验方法、检验规则、包装、运输和贮存。 本标准适用于盘式制动器用制动盘(以下简称为制动盘)。 2规范性引用文件下列文件对于本文件的应用是必不可少的。凡是注日期的引用文件,仅注日期的版本适用于本文件。 凡是不注日期的引用文件,其最新版本(包括所有的修改单)适用于本文件。 GB/T 19卜2008包装储运图示标志 GB/T 7216—2009灰铸铁金相检验 GB/T 9439—2010灰铸铁件 GB/T 13384—2008机电产品包装通用技术条件 QC/T 484—1999 汽车油漆涂层 QC/T 564 2008乘用车制动器性能要求及台架试验方法 Q/JL J100003-2009汽车零部件永久性标识规定 Q/JLY J7110507B-2012乘用车零部件防腐技术要求 Q/JLY J7110606A-2012汽车零部件覆盖层盐雾试验规范 3结构型式

高速列车制动技术综述_彭辉水

高速列车制动技术综述 (1、株洲南车时代电气股份有限公司技术中心,高级工程师,彭辉水,湖南株洲,412001) (2、株洲南车时代电气股份有限公司技术中心,高级工程师,倪大成,湖南株洲,412001) 摘要:本文首先阐述了制动系统与高速列车安全性的关系,然后综述了高速列车的制动方式及其性能,并给出各自在国内外高速列车上的应用情况。同时介绍了高速列车制动力的控制模式,并就各种模式的优缺点进行对比,然后概述了高速列车的防滑再粘着控制技术并给出了其应用实例,最后论述了高速列车制动技术的发展趋势。 关键词:高速列车 制动 控制模式 防滑行再粘着控制 中图分类号:U260.35 文献标志码:A Braking Technology of the High-speed Trains Peng Hui-shui, Ni Da-cheng (Technology Center , Zhuzhou CSR Times Electric Co.,Ltd.,Zhuzhou,Hunan 412001,China) Abstract: This paper firstly presents the strong relationship between the braking system and the security of the high-speed trains, supplies the comparative analysis about the brake modes and the corresponding Braking performance, and reviews their applications in the high-speed trains. Then introduces the control mode of braking force in the high-speed trains and gives out the comparative analysis about their pros and cons. This paper reviews the technologies of Anti-skid re-adhesion control and supplies their application cases. Finally prospects the development trend of the braking technology of the high-speed trains. Keywords: High-speed Trains; Braking; Control Mode; Anti-skid Readhesion Control 高速铁路是新兴产业、战略性产业、带动性产业,是世界轨道交通发展的潮流。我国高速铁路异军突起,迅猛发展,打破了世界高速铁路技术的相对垄断格局,截止2011年1月底,我国高速铁路总里程达8358公里;规划到2012年底,总里程达到13000公里。高速铁路快速发展国人翘首以盼,但其安全性也备受瞩目!高速列车制动技术对于列车安全运行至关重要,在意外情况下,高速列车紧急制动距离越短,高速列车才能越安全,旅客安全系数越高,本文将对当前高速列车制动技术领域的关键技术及其进展进行综合论述。 作者简介:1、彭辉水,男,1979年生,2001年毕业于北方交通大学电气学院,高级工程师.现主要从事机车粘着控制理论研究及应用与高速列车牵引制动系统研究。2、倪大成,男,197年生,2001年毕业于湖南大学电气学院,高级工程师.现主要从事机车整流逆变控制理论研究及应用与高速列车牵引制动系统研究。

高铁列车刹车片的研究现状与展望

高铁列车刹车片的研究现状与展望

高铁列车刹车片的研究现状与展望 学号 ZS10050017 姓名 成钰龙 摘 要:介绍了国内外列车刹车片材料的发展历程和现阶段新型刹车片材料的发展状况,并且展望了以碳系复合材料为主要发展方向的未来高速化铁路的新型刹车材料概况。 关键词:高速铁路;刹车片;粉末冶金;C/C 复合摩擦材料;高磨合成材料 0 引言 在当今时代,火车、汽车、城轨等已毫无例外地成为人类陆地客货运输无可替代的现代化工具,在社会生活中发挥着举足轻重的作用,并在可以预见的未来相当长的时间内,车辆工业仍将是国民经济重要的支柱产业,人类对车辆的要求越来越高,如高速、重载、安全可靠、乘坐舒适、操作方便、低能耗、无公害、轻量化等,车辆工业相应呈现出蓬勃的多元发展态势。 长期以来,我国列车一直在低速状态下运行,而铁路的高速化程度是评判国家交通发达与否的一个重要标志,早在20世纪90年代中期,日、法、德等国就已经开通了最高时速达300km/h 的高速铁路,而我国从1997年4月1日到2007年4月1日共进行了6次大提速,普通动车时速已经达到160~200km/h 。随着2008年6月京津城际高铁的开通,我国高铁最高时速已经超过350km/h 。而今年设计时速380km/h 的京沪高铁的完工标志着我国高速铁路已经走在世界的前列,为此国家在“十一五”计划纲要中指出,要逐步实现客运专线的高速化, 普通动车时速要提高到200~300km/h ,高速铁路最,高时速应大于350km/h [1]。 随着我国高速铁路的快速发展,其各项性能要求也相应的提高,尤其对制动性能提出了更严格的要求,这是因为列车的制动功率与车速呈3次方关系[2],也就是说,列车速度提高1倍,制动功率则需增加8倍。目前列车的紧急制动主要是依靠车辆制动系统中的制动盘和刹车片摩擦副的摩擦实现的,而制动系统中刹车片的性能好坏对列车制动效果有着非常大的影响,因此,对其性能提出了更加严格的要求。铁路车辆制动系统中刹车片的发展是随着铁路的发展而发展的,在其制动材料的研究和应用方面经历了一个漫长的发展过程。盘式制动器制动刹车片经历了合成刹车片到粉末冶金刹车片的发展历程,随着铁路列成 绩

