数据分析与挖掘实验报告

合集下载

数据分析与挖掘实验报告

数据分析与挖掘实验报告

数据分析与挖掘实验报告一、实验背景在当今数字化的时代,数据成为了企业和组织决策的重要依据。

通过对大量数据的分析与挖掘,能够发现隐藏在数据背后的规律和趋势,为决策提供有力的支持。

本次实验旨在通过实际操作,深入了解数据分析与挖掘的流程和方法,并探索其在实际应用中的价值。

二、实验目的1、熟悉数据分析与挖掘的基本流程和常用技术。

2、掌握数据预处理、特征工程、模型建立与评估等关键环节。

3、运用数据分析与挖掘方法解决实际问题,提高数据分析能力和解决问题的能力。

三、实验环境1、操作系统:Windows 102、编程语言:Python 383、数据分析库:Pandas、NumPy、Matplotlib、Seaborn、Scikitlearn 等四、实验数据本次实验使用了一份来自某电商平台的销售数据,包含了商品信息、用户信息、销售时间、销售金额等字段。

数据规模约为 10 万条记录。

五、实验步骤1、数据导入与预处理使用 Pandas 库读取数据文件,并对数据进行初步的查看和分析。

处理缺失值:对于包含缺失值的字段,根据数据特点采用了不同的处理方法。

例如,对于数值型字段,使用均值进行填充;对于分类型字段,使用众数进行填充。

数据清洗:去除重复记录和异常值,确保数据的准确性和可靠性。

2、特征工程特征提取:从原始数据中提取有意义的特征,例如计算用户的购买频率、平均购买金额等。

特征编码:对分类型特征进行编码,将其转换为数值型特征,以便模型处理。

例如,使用 OneHot 编码将商品类别转换为数值向量。

3、模型建立与训练选择合适的模型:根据问题的特点和数据的分布,选择了线性回归、决策树和随机森林三种模型进行实验。

划分训练集和测试集:将数据按照一定比例划分为训练集和测试集,用于模型的训练和评估。

模型训练:使用训练集对模型进行训练,并调整模型的参数,以提高模型的性能。

4、模型评估与比较使用测试集对训练好的模型进行评估,计算模型的均方误差(MSE)、均方根误差(RMSE)和决定系数(R²)等指标。

数据挖掘安全实验报告

数据挖掘安全实验报告

一、实验背景随着信息技术的飞速发展,数据挖掘技术在各个领域得到了广泛应用。

然而,数据挖掘过程中涉及的大量个人信息和敏感数据,使得数据挖掘的安全和隐私问题日益突出。

为了提高数据挖掘的安全性,本实验针对数据挖掘过程中的安全风险进行了深入研究,并提出了相应的解决方案。

二、实验目的1. 分析数据挖掘过程中的安全风险;2. 设计数据挖掘安全实验方案;3. 验证实验方案的有效性;4. 提出提高数据挖掘安全性的建议。

三、实验方法1. 文献调研:通过查阅相关文献,了解数据挖掘安全领域的最新研究成果,为实验提供理论基础;2. 实验设计:根据文献调研结果,设计数据挖掘安全实验方案,包括实验环境、实验数据、实验方法等;3. 实验实施:在实验环境中,按照实验方案进行数据挖掘实验,并记录实验数据;4. 数据分析:对实验数据进行分析,评估实验方案的有效性;5. 结果总结:根据实验结果,提出提高数据挖掘安全性的建议。

四、实验内容1. 数据挖掘安全风险分析(1)数据泄露:数据挖掘过程中,未经授权的访问、篡改或泄露个人信息和敏感数据;(2)数据篡改:攻击者通过篡改数据,影响数据挖掘结果的准确性;(3)隐私侵犯:数据挖掘过程中,收集、存储、处理个人隐私信息时,可能侵犯个人隐私;(4)数据质量:数据挖掘过程中,数据质量低下可能导致挖掘结果不准确。

2. 数据挖掘安全实验方案(1)实验环境:搭建一个数据挖掘实验平台,包括数据源、数据挖掘工具、安全防护设备等;(2)实验数据:选取具有代表性的数据集,包括个人隐私信息、敏感数据等;(3)实验方法:采用数据加密、访问控制、数据脱敏等技术,提高数据挖掘安全性。

