滑块—木板模型的动力学分析
滑块与木板问题

同步练习
chenzhs
1.如图所示,长为L=6m、质量M=4kg的长木板放置于光滑的水平面上,其左端有一大小可忽略,质量为m=1kg的物块,物块与木板间的动摩擦因数μ=0.4,开始时物块与木板都处于静止状态,现对物块施加F=8N,方向水平向右的恒定拉力,求:(g=10m/s2) ⑴小物块的加速度; ⑵物块从木板左端运动到右端经历的时间。
M
m
F
chenzhs
(2)当恒力F=22.8N时,木板的加速度a2',由牛顿第二定律得F-f=Ma2' 解得:a2'=4.7m/s2………④ 设二者相对滑动时间为t,在分离之前 小滑块:x1=½ a1t2 …………⑤ 木板:x1=½ a2't2 …………⑥ 又有x2-x1=L …………⑦ 解得:t=2s …………⑧
m
V0
M
解析 (1)m相对M水平向右运动,所以m受到摩擦力如图, 力的作用是相互的,所以M受到摩擦力如图
M
fm
m
fm
(2)由牛顿第二定律可得: m的加速度为 a1=μmg/m=μg M的加速度为a2=μmg/M
(3)分析m与M的运动状态 m:初速度为V0,加速度为a1的匀减速直线运动 M: 初速度为0,加速度为a2的匀加速直线运动
滑块与木板问题
单击添加副标题
单击此处添加文本具体内容,简明扼要地阐述你的观点
考点1、板块的临界问题 【例1】木板M静止在光滑水平面上,木板上放着一个小滑块m,与木板之间的动摩擦因数μ,为了使得m能从M上滑落下来,求力F的大小范围。
F
M
m
(1)
(完整版)高中物理滑块-板块模型(解析版)

滑块—木板模型一、模型概述滑块-木板模型(如图a),涉及摩擦力分析、相对运动、摩擦生热,多次互相作用,属于多物体多过程问题,知识综合性较强,对能力要求较高,另外,常见的子弹射击木板(如图b)、圆环在直杆中滑动(如图c)都属于滑块类问题,处理方法与滑块-木板模型类似。
二、滑块—木板类问题的解题思路与技巧:1.通过受力分析判断滑块和木板各自的运动状态(具体做什么运动);2.判断滑块与木板间是否存在相对运动。
滑块与木板存在相对运动的临界条件是什么?⑴运动学条件:若两物体速度或加速度不等,则会相对滑动。
⑵动力学条件:假设两物体间无相对滑动,先用整体法算出共同加速度,再用隔离法算出其中一个物体“所需要”的摩擦力f;比较f与最大静摩擦力f m的关系,若f > f m,则发生相对滑动;否则不会发生相对滑动。
3. 分析滑块和木板的受力情况,根据牛顿第二定律分别求出滑块和木板的加速度;4. 对滑块和木板进行运动情况分析,找出滑块和木板之间的位移关系或速度关系,建立方程.特别注意滑块和木板的位移都是相对地面的位移.5. 计算滑块和木板的相对位移(即两者的位移差或位移和);6. 如果滑块和木板能达到共同速度,计算共同速度和达到共同速度所需要的时间;7. 滑块滑离木板的临界条件是什么?当木板的长度一定时,滑块可能从木板滑下,恰好滑到木板的边缘达到共同速度(相对静止)是滑块滑离木板的临界条件。
【典例1】如图所示,在光滑水平面上有一质量为m1的足够长的木板,其上叠放一质量为m2的木块。
假定木块和木板之间的最大静摩擦力和滑动摩擦力相等。
现给木块施加一随时间t增大的水平力F=kt(k是常数),木板和木块加速度的大小分别为a1和a2。
下列反映a1和a2变化的图线中正确的是(如下图所示)()【答案】 A【典例2】如图所示,A 、B 两物块的质量分别为2m 和m ,静止叠放在水平地面上。
A 、B 间的动摩擦因数为μ,B 与地面间的动摩擦因数为12μ。
高中物理滑块—木板模型的动力学分析