摩擦材料

摩擦材料 一、概论 摩擦材料是一种应用在动力机械上,依靠摩擦作用来执行制动和传动功能的部件材料。它主要包括制动器衬片(刹车片)和离合器面片(离合器片)。刹车片用于制动,离合器片用于传动。 任何机械设备与运动的各种车辆都必须要有制动或传动装置。摩擦材料是这种制动或传动装置上的关键性部件。它最主要的功能是通过摩擦来吸收或传递动力。如离合器片传递动力,制动片吸收动能。它们使机械设备与各种机动车辆能够安全可靠地工作。所以说摩擦材料是一种应用广泛又甚关键地材料。 摩擦材料是一种高分子三元复合材料,是物理与化学复合体。它是由高分子粘结剂(树脂与橡胶)、增强纤维和摩擦性能调节剂三大类组成及其它配合剂构成,经一系列生产加工而制成的制品。摩擦材料的特点是具有良好的摩擦系数和耐磨损性能,同时具有一定的耐热性和机械强度,能满足车辆或机械的传动与制动的性能要求。它们被广泛应用在汽车、火车、飞机、石油钻机等各类工程机械设备上。民用品如自行车、洗衣机等作为动力的传递或制动减速用不可缺少的材料。 二、摩擦材料发展简史 自世界上出现动力机械和机动车辆后,在其传动和制动机构中就使用摩擦片。初期的摩擦片系用棉花、棉布、皮革等作为基材,如:将棉花纤维或其织品浸渍橡胶浆液后,进行加工成型制成刹车片或刹车带。其缺点:耐热性较差,当摩擦面温度超过120℃后,棉花和棉布会逐渐焦化甚至燃烧。随着车辆速度和载重的增加,其制动温度也相应提高,这类摩擦材料已经不能满足使用要求。人们开始寻求耐热性好的、新的摩擦材料类型,石棉摩擦材料由此诞生。 石棉是一种天然的矿物纤维,它具有较高的耐热性和机械强度,还具有较长的纤维长度、很好的散热性,柔软性和浸渍性也很好,可以进行纺织加工制成石棉布或石棉带并浸渍粘结剂。石棉短纤维和其布、带织品都可以作为摩擦材料的基材。更由于其具有较低的价格(性价比),所以很快就取代了棉花与棉布而成为摩擦材料中的主要基材料。1905年石棉刹车带开始被应用,其制品的摩擦性能和使用寿命、耐热性和机械强度均有较大的提高。1918年开始,人们用石棉短纤维与沥青混合制成模压刹车片。20世纪20年代初酚醛树脂开始工业化应用,由于其耐热性明显高于橡胶,所以很快就取代了橡胶,而成为摩擦材料中主要的粘结剂材料。由于酚醛树脂与其他的各种耐热型的合成树脂相比价格较低,故从那时起,石棉-酚醛型摩擦材料被世界各国广泛使用至今。 20世纪60年代,人们逐渐认识到石棉对人体健康有一定的危险性。在开采或生产过程中,微细的石棉纤维易飞扬在空气中被人吸入肺部,长期间处于这种环境下的人们比较容易患上石棉肺一类的疾病。因此人们开始寻求能取代石棉的其它纤维材料来制造摩擦材料,即无石棉摩擦材料或非石棉摩擦材料。20世纪70年代,以钢纤维为主要代替材料的半金属材料在国外被首先采用。80年代-90年代初,半金属摩擦材料已占据了整个汽车用盘式片领域。20世纪90年代后期以来,NAO(少金属)摩擦材料在欧洲的出现是一个发展的趋势。无石棉,采用两种或两种以上纤维(以无机纤维为主,并有少量有机纤维)只含少量钢纤维、铁粉。NAO(少金属)型摩擦材料有助于克服半金属型摩擦材料固有的高比重、易生锈、易产生制动噪音、伤对偶(盘、鼓)及导热系数过大等缺陷。目前,NAO (少金属)型摩擦材料已得到广泛应用,取代半金属型摩擦材料。2004年开始,随汽车工业飞速发展,人们对制动性能要求越来越高,开始研发陶瓷型摩擦材料。陶瓷型摩擦材料主要以无机纤维和几种有机纤维混杂组成,无石棉,无金属。其特点为: 1. 无石棉符合环保要求; 2. 无金属和多孔性材料的使用可降低制品密度,有利于减少损伤制动盘(鼓)和产生制动噪音的粘度。 3. 摩擦材料不生锈,不腐蚀; 4. 磨耗低,粉尘少(轮毂)。 三、摩擦材料分类 在大多数情况下,摩擦材料都是同各种金属对偶起摩擦的。一般公认,在干摩擦条件下,同对偶摩擦系数大于0.2的材料,称为摩擦材料。 材料按其摩擦特性分为低摩擦系数材料和高摩擦系数材料。低摩擦系数材料又称减摩材料或润滑材料,其作用是减少机械运动中的动力损耗,降低机械部件磨损,延长使用寿命。高摩擦系数材料又称摩阻材料(称为摩擦材料)。