3. 实验实施(1)数据加密:对实验数据进行加密处理,确保数据在传输和存储过程中的安全性;(2)访问控制:设置访问权限,限制未经授权的访问;(3)数据脱敏:对个人隐私信息进行脱敏处理,降低隐私泄露风险;(4)数据质量检查:对实验数据进行质量检查,确保数据挖掘结果的准确性。

数据挖掘实验报告

数据挖掘实验报告

数据挖掘实验报告一、引言。

数据挖掘作为一种从大量数据中发现隐藏模式和信息的技术,已经被广泛应用于各个领域。

本实验旨在通过对给定数据集的分析和挖掘,探索其中潜在的规律和价值信息,为实际问题的决策提供支持和参考。

二、数据集描述。

本次实验使用的数据集包含了某电商平台上用户的购物记录,其中包括了用户的基本信息、购买商品的种类和数量、购买时间等多个维度的数据。

数据集共包括了10000条记录,涵盖了近一年的购物数据。

三、数据预处理。

在进行数据挖掘之前,我们首先对数据进行了预处理。

具体包括了数据清洗、缺失值处理、异常值处理等步骤。

通过对数据的清洗和处理,保证了后续挖掘分析的准确性和可靠性。

四、数据分析与挖掘。

1. 用户购买行为分析。

我们首先对用户的购买行为进行了分析,包括了用户购买的商品种类偏好、购买频次、购买金额分布等。

通过对用户购买行为的分析,我们发现了用户的购买偏好和消费习惯,为电商平台的商品推荐和营销策略提供了参考。

2. 商品关联规则挖掘。

通过关联规则挖掘,我们发现了一些商品之间的潜在关联关系。

例如,购买商品A的用户80%也会购买商品B,这为商品的搭配推荐和促销活动提供了依据。

3. 用户价值分析。

基于用户的购买金额、购买频次等指标,我们对用户的价值进行了分析和挖掘。

通过对用户价值的评估,可以针对不同价值的用户采取个性化的营销策略,提高用户忠诚度和购买转化率。

五、实验结果。

通过对数据的分析和挖掘,我们得到了一些有价值的实验结果和结论。

例如,发现了用户的购买偏好和消费习惯,发现了商品之间的关联规则,发现了用户的不同价值等。

这些结论为电商平台的运营和管理提供了一定的参考和决策支持。

六、结论与展望。

通过本次实验,我们对数据挖掘技术有了更深入的理解和应用。

同时,也发现了一些问题和不足,例如数据质量对挖掘结果的影响,挖掘算法的选择和优化等。

未来,我们将继续深入研究数据挖掘技术,不断提升数据挖掘的准确性和效率,为更多实际问题的决策提供更有力的支持。

数据挖掘实验报告实验原理

数据挖掘实验报告实验原理

数据挖掘实验报告实验原理
数据挖掘是从大规模数据中挖掘出有价值的信息或知识的过程。

数据
挖掘的核心任务是基于数据发现隐藏在数据背后的模式、关联、趋势和异常,以便支持决策过程。

1.数据预处理:首先需要对原始数据进行清洗、去噪、去重和格式化
处理。

这一步骤的目的是为了减少数据的冗余性和噪声,提高数据的质量。

2.数据集划分:将清洗后的数据集划分为训练集和测试集。

训练集用
于构建数据挖掘模型,测试集用于评估模型的性能。

3.特征选择:选择最具有代表性和区分性的特征变量,以提高数据挖
掘算法的效果和效率。

特征选择可以通过统计方法、信息论方法和机器学
习方法来实现。

4.模型构建:根据实验任务的要求和数据的特点,选择合适的数据挖
掘算法来构建模型。

常用的数据挖掘算法包括聚类、分类、关联规则、异
常检测和预测等。

5.模型评估:通过评估模型在测试集上的性能指标来评估模型的质量。

常用的性能指标包括准确率、召回率、F1值和ROC曲线等。

6.结果分析:对挖掘结果进行解释和分析,以获取有用的信息和知识。

可以通过可视化工具和统计分析方法对挖掘结果进行展示和解释。

在实验过程中,需要选择合适的数据集、算法和评估指标,制定合理
的实验方案,并进行实验验证和结果分析。

同时,还需要掌握数据挖掘工
具和编程技巧,以便能够灵活地应用各种数据挖掘算法和方法。

总之,数据挖掘实验是通过实践应用数据挖掘技术,挖掘数据中隐藏的有用信息和知识的过程。

通过实验,可以深入理解数据挖掘的原理和方法,提高数据分析和解决实际问题的能力。

数据挖掘实验报告结论(3篇)