CRH2型高速动车组制动控制原理

CRH2型高速动车组制动控制装置试验台如何实现对制动控制装置进行测试的 本文论述了时速在200Km -350Km 每小时的CRH2型动车组制动控制系统制动原理,主 要阐述了CRH2型高速动车组制动控制装置试验台如何实现对制动控制装置进行测试的方法,并附带介绍了CRH2型高速动车组制动控制装置试验台的国产化过程。 现有的CRH2型动车组制动控制装置原型是日本那博斯特克公司生产的,制 动方式有倉1)常用制动与快速制动,即电制动与空气制动一起作用;(2)紧急制 动,仅由空气制动作用;(3 )动力制动力与空气制动力自动配合,空气制动力=所需制动力-电制动力;(4 )1N-7N制动等级(5)时速在110Km/h —下的耐雪制动。 1 、制动控制系统系统由制动控制系统和基础制动装置组成。 1 、1 制动控制系统 该系统由制动信号发生与传输部分、微机制动控制单元(MBCU)、气制动 控制单元(PBCU)和转向架制动控制单元组成。 1、1、1制动信号发生部分主要由制动控制器、调制及逻辑控制器组成,采用光纤传送模式,其主要任务是产生制动信号并将信号传递到各车辆的MBCU或PB CU。调制器用于将制动控制器的指令转换成相应的脉宽调制信号,主要有10V 逻辑电平与110V逻辑电平。逻辑控制器根据司机的操作,通过逻辑电路,使指令 线在相应的工况下发出相应的指令信号。它还同时接收ATP发出的指令。制动 指令线主要有: ①PWM线,2根,传递常用制动信号模拟量至各车的MBCU 。 ②紧急制动线,2根,其中1根为开关线,另1根为回线,前者串接了各个控制紧 后者将紧急制动指令 急制动的开关, 如司机紧急制动按钮开关、总风欠压开关等送至各 PBCU 。紧急制动为失电制动。

高速列车制动方式分类

高速列车制动方式分类 从能量的观点来看,制动的实质就是将列车动能转变成其他能量或转移走;从作用力的观点来看,制动就是让制动装置产生与列车运行方向相反的外力,使列车产生较大的减速度,尽快减速或停车。 (1)根据列车动能转移方式的不同,列车制动可分为如下几种方式: ①盘形制动。 ②电阻制动。 ③再生制动。 ④磁轨制动。 ⑤轨道涡流制动。 ⑥旋转涡流制动。 ⑦风阻制动。 上述制动方式中的盘形制动和磁轨制动也可称为摩擦制动,都是通过机械摩擦来消耗高速列车动能的制动方式。其优点是制动力与列车速度无关。无论列车是高速运行还是低速运行,都有制动能力,特别是在低速运行时能对列车施行制动直至停车。可以说摩擦制动始终是高速列车最基本的制动方式。摩擦制动的缺点是制动力有限,因受散热限制而使制动功率增大。电阻制动、再生制动、轨道涡流制动和旋转涡流制动等也可称为动力制动,都是利用某种能量转换装置将运行中列车的动能转换为其他形式的能量,并予以消耗的制动方式。其特点是制动力与列车速度有很大关系,列车速度越高,制动力越大,随着列车速度的降低,制动力也随之下降。 (2)根据制动力的形成方式不同,制动方式可分为黏着制动和非黏着制动。车轮在钢轨上滚动时,轮轨接触处既非静止,也非滑动,在铁路术语中用“黏着”来说明这种状态。黏着制动是指依靠黏着滚动的车轮与钢轨黏着点之间的黏着力来实现列车制动的方式。黏着制度包括闸瓦制动、盘形制动、电阻制动、再生制动及电磁涡流转子制动等。以闸瓦制动为例,车轮、闸瓦和钢轨三者之间有3种可供分析的状态:第一种是难以实现的理想的纯滚动状态;第二种是应极力避

免的“滑行”状态;第三种是实际运用中的黏着状态。在上述3种情况中,纯滚动状态为最理想的轮轨接触状态,但实际上是不可能实现的;为避免车轮踏面擦伤、制动距离延长,需要防止“滑行”;黏着状态介于两者之间,它可以随气候与速度等条件的不同有相当大的变化。 由于列车的制动能量和速度的平方成正比,因此高速列车的动能很大,需要足够大的制动功率和更灵敏的制动操纵系统。而传统的空气制动装置要受制动热容量和机械制动部件磨耗寿命的限制,以及摩擦材料性能对黏着利用的局限性,因此,高速列车要采用能提供强大制动能力并更好利用黏着的复合制动系统。虽然考虑到乘座舒适度,但是制动距离随列车速度的提高而适当延长是不可避免的。高速列车制动的总目标是控制制动距离,因此制动距离不会随车速的提高而增长太多。复合制动系统通常由制动控制系统、动力制动、摩擦制动(如盘形制动和踏面制动等)系统、微机控制的防滑器和非黏着制动装置等组成。复合制动力的产生分别来自电气(动力制动)、机械(盘形制动或踏面制动)和非黏着力(磁轨制动或涡流制动)。高速列车的复合制动模式包括不同车辆在不同制动作用工况和各种速度下的制动能量分配关系,应根据列车的动力方式和编组条件进行设计并通过微机进行控制。

蹄块摩擦材料配方

制动器摩擦片材料介绍 目前,国内外用于制动的摩擦材料主要有石棉树脂(国家法规已限制使用)型摩擦材料、无石棉树脂型摩擦材料、金属纤维增强摩擦材料、半金属纤维增强摩擦材料和混杂纤维增强摩擦材料等,国内以半金属纤维增强摩擦材料的应用最为普遍。上述这些摩擦材料的基本成分是增强纤维摩擦材料的生产过程一般为: 原料储存→称重→混合→预成型(常温模)→高温压模→样品修饰处理→检视→包装出厂。 1、石棉、钢纤维及克维拉(芳纶纤维)制动片的典型配方 a.石棉制动片配方一般为:50%石棉、15%树脂、20%耐磨粒、15%填充料。 b.钢纤维制动片配方一般为:30%钢纤维、15%树脂,10%氧化锌,10%金属粉,15%陶瓷,10%橡胶粒、10%石墨。 c.芳纶纤维制动片配方一般为:5%芳纶纤维、15%金属粉、15%耐磨粒、15%树脂、50%填充料。 2、摩擦材料中各组分的作用 2.1增强纤维 纤维在摩擦材料中作为增强剂,对制动片的强度、摩擦和磨损性能起着重要作用。 2.2粘结剂树脂和纤维材料、填充料等各组分能否良好粘结,取决于树脂对这些材料的浸润性能以及与它们形成化学键的可能性。目前,摩擦材料最常用的粘结剂是各种酚醛树脂及其改性树脂,常用酚醛树脂的性能如表3所示,它的作用是将增强纤维与其他组分粘合在一起。粘结剂是摩擦材料的基体,直接影响到材料的各种性能,因此粘结剂应满足以下性能要求。 a.在一般温度(100℃以下)下,保证摩擦材料有足够的机械强度(抗击强度、冲击强度、压缩强度、剪切强度以及一定的伸长率)。 b.当制动摩擦表面温度在200~300℃时,树脂不发生粘流、分解,应保持一定的强度,以支持摩擦表面层的工作要求,且与对偶件有良好的贴合性。