数据挖掘实验报告结论(3篇)

第1篇一、实验概述本次数据挖掘实验以Apriori算法为核心,通过对GutenBerg和DBLP两个数据集进行关联规则挖掘,旨在探讨数据挖掘技术在知识发现中的应用。

实验过程中,我们遵循数据挖掘的一般流程,包括数据预处理、关联规则挖掘、结果分析和可视化等步骤。

二、实验结果分析1. 数据预处理在实验开始之前,我们对GutenBerg和DBLP数据集进行了预处理,包括数据清洗、数据集成和数据变换等。

通过对数据集的分析,我们发现了以下问题:(1)数据缺失:部分数据集存在缺失值,需要通过插补或删除缺失数据的方法进行处理。

(2)数据不一致:数据集中存在不同格式的数据,需要进行统一处理。

(3)数据噪声:数据集中存在一些异常值,需要通过滤波或聚类等方法进行处理。

2. 关联规则挖掘在数据预处理完成后,我们使用Apriori算法对数据集进行关联规则挖掘。

实验中,我们设置了不同的最小支持度和最小置信度阈值,以挖掘出不同粒度的关联规则。

以下是实验结果分析:(1)GutenBerg数据集在GutenBerg数据集中,我们以句子为篮子粒度,挖掘了林肯演讲集的关联规则。

通过分析挖掘结果,我们发现:- 单词“the”和“of”在句子中频繁出现,表明这两个词在林肯演讲中具有较高的出现频率。

- “and”和“to”等连接词也具有较高的出现频率,说明林肯演讲中句子结构较为复杂。

- 部分单词组合具有较高的置信度,如“war”和“soldier”,表明在林肯演讲中提到“war”时,很可能同时提到“soldier”。

(2)DBLP数据集在DBLP数据集中,我们以作者为单位,挖掘了作者之间的合作关系。

实验结果表明:- 部分作者之间存在较强的合作关系,如同一研究领域内的作者。

- 部分作者在多个研究领域均有合作关系,表明他们在不同领域具有一定的学术影响力。

3. 结果分析和可视化为了更好地展示实验结果,我们对挖掘出的关联规则进行了可视化处理。

通过可视化,我们可以直观地看出以下信息:(1)频繁项集的分布情况:通过柱状图展示频繁项集的分布情况,便于分析不同项集的出现频率。

(完整word版)数据挖掘与实验报告(word文档良心出品)

(完整word版)数据挖掘与实验报告(word文档良心出品)

中科大数据挖掘实验报告姓名樊涛声班级软设一班学号SA15226248实验一K邻近算法实验一实验内容使用k近邻算法改进约会网站的配对效果。

海伦使用约会网址寻找适合自己的约会对象,约会网站会推荐不同的人选。

她将曾经交往过的的人总结为三种类型:(1)不喜欢的人(2)魅力一般的人(3)极具魅力的人尽管发现了这些规律,但依然无法将约会网站提供的人归入恰当的分类。

使用KNN算法,更好的帮助她将匹配对象划分到确切的分类中。

二实验要求(1)独立完成kNN实验,基本实现可预测的效果(2)实验报告(3)开放性:可以自己增加数据或修改算法,实现更好的分类效果三实验步骤(1)数据源说明实验给出的数据源为datingTestSet.txt,共有4列,每一列的属性分别为:①percentage of time spenting playing vedio games;②frequent flied miles earned per year;③liters of ice cream consumed per year;④your attitude towars this people。