高速列车粉末冶金制动材料的研究进展

高速列车粉末冶金制动材料的研究进展 发表时间:2019-08-12T17:02:13.783Z 来源:《防护工程》2019年9期作者:孙鑫 [导读] 介绍了闸片/制动盘匹配性的研究;最后,归纳了摩擦磨损性能的评价与预测方法,总结了摩擦磨损机理的最新研究进展。 承德天大钒业有限责任公司河北承德 067000 摘要:目前,我国的综合国力在快速的发展,社会在不断的进步,为适应高速列车更快速、更安全、更舒适、更环保的发展需求,高速列车制动材料应具备合适且稳定的摩擦因数、优良的耐磨性、高的耐热性与抗热疲劳性、足够的机械强度、与制动盘匹配良好、良好的环境适应性及环境友好性等特性。由于在制动方面具有不可替代的优越性,目前300km/h及以上的高速列车均采用粉末冶金制动材料。从材料设计、制备技术、摩擦磨损性能与机理及性能评价等方面,对近年来高速列车粉末冶金制动材料的研究进展进行了综述。首先,阐述了材料中基体组元、润滑组元及摩擦组元的基础研究,以及材料的环保化、组元简易化发展趋势;其次,探讨了制备工艺参数对摩擦磨损性能的影响,简述了制备技术的发展;再次,分析了服役条件对摩擦磨损性能的影响规律,介绍了闸片/制动盘匹配性的研究;最后,归纳了摩擦磨损性能的评价与预测方法,总结了摩擦磨损机理的最新研究进展目前,我国的综合国力在快速的发展,社会在不断的进步,为适应高速列车更快速、更安全、更舒适、更环保的发展需求,高速列车制动材料应具备合适且稳定的摩擦因数、优良的耐磨性、高的耐热性与抗热疲劳性、足够的机械强度、与制动盘匹配良好、良好的环境适应性及环境友好性等特性。由于在制动方面具有不可替代的优越性,目前300km/h及以上的高速列车均采用粉末冶金制动材料。从材料设计、制备技术、摩擦磨损性能与机理及性能评价等方面,对近年来高速列车粉末冶金制动材料的研究进展进行了综述。首先,阐述了材料中基体组元、润滑组元及摩擦组元的基础研究,以及材料的环保化、组元简易化发展趋势;其次,探讨了制备工艺参数对摩擦磨损性能的影响,简述了制备技术的发展;再次,分析了服役条件对摩擦磨损性能的影响规律,介绍了闸片/制动盘匹配性的研究;最后,归纳了摩擦磨损性能的评价与预测方法,总结了摩擦磨损机理的最新研究进展。 关键词:高速列车;制动材料;粉末冶金;研究进展;摩擦磨损 引言 长期以来,我国列车一直在低速状态下运行。从1997年开始,经过全国范围内的几次大提速,目前已达到了160~200km/h。早在90年代初,日、法、德等国就已开通了最高速度达300km/h的高速列车,相比而言,我国现在的列车时速只能算是“中速”,离高速还有一段距离。 1材料设计及制备技术的研究现状 1.1基体组元 铜基体将摩擦组元和润滑组元保持其中而结为一体,为载荷和制动能量的主要载体,其结构和性能较大程度上决定了铜基制动材料的物理机械性能和摩擦磨损性能。通过研究铜粉特性、合金元素固溶强化及第二相强化等,可改善铜基体性能。采用粒度为106μm的铜粉,制备的铜基制动材料表现出良好的综合性能,摩擦因数稳定、磨损率低。研究表明,以氧化铝弥散强化铜粉为基体的材料展现出良好的摩擦因数稳定性,但磨损量较大;采用铁钴铜预合金化铜粉可避免单质粉末混合时的成分偏析,所制备的材料能形成稳定的氧化膜,磨耗量低而稳定。通常可以通过添加Sn,Ni,Al,Cr,W等合金元素来强化铜基体。Ni的添加不仅可以有效提高材料的硬度及强度,还可增加摩擦因数稳定性,减小磨损。W的添加可以提高材料的热容量、显著改善材料的摩擦磨损性能,添加含量小于3%(质量分数,下同)的W可小幅提高材料的硬度。近年来,又采用新型合金元素强化铜基体。Ti的添加引起铜基体晶格畸变,材料硬度及强度提高,减轻了材料的犁削,有利于提高材料的耐磨性。稀土元素La可细化铜基体晶粒,产生固溶强化及弥散强化,改善材料的微观结构,提高了材料的摩擦学性能和力学性能。Fe来源广泛,常作为关键组元添入铜基体,一方面起强化作用,同时又可调节摩擦因数及摩擦稳定性,大多数高速列车粉末冶金制动材料中添加了Fe。证实Fe可显著提高铜基制动材料的硬度、抗弯强度和抗压强度,Fe含量为15%的铜基制动材料具有高摩擦因数、制动稳定性及较低的磨损量。发现小粒度铁粉可显著提高材料的强度和硬度,但材料表现出低而不稳定的摩擦因数;含大粒度铁粉的材料剪切强度和硬度较低,但摩擦因数稳定。 1.2粉末冶金闸瓦和闸片 粉末冶金闸瓦和闸片的生产工艺相似,均是先把混合好的金属和非金属粉末压制成形,然后在分解氨气氛中进行加压烧结。粉末冶金闸瓦既具有铸铁闸瓦的摩擦系数不受天气气候影响的优点,又具有有机合成闸瓦的摩擦系数不随列车速度变化的优点,并且耐磨性和导热性都好。瑞典、加拿大等国的高速列车,大功率机车和法国TGV高速列车等均曾使用这种闸瓦,且都取得了一定的制动效果。但粉末冶金闸瓦对车轮的磨损较为严重,成本比铸铁及有机合成闸瓦高,因此使其难以大量使用。 1.3制备技术 由于制备工艺成熟、简单,又可保证材料具备高的强度,大多数高速列车粉末冶金制动材料的制备采用钟罩炉加压烧结技术,其基本工序为:原料混合→混合料压制成型→压坯与镀铜钢背板加压烧结成一体→烧结产品机加工。目前,该制备技术的研究主要集中于工艺参数和方法的优化。为避免混合料成分偏析,采用粘结化工艺制备铜基制动材料,显著改善粉末混合的均匀性,有利于材料的成分与密度均匀分布。作为加压烧结技术的重要环节之一,粉末压制影响着压坯的密度及其分布,压坯密度的增加有助于提高铜基制动材料的各项性能。在压制过程,影响压坯密度的因素有压制压力、加压速度、模具表面粗糙度等。 2摩擦磨损机理 制动材料的磨损伴随摩擦存在,有摩擦就有磨损,有磨损并不意味磨损失效,从磨损到磨损失效是一个由量变到质变及存在着磨损机制转变的过程。高速列车粉末冶金制动材料的磨损失效分析是研究和解决磨损问题的前提和关键,首先必须揭示造成材料磨损的原因,即研究摩擦磨损机理。探讨了制动速度对铜基制动材料摩擦磨损机理的影响,制动速度较低时,材料表面温度低,表面组织基本没有变化,摩擦作用主要以克服啮合为主,摩擦因数较高;当制动速度提高,表面材料因温度升高而塑性变形及磨料的压入,摩擦接触面积增大,磨损机理以磨粒为主,摩擦因数降低;进一步提高制动速度,摩擦表面温度升高,材料产生氧化,氧化膜破裂而新生表面又产生氧化,材料的硬质相脱离并参与摩擦,磨损机理转为氧化磨损、材料剥落及磨粒磨损。 结语 随着高速列车行驶速度和人们对安全、舒适、环保要求的不断提高,只有强化粉末冶金制动材料基础理论的研究,发展新材料、新工

制动盘铸造工艺设计..

1.结合所学知识,查找相应资料,对所给零件或铸件原铸造工艺进行分析(工艺图设计,参数选取,砂芯设计,冒口设计,模板设计等)谈谈你的体会,及对教材、课堂教学的建议。 2.查资料,完成所指定锻件的生产过程,锻件图设计、相应的计算过程、下料、加热、锻造及热处理工艺进行分析。 3.结合汽车零件生产。阐述埋弧焊原理、工艺特点、质量保证措施。 1.结合所学知识,查找相应资料,对所给零件或铸件原铸造工艺进行分析(工艺图设计,参数选取,砂芯设计,冒口设计,模板设计等)。

1.1 制动盘铸造要求及现状 一、生产技术状况:制动盘种类繁多,特点是壁薄,盘片及中心处由砂芯形成。不同种类制动盘,在盘径、盘片厚度及两片间隙尺寸上存在差异,盘毂的厚度和高度也各不相同。单层盘片的制动盘结构比较简单。铸件重量多为6-18kg。 二、技术要求:铸件外轮廓全部加工,精加工后不得有任何缩松、气孔、砂眼等铸造缺陷。金相组织为中等片状型,石墨型,组织均匀,断面敏感性小(特别是硬度差小)。 三、力学性能: σb ≥250MPa , HB180~240 , 相当于国际 HT250 牌号。 四、有些外商对铸件的化学成分也作要求,本设计不作详细介绍。 1.2 设计内容 用金属型覆砂技术克服上述局限性,解决当前所遇到的铸造问题,保证工艺出品率。即在金属型与铸件外形间覆薄砂层,形成砂型胶。优点是同时具备金属型和砂型铸造的特点,金属型与熔体不直接接触,冷却速度和金相组织易于控制,同时提高金属型寿命,铸件形状可较复杂。铸件可保证致密无气孔、缩孔、缩松等缺陷,工艺出口率高。 2.1 设计任务要求 名称:制动盘 材料:HT220 类型:成批生产 本铸件属于盘状薄壁件,盘面上的风道利于空气对流,达到散热的目的。如下图所示。采用金属型覆砂工艺,需考虑金属型材料及芯砂材料。 2.2金属型材料选择 根据以往金属型设计经验,选择常用的HT200作为金属型材料,参数如下:牌号:HT200 标准:GB 9439-88

汽车制动摩擦材料的性能要求及影响因素分析

汽车制动摩擦材料的性能要求及影响因素分析 发表时间:2018-09-12T14:20:56.057Z 来源:《科技新时代》2018年7期作者:张国华 [导读] 本文围绕汽车制动摩擦材料的相关议题进行了探讨,分别论述了汽车制动摩擦材料摩擦磨损性能的影响因素。 杭州优纳摩擦材料有限公司浙江省杭州市 311404 摘要:本文围绕汽车制动摩擦材料的相关议题进行了探讨,分别论述了汽车制动摩擦材料摩擦磨损性能的影响因素,汽车制动摩擦材料热衰退性能的影响因素,以及启辰制动摩擦材料噪音及振动的影响因素,供相关人士参考。 关键词:摩擦材料、汽车、摩擦性能、热性能、影响因素 1引言 对于汽车生产来说,制动摩擦材料在汽车制动器、汽车离合器以及摩擦传动装置中起着关键的作用,在制动摩擦材料性能要求方面,不仅需要摩擦材料具备良好的摩擦磨损性能,同时在热衰退性能、振动性能以及减噪性能上也应有较良好的表现。在某种程度上制动摩擦材料性能的优劣将直接影响到汽车系统运行的安全性和可靠性。为此对汽车制动摩擦材料的性能进行分析和研究是十分重要且十分必要的。 2汽车制动摩擦材料摩擦磨损性能的影响因素 汽车制动摩擦材料的摩擦磨损性能主要与摩擦系数,摩擦稳定性以及磨损率有关,通常来说,摩擦材料需要在稳定适中的摩擦系数下尽可能拥有较低的材料磨损率。 (一)摩擦材料自身组分的影响 汽车制动摩擦材料是由多种材料所制成的复合型材料,因此在制作过程中各物料组分的不同会对摩擦材料的摩擦性能造成不同的影响。 磨料的影响。比如在摩擦材料中添加氧化铝、硫酸钡、锆英石、铬铁矿粉、硫化锑等金属填料,添加石墨等减磨材料,均可以使摩擦材料本身的摩擦性能得到改善和提升。根据添加物质性能的不同,也会对摩擦材料的性能产生不同的影响。比如添加氧化铝、锆英石、铬铁矿粉、硫化锑可以提高摩擦材料的高温摩擦系数;添加硫酸钡可以提高摩擦材料的热稳定性;添加石墨可以有效改善摩擦材料的热衰退性能,增加抗摩擦性能。 添加纤维的影响。在摩擦材料的制作过程中通过添加增强纤维可以提高材料的摩擦性能。在实际生产中,添加纤维有多种类型,如铜纤维、钢纤维等金属型纤维;玻璃纤维、陶瓷纤维等无机型纤维;芳纶纤维、纤维素纤维等有机型纤维等。金属型纤维在摩擦材料中起着骨架支撑的作用,但是由于金属的密度较大且对环境有一定的负面影响,因此在摩擦材料的制作中往往含量较低。有机型纤维在性能上具有较好的亲水性,同时在混合的过程中分散均匀度较好,因此可以提高摩擦材料的抗裂性能。此外由于该类型纤维对环境无污染,与其他物质的适应性好,因此应用较为普遍。无机型纤维在隔热性和减噪性方面表现良好,对环境无污染,但是在传热性上表现稍差,一般在应用时适当加入一些良好导热性的材料作为平衡。另外,无机纤维加入量过多容易导致摩擦材料的开裂,降低其摩损性能。 固体润滑剂的影响。固体润滑剂主要包括石墨、炭黑、氟化物等炭材料;硫、硒等硫族化合物;氮化硼;二硫化钼、硫化铅、硫化锌等金属硫化物。这些固体润滑剂有较低的莫氏硬度,可以在摩擦材料使用过程中发生有效的转移,以此来稳定摩擦材料的摩擦系数,减少摩擦噪音,提高摩擦材料的耐磨损性能。 (二)摩擦材料制作工艺的影响 不同的烧蚀或成型制作工艺也会对摩擦材料的摩擦性能造成影响。目前在摩擦材料的制作过程中多采用热压成型工艺。在热压成型过程中主要由加压、排气和固化三个基本环节。对于热压温度的控制需要参考模压树脂的差示扫描热量曲线中固化温度的变化情况。良好的热压成型工艺可以使树脂材料和其他物料结合程度得到改善,有效排出材料中的气体,控制摩擦材料成品中的含胶量,使摩擦材料成品拥有较好的密实度,提高摩擦材料的耐磨损性能。 3汽车制动摩擦材料热衰退性能的影响因素 摩擦材料的热衰退性能是影响摩擦材料使用寿命以及汽车运行安全与否的重要性能。通常情况下,高温会提高材料的热衰退性,若材料的热衰退十分严重,极容易导致汽车制动失效等故障,尤其是上下坡行驶过程中,摩擦材料的抗热衰退性对于行驶的安全十分必要。 (一)摩擦材料生产原料的影响 目前在摩擦材料的生产制造中,通常采用对树脂进行性能的优化,通过性能改良和优化来提高树脂的热分解温度,使摩擦材料能够在较高的温度条件下摩擦系数更加稳定,提高摩擦材料的抗热衰退性能。比如利用纳米金属材料对树脂进行导热性能的改良,纳米金属材料本身导热性能优异,与树脂原料结合后可以将摩擦表面产生的热量迅速地传递到材料内部,减少摩擦材料自身的温度差,减少树脂的热分解反应,提高摩擦材料的稳定性。另外,基于硫化锑在高温条件下容易生产硬度更高的氧化物,因此在原料中加入硫化锑不仅能够提高材料的耐磨损性,同时也起到了抗热衰退性的作用。 (二)摩擦材料制作工艺的影响 烧蚀技术涉及到摩擦材料的炭化,因此可以通过对烧蚀工艺优化来改善摩擦材料的抗热衰退性。为避免摩擦材料在高温过程中剧烈炭化,可以在烧蚀工艺前线对摩擦材料进行高温预处理,使材料在经过高温烧蚀过程中能够降低炭化的速率,提高摩擦材料的抗热衰退性。 4汽车制动摩擦材料噪音及振动的影响因素 随着汽车行业的不断发展,汽车制造技术也越来越贴合消费者的需求,从过去的功能性,美观性逐渐走向功能性、美观性、舒适性、环保性。对于汽车制动摩擦材料而言,越来越注重材料的降噪性能和抗振动性能。在降噪性能方面,可从摩擦材料的生产配方入手,通过降低原料中金属的含量来提高降噪性能。另外,由于摩擦材料中的孔隙率对降噪性能有着十分重要的影响,因此,可采用较高的显气孔率来