通过分析数据源中的数据,得到规律,从而判断一个人的前三项属性来得出划分海伦对他的态度。

(2)KNN算法原理对未知属性的某数据集中的每个点一次执行以下操作①计算已知类别数据集中的每一个点和当前点的距离②按照距离递增依次排序③选取与当前点距离最小的k个点④确定k个点所在类别的出现频率⑤返回k个点出现频率最高的点作为当前点的分类(3)KNN算法实现①利用python实现构造分类器首先计算欧式距离然后选取距离最小的K个点代码如下:def classify(inMat,dataSet,labels,k):dataSetSize=dataSet.shape[0]#KNN的算法核心就是欧式距离的计算,一下三行是计算待分类的点和训练集中的任一点的欧式距离diffMat=tile(inMat,(dataSetSize,1))-dataSetsqDiffMat=diffMat**2distance=sqDiffMat.sum(axis=1)**0.5#接下来是一些统计工作sortedDistIndicies=distance.argsort()classCount={}for i in range(k):labelName=labels[sortedDistIndicies[i]]classCount[labelName]=classCount.get(labelName,0)+1;sortedClassCount=sorted(classCount.items(),key=operator.itemgetter(1),reverse=True) return sortedClassCount[0][0]②解析数据输入文件名,将文件中的数据转化为样本矩阵,方便处理代码如下:def file2Mat(testFileName,parammterNumber):fr=open(testFileName)lines=fr.readlines()lineNums=len(lines)resultMat=zeros((lineNums,parammterNumber))classLabelVector=[]for i in range(lineNums):line=lines[i].strip()itemMat=line.split('\t')resultMat[i,:]=itemMat[0:parammterNumber]classLabelVector.append(itemMat[-1])fr.close()return resultMat,classLabelVector;返回值为前三列属性被写入到resultMat二维数组中,第四列属性作为标签写入到classLableVector中③归一化数据不同评价指标往往具有不同的量纲和量纲单位,这样的情况会影响到数据分析的结果,为了消除指标之间的量纲影响,需要进行数据标准化处理,使各指标处于同一数量级。

数据挖掘实验报告

数据挖掘实验报告

数据挖掘实验报告数据挖掘是一门涉及发现、提取和分析大量数据的技术和过程,它可以揭示出隐藏在数据背后的模式、关系和趋势,对决策和预测具有重要的价值。

本文将介绍我在数据挖掘实验中的一些主要收获和心得体会。

实验一:数据预处理在数据挖掘的整个过程中,最重要的一环就是数据预处理。

数据预处理包括数据清洗、数据集成、数据转换和数据规约等步骤,目的是为了提高数据的质量和可用性。

首先,我对所使用的数据集进行了初步的观察和探索。

发现数据集中存在着一些缺失值和异常值。

为此,我使用了一些常见的缺失值处理方法,如均值替代、中值替代和删除等。

对于异常值,我采用了离群值检测和修正等方法,使得数据在后续的分析过程中更加真实可信。

其次,我进行了数据集成的工作。

数据集合并是为了整合多个来源的数据,从而得到更全面和综合的信息。

在这个过程中,我需要考虑数据的一致性和冗余情况。

通过采用数据压缩和去重等技术,我成功地完成了数据集成的工作。

接着,我进行了数据转换的处理。

数据转换是为了将原始的数据转换成适合数据挖掘算法处理的形式。

在这个实验中,我采用了数据标准化和归一化等方法,使得不同属性之间具备了可比性和可计算性,从而便于后续的分析过程。

最后,我进行了数据规约的操作。

数据规约的目的在于减少数据的维数和复杂度,以提高数据挖掘的效果。

在这个阶段,我采用了主成分分析和属性筛选等方法,通过压缩数据集的维度和减少冗余属性,成功地简化了数据结构,提高了挖掘效率。

实验二:关联规则挖掘关联规则挖掘是数据挖掘中常用的一种方法,它用于发现数据集中项集之间的关联关系。

在这个实验中,我使用了Apriori算法来进行关联规则的挖掘。

首先,我对数据进行了预处理,包括数据清洗和转换。

然后,我选择了适当的最小支持度和最小置信度阈值,通过对数据集的扫描和频繁项集生成,找出了数据集中的频繁项集。

接着,我使用了关联规则挖掘算法,从频繁项集中挖掘出了具有一定置信度的关联规则。

在实验过程中,我发现挖掘出的关联规则具有一定的实用性和可行性。

数据挖掘实验报告-数据预处理

数据挖掘实验报告-数据预处理

数据挖掘实验报告-数据预处理数据挖掘实验报告数据预处理一、实验目的本次实验的主要目的是深入了解和掌握数据预处理在数据挖掘过程中的重要性及相关技术,通过对实际数据集的处理,提高数据质量,为后续的数据挖掘和分析工作奠定良好的基础。