(完整版)高速动车组制动技术新进展

目录 1 引言 (3) 2 动车组制动技术现状概述 (3) 2.1 关于动车组制动 (3) 2.2 浅析国外几种高速列车制动 (5) 3 高速动车组制动新技术进展 (5) 3.1 磁轨制动 (5) 3.2轨道涡流制动 (6) 3.3 飞轮储能制动 (7) 3.4 空气翼板制动 (8) 3.5 液压制动 (9) 结论 (11) 致谢 (12) 参考文献 (13)

1引言 近年来,随着我国社会经济的快速发展,我国掀起了高铁建设的热潮,CRH各型动车组先后投入使用,在世界高铁史册留下辉煌的一页。制动这一列车安全运行必不可少的环节,历久弥新涌现了不少新技术、新手段。运用吸收这些新东西,有利于促进我国高速动车更快更好发展。本文正是基于这种认识而作的。文章概括回顾了国内外动车组制动技术的现状,并据此阐述了目前动车组制动的新技术进展,这些技术虽仍有瑕疵,但瑕不掩瑜它们终将在未来高速动车组制动方面大放异彩。 2 动车组制动技术现状概述 2.1 关于动车组制动 2.1.1 动车组制动基本认识 现代高速动车组采用动力分散模式,列车制动由电气制动和空气制动复合而成,包括制动控制系统和制动执行系统。控制系统由制动信号发生、传输装置和制动控制装置组成;执行系统即基础制动装置,常见的有闸瓦制动和盘形制动。由于运行速度高,黏着系数小,制动距离要求短,动车组均设有高性能电阻防滑器,进行防滑控制,充分利用黏着。 以CRH3为例,制动系统主要设备包括以下几部分:风源系统、制动控制单元备用制动系统、撒砂装置、空气防滑装置、空气悬挂装置、基础制动装置,如图2——1所示。 图2—1 2.1.2 电制动 电气制动简称电制动,包括电阻制动和再生制动。电阻制动是制动时将牵引主电机作发电机,利用动能发电并将电能通过车辆的制动电阻转变为热能,从而获得制动力的方法。再生制动是将电能通过牵引系统的变流器逆向变换,制动时将牵引主电机转换成发电机工作。所谓“再生”本质是将牵引加速过程中从接触网获得的电能经转换和各种磨耗后反馈给电网,从而获得制动力的方法。