二、实验背景在当今数字化时代,数据的规模和复杂性不断增加,而原始数据往往存在着各种问题,如缺失值、噪声、异常值、不一致性等。

这些问题如果不加以处理,将会严重影响数据挖掘算法的性能和结果的准确性。

因此,数据预处理成为了数据挖掘过程中不可或缺的重要环节。

三、实验数据集本次实验使用了一个名为“销售数据”的数据集,该数据集包含了某公司在过去一年中不同产品的销售记录,包括产品名称、销售日期、销售数量、销售价格、客户信息等字段。

四、数据预处理技术(一)数据清洗1、处理缺失值首先,对数据集中的缺失值进行了识别和分析。

通过观察发现,“客户信息”字段存在部分缺失。

对于这些缺失值,采用了两种处理方法:一是如果缺失比例较小(小于5%),直接删除含有缺失值的记录;二是如果缺失比例较大,采用均值填充的方法进行补充。

2、处理噪声数据数据中的噪声通常表现为数据中的错误或异常值。

通过对销售数量和销售价格的观察,发现了一些明显不合理的数值,如销售数量为负数或销售价格过高或过低的情况。

对于这些噪声数据,采用了基于统计的方法进行识别和处理,将超出合理范围的数据视为噪声并进行删除。

(二)数据集成由于原始数据集可能来自多个数据源,存在着重复和不一致的问题。

在本次实验中,对“销售数据”进行了集成处理,通过对关键字段(如产品名称、销售日期)的比较和合并,消除了重复的记录,并确保了数据的一致性。

(三)数据变换1、数据标准化为了消除不同字段之间量纲的影响,对销售数量和销售价格进行了标准化处理,使其具有可比性。

2、数据离散化对于连续型的数据字段,如销售价格,采用了等宽离散化的方法将其转换为离散型数据,以便于后续的数据挖掘算法处理。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

数据分析与挖掘实验报告《数据挖掘》实验报告目录1.关联规则的基本概念和方法 (1)1.1数据挖掘 (1)1.1.1数据挖掘的概念 (1)1.1.2数据挖掘的方法与技术 (2)1.2关联规则 (5)1.2.1关联规则的概念 (5)1.2.2关联规则的实现——Apriori算法 (7)2.用Matlab实现关联规则 (12)2.1Matlab概述 (12)2.2基于Matlab的Apriori算法 (13)3.用java实现关联规则 (19)3.1java界面描述 (19)3.2java关键代码描述 (23)4、实验总结 (29)4.1实验的不足和改进 (29)4.2实验心得 (30)1.关联规则的基本概念和方法1.1数据挖掘1.1.1数据挖掘的概念计算机技术和通信技术的迅猛发展将人类社会带入到了信息时代。

在最近十几年里,数据库中存储的数据急剧增大。

数据挖掘就是信息技术自然进化的结果。

数据挖掘可以从大量的、不完全的、有噪声的、模糊的、随机的实际应用数据中,提取隐含在其中的,人们事先不知道的但又是潜在有用的信息和知识的过程。

许多人将数据挖掘视为另一个流行词汇数据中的知识发现(KDD)的同义词,而另一些人只是把数据挖掘视为知识发现过程的一个基本步骤。

知识发现过程如下:·数据清理(消除噪声和删除不一致的数据)·数据集成(多种数据源可以组合在一起)·数据转换(从数据库中提取和分析任务相关的数据)·数据变换(从汇总或聚集操作,把数据变换和统一成适合挖掘的形式)·数据挖掘(基本步骤,使用智能方法提取数据模式)·模式评估(根据某种兴趣度度量,识别代表知识的真正有趣的模式)·知识表示(使用可视化和知识表示技术,向用户提供挖掘的知识)。

1.1.2数据挖掘的方法与技术数据挖掘吸纳了诸如数据库和数据仓库技术、统计学、机器学习、高性能计算、模式识别、神经网络、数据可视化、信息检索、图像和信号处理以及空间数据分析技术的集成等许多应用领域的大量技术。

数据挖掘主要包括以下方法。

神经网络方法:神经网络由于本身良好的鲁棒性、自组织自适应性、并行处理、分布存储和高度容错等特性非常适合解决数据挖掘的问题,因此近年来越来越受到人们的关注。

典型的神经网络模型主要分3大类:以感知机、bp反向传播模型、函数型网络为代表的,用于分类、预测和模式识别的前馈式神经网络模型;以hopfield 的离散模型和连续模型为代表的,分别用于联想记忆和优化计算的反馈式神经网络模型;以art 模型、koholon模型为代表的,用于聚类的自组织映射方法。

神经网络方法的缺点是"黑箱"性,人们难以理解网络的学习和决策过程。

遗传算法:遗传算法是一种基于生物自然选择与遗传机理的随机搜索算法,是一种仿生全局优化方法。

遗传算法具有的隐含并行性、易于和其它模型结合等性质使得它在数据挖掘中被加以应用。

sunil已成功地开发了一个基于遗传算法的数据挖掘工具,利用该工具对两个飞机失事的真实数据库进行了数据挖掘实验,结果表明遗传算法是进行数据挖掘的有效方法之一。

遗传算法的应用还体现在与神经网络、粗糙集等技术的结合上。

如利用遗传算法优化神经网络结构,在不增加错误率的前提下,删除多余的连接和隐层单元;用遗传算法和bp算法结合训练神经网络,然后从网络提取规则等。

但遗传算法的算法较复杂,收敛于局部极小的较早收敛问题尚未解决。

决策树方法:决策树是一种常用于预测模型的算法,它通过将大量数据有目的分类,从中找到一些有价值的,潜在的信息。

它的主要优点是描述简单,分类速度快,特别适合大规模的数据处理。

粗糙集方法:粗糙集理论是一种研究不精确、不确定知识的数学工具。

粗糙集方法有几个优点:不需要给出额外信息;简化输入信息的表达空间;算法简单,易于操作。

粗糙集处理的对象是类似二维关系表的信息表。

目前成熟的关系数据库管理系统和新发展起来的数据仓库管理系统,为粗糙集的数据挖掘奠定了坚实的基础。

但粗糙集的数学基础是集合论,难以直接处理连续的属性。

而现实信息表中连续属性是普遍存在的。

因此连续属性的离散化是制约粗糙集理论实用化的难点。

覆盖正例排斥反例方法:它是利用覆盖所有正例、排斥所有反例的思想来寻找规则。

首先在正例集合中任选一个种子,到反例集合中逐个比较。

与字段取值构成的选择子相容则舍去,相反则保留。

按此思想循环所有正例种子,将得到正例的规则(选择子的合取式)。

比较典型的算法有michalski的aq11方法、洪家荣改进的aq15方法以及他的ae5方法。

统计分析方法:在数据库字段项之间存在两种关系:函数关系(能用函数公式表示的确定性关系)和相关关系(不能用函数公式表示,但仍是相关确定性关系),对它们的分析可采用统计学方法,即利用统计学原理对数据库中的信息进行分析。

可进行常用统计(求大量数据中的最大值、最小值、总和、平均值等)、回归分析(用回归方程来表示变量间的数量关系)、相关分析(用相关系数来度量变量间的相关程度)、差异分析(从样本统计量的值得出差异来确定总体参数之间是否存在差异)等。

模糊集方法:即利用模糊集合理论对实际问题进行模糊评判、模糊决策、模糊模式识别和模糊聚类分析。

系统的复杂性越高,模糊性越强,一般模糊集合理论是用隶属度来刻画模糊事物的亦此亦彼性的。

李德毅等人在传统模糊理论和概率统计的基础上,提出了定性定量不确定性转换模型--云模型,并形成了云理论。

还有接下来重点介绍的关联规则方法。

1.2关联规则1.2.1关联规则的概念关联规则的一个典型例子是购物篮分析。

它是由著名的全国五百强沃尔玛发现的,沃尔玛有着世界最大的数据仓库系统,为了能够准确了解顾客在其门店的购买习惯,沃尔玛对其顾客的购物行为进行购物篮分析,想知道顾客经常一起购买的商品有哪些。

沃尔玛数据仓库里集中了其各门店的详细原始交易数据。

在这些原始交易数据的基础上,沃尔玛利用数据挖掘方法对这些数据进行分析和挖掘。

一个意外的发现是:"跟尿布一起购买最多的商品竟是啤酒!经过大量实际调查和分析,揭示了一个隐藏在"尿布与啤酒"背后的美国人的一种行为模式:在美国,一些年轻的父亲下班后经常要到超市去买婴儿尿布,而他们中有30%~40%的人同时也为自己买一些啤酒。