[0]德国高速列车综述

文章编号:100227610(2005)0620001206 德国高速列车综述 李瑞淳1,王 马矣2 (1.长春轨道客车股份有限公司研发中心,吉林长春130062; 2.四川东方电力设备联合公司,四川成都610041) 摘 要:介绍了德国ICE系高速列车的车型与基本结构,归纳了其技术特点。 关键词:高速列车;技术特点;德国 中图分类号:U271.91 文献标识码:B Survey of High Speed T rains in G ermany L I Rui2chun1,Wang Ai2 (1.Development Center of Changchun Rail Passenger Car Co.,Ltd.,Changchun130062,China; 2.Sichuan Dongfang Electric Corporation,Chengdu610041,China) Abstract:The types and f undamental structure of ICE series high speed trains in Germany are described. The technical features are summed up. K ey w ords:high speed trains;technical features;G ermany 德国ICE系高速列车是世界上最为成功的高速列车之一,以速度高、功能完备、技术等级高、性能稳定、车辆总体布置结构合理、内装档次高、运用维护性好等诸多优点而闻名于世。其中的多项技术被许多国家广为引用或借鉴,推动了世界铁路技术的进步。 1 主要车型与基本结构 德国ICE系高速列车主要有ICE1、ICE2、ICE3 (ICE212)、ICT(ICE2T、ICE2TD)等,还包括目前正在处于试验阶段的Velaro E高速列车。各型高速列车的概况如下。 1.1 ICE1和ICE2 ICE1是德国20世纪80年代中期开始开发、1991年投入运用的动力集中型高速动车组。该车组共计生产了60列,有2M14T、2M12T、2M10T三种不同的编组形式,额定牵引功率均为9600kW,其中2M14T编组列车的最高运营速度为250km/h; 2M12T、2M10T编组列车的最高运营速度为280 km/h,2M14T、2M12T编组形式列车的定员分别为759人、669人。 ICE2是德国于1995年开发、1997年投入运用的动力集中型高速动车组。车组是8辆车组成的1M7T 的短编组列车,其中1辆拖车为单端带驾驶室的控制车,共计生产了44列。其最高运营速度为280km/h,收稿日期:2005205231 作者简介:李瑞淳(19562),男,吉林长春人,教授级高级工程师。额定牵引功率为4800kW,列车定员391人。 ICE1、ICE2高速列车的动车均采用不锈钢车体,拖车均采用铝合金车体、带磁轨制动器的高速转向架、分装式空调机组、故障技术诊断系统,以及Schaku 半自动密接式车钩缓冲装置和可以包容车钩缓冲装置的Hübner高密封性双包波纹折棚风挡、由透明车窗与不透明盲窗组成的窗带、德国格来默高档座椅。1.2 ICE3(ICE212) ICE3是德国1997年开发、2000年投入运用的动力分散型高速动车组,在最初开发之时曾被称为ICE 212,正式投入运用时称为ICE3。该车组是8辆车组成的4M4T的短编组列车,迄今为止,共生产了两代67列。第一代ICE3有54列,其中37列是交流单电压制车组;17列是交、直流四电压制车组,其中有两个分别为AC15kV16#.Hz与AC25kV50Hz的交流受电电压制和两个分别为DC3000V与DC1500V的直流电压制。车组的最大牵引功率与最高运行速度,在交流电压制下为8000kW与330km/h;在直流电压制下为4300kW/3600kW与220km/h。第二代ICE3生产了13列,全部为适应德国运用的AC15 kV16#.Hz交流单电压制列车。无论哪一种ICE3列车,均由两个牵引动力单元组成,每个单元均为2M2T 的结构。对应于第一代的单电压制、四电压制ICE3和第二代ICE3,列车的定员分别为415人、404人和458人。 与ICE1、ICE2高速列车一样,ICE3采用了铝 1  综述?述评

刹车片摩擦材料成分

刹车片(摩擦材料)的成分 摩擦材料种类繁多。汽车制动器和离合器用的摩擦材料,几乎都是用树脂或橡 胶作为粘接剂的有机摩擦材料。到目前发现可以用于制造有机摩擦材料的天然和合成材料近百种,人们选择其中几种或十几种原料,按一定比例混合,生产出具有不同特性的摩擦材料。原料的选取与配合比例称为配方。配方是摩擦材料生产中最重要的技术要素。配方五花八门,千变万化,但万变不离其宗。归纳起来,任何一种实用配方都不外乎由下述四大类基本材料组成: 粘合剂:约占5%~25% 增强剂:约占20%~50% 摩擦调节剂:约占30%~60% 工艺调节剂:约占0.5%~1% (1)粘合剂: 如热固性树脂和橡胶等。粘合剂的作用是将配方中各组分粘合为一体,形成具有足够强度、适当硬度、尽可能高的耐温性和耐磨性的固体。 粘合剂的耐温性是影响摩擦材料性能的主要因素。因此,其种类和用量 是配方设计中重点考虑的。 (2)增强纤维: 如石棉纤维、天然矿物纤维、人造矿物纤维、有机纤维、植物纤维、素纤维、碳纤维。增强纤维必须能提供足够的强度,应有很好的耐热性 能和耐磨性能,而且不能刮伤对偶。 (3)摩擦性能调节剂:

摩擦性能调节剂的种类很多,用途各异,必须针对所选择的树脂和纤维 的种类,结合使用要求,进行不同的搭配,以形成满足不同用途的配方 体系。 a\ 能提高摩擦系数的: 常采用的是非金属矿物及其制品。例如:重晶石(硫酸钡)、硅灰石、 氧化铝、矾土(刚玉)、氧化铁红(黑)、焦炭粉等等。这些原料的 主要作用是使刹车片有足够的摩擦系数,不仅在100°C左右的常温区 段,而且在400~500°C的高温区段都能产生足够的制动力。 b\ 能稳定摩擦系数的: 主要原料有石墨、二硫化钼、云母、滑石、软金属等。这些原料的硬 度都很低,在摩擦表面起润滑作用,使摩擦系数趋于稳定,并用来保 护摩擦对偶。 c\ 有机摩擦性能调节剂: 常用的有橡胶份、轮胎粉等。加入这些材料有助于降低材料的硬度和 密度、稳定摩擦系数、降低磨损,但过量的使用会导致热衰退。 d\ 金属粉末(屑): 在一些重载荷的刹车片配方中,也有加入一定份额的金属粉或屑的情 况,常用的有铁粉、铜粉(屑)、铝粉等。加入金属组分主要是为了 改进材料的高温摩擦磨损性能。 (4)工艺调节剂:

相关文档
最新文档