产生这一现象的原因是:美国的太太们常叮嘱她们的丈夫下班后为小孩买尿布,而丈夫们在买尿布后又随手带回了他们喜欢的啤酒。

关联规则由此进入人们的视野。

关联规则挖掘被定义为假设I是项的集合。

给定一个交易数据库D,其中每个事务(Transaction)t是I的非空子集,即每一个交易都与一个唯一的标识符TID(Transaction ID)对应。

关联规则在D中的支持度(support)是D中事务同时包含X、Y的百分比,即概率;置信度(confidence)是包含X的事务中同时又包含Y的百分比,即条件概率。

下面举个例子来更好地说明关联规则。

给定AllElectronics关系数据库,一个数据挖掘系统可能发现如下形式的关联规则Age(X,“20….29”)^income(X,“20,000….29,000”)?=>buys(X,“CD-Player”) [Support=20%,Confident=60%]其中X是变量,代表顾客,该关联规则表示所研究的AllElectronics数据库中,顾客有20%在20-29岁,年收入在20,000-29,000之间,并且购买CD机;这个年龄和收入组的顾客购买CD机的可能性有60%。

1.2.2关联规则的实现——Apriori算法1.2.2.1算法描述Apriori算法在发现关联规则领域具有很大影响力。

算法命名源于算法使用了频繁项集性质的先验(prior)知识。

在具体实验时,Apriori算法将发现关联规则的过程分为两个步骤:第一步通过迭代,检索出事务数据库中的所有频繁项集,即支持度不低于用户设定的阈值的项集;第二步利用频繁项集构造出满足用户最小信任度的规则。

其中,挖掘或识别出所有频繁项集是该算法的核心,占整个计算量的大部分。

Apriori算法使用一种称作逐层搜索的迭代方法,K项集用于搜索(K+1)项集。

首先,通过扫描数据库,累积每个项的计数,并收集满足最小支持度的项,找出频繁1项集的集合。

该集合记作L1。

然后,L1用于寻找频繁2项集的集合L2,L2用于寻找L3,如此下去,直到不能再找到频繁K项集。

为提高频繁项集逐层产生的效率,一种称作Apriori的重要性质用于压缩搜索空间。

Apriori 性质:频繁项集的所有非空子集也必须是频繁的。

如何在算法中使用Apriori性质?主要有两步过程组成:连接步和剪枝步。

(1) 连接步:为找L K,通过将L(k-1)与自身连接产生候选K项集的集合。

该候选项集合记作C K。

设l1和l2是L k-1中的项集。

记号l i[j]表示l i中的第j项。

执行L(k-1)连接L(k-1),如果它们的前(K-2)项相同的话,其中L(k-1)的元素是可连接的。

(2) 剪枝步:为压缩C K,可以用Apriori的性质:任何非频繁的(K-1)项集都不是频繁K项集的子集。

因此,如果候选K项集的(K-1)项子集不在L(k-1)中,则该候选也不可能是频繁的,从而可以从C K中删除。

1.2.2.1算法举例Apriori 算法的伪代码Input: DB, min_supOutput: result = 所有频繁项集的他们的支持度方法:Result: = {};K: =1;C1: = 所有的1-项集While(C k)dobegin为每一个C k中的项集生成一个计数器;For(i=1; i<[DB]; i++)begin对第i个记录T支持的每一个C k中的项集,其计数器加1;endL k: =C k中满足大于min_sup的全体项集;L k支持度保留;Result: =ResultÛLKC k+1: =所有的(k+1)-项集中满足其k-子集都在L k里的全体;k=k+1;enddo下面举个例子来说明Apriori算法。

设某个数据库中有9个事务。

即|D|=9。

使用图1.2解释Apriori算法发现D中的频繁项集。

表1.1 某超市的销售项目的事务记录(1)在算法的第一次迭代时,每个项都是候选1项集的集合C1的成员。

算法简单地扫描所有的事务,对每个项的出现次数计数。

(2)假设最小支持度计数为2,即,min_sup=2。

可以肯定频繁1项集的集合L1。

(3)为了发现频繁2项集的集合L2,算法使用L1和L1的连接C2。

注意,在剪枝步中,没有候选从C2中删除,因为这些候选的每个子集也是频繁的。

(4)扫描数据库D中的事务,累计C2中每个候选相集的支持计数,如图1.2的第二行中间的表所示。

相关文档
最新文档