滑块—木板模型的动力学分析在高三物理复习中,滑块—木板模型作为力学的基本模型经常出现,是对一轮复习中直线运动和牛顿运动定律有关知识的巩固和应用。
滑块—木板模型的常见题型及分析方法如下:?例1如图1所示,光滑水平面上放置质量分别为m、2m的物块A和木板B,A、B间的最大静摩擦力为μmg,现用水平拉力F拉B,使A、B以同一加速度运动,求拉力F的最大值。
分析:为防止运动过程中A落后于B(A不受拉力F的直接作用,靠A、B间的静摩擦力加速),A、B一起加速的最大加速度由A决定。
∴A??.变式能获得的最大加速度为:。
∴A的最大值为:变式设A??例2如图3所示,质量M=8kg的小车放在光滑的水平面上,在小车右端加一水平恒力F,F=8N,当小车速度达到1.5m/s时,在小车的前端轻轻放上一大小不计、质量m=2kg的物体,物体与小车间的动摩擦因数μ=0.2,小车足够长,求物体从放在小车上开始经t=1.5s通过的位移大小。
(g 取10m/s2)解答:物体放上后先加速:a1=μg=2m/s2此时小车的加速度为:????????当小车与物体达到共同速度时:v共=a1t1=v0+a2t1???????解得:t1=1s??,v共=2m/s以后物体与小车相对静止:?(∵,物体不会落后于小车)物体在t=1.5s内通过的位移为:s=a1t12+v共(t-t1)+?a3(t-t1)2=2.1m练习1如图4所示,在水平面上静止着两个质量均为m=1kg、长度均为L=1.5m的木板A和B,A、B间距s=6m,在A的最左端静止着一个质量为M=2kg的小滑块C,A、B与C之间的动摩擦因数为μ1=0.2,A、B与水平地面之间的动摩擦因数为μ2=0.1。
最大静摩擦力可以认为等于滑动摩擦力。
现在对C施加一个水平向右的恒力F=4N,A和C开始运动,经过一段时间A、B相碰,碰后立刻达到共同速度,C瞬间速度不变,但A、B并不粘连,求:经过时间t=10s时A、B、C的速度一起加速,则:而A能获得的最大加速度为:∵在AA、B此后相对滑动:,故????????????????????,故然后,故C在??????设经时间t4,C.B速度相等:?∴t4=1s??????此过程中,C.B的相对位移为:,故C没有从B的右端滑下。
动力学和能量观点的综合应用之滑块-木板模型

动力学和能量观点的综合应用之滑块—木板模型问题1.滑块—木板模型根据情况可以分成水平面上的滑块—木板模型和斜面上的滑块—木板模型.2.滑块从木板的一端运动到另一端的过程中,若滑块和木板沿同一方向运动,则滑块的位移和木板的位移之差等于木板的长度;若滑块和木板沿相反方向运动,则滑块的位移和木板的位移之和等于木板的长度.3.此类问题涉及两个物体、多个运动过程,并且物体间还存在相对运动,所以应准确求出各物体在各个运动过程中的加速度(注意两过程的连接处加速度可能突变),找出物体之间的位移(路程)关系或速度关系是解题的突破口,求解中应注意联系两个过程的纽带,每一个过程的末速度是下一个过程的初速度.4.滑块—木板模型问题的分析和技巧(1)解题关键正确地对各物体进行受力分析(关键是确定物体间的摩擦力方向),并根据牛顿第二定律确定各物体的加速度,结合加速度和速度的方向关系确定物体的运动情况.(2)规律选择既可由动能定理和牛顿运动定律分析单个物体的运动,又可由能量守恒定律分析动能的变化、能量的转化,在能量转化过程往往用到ΔE内=-ΔE机=F f x相对,并要注意数学知识(如图象法、归纳法等)在此类问题中的应用.【题型1】如图所示,一质量m=2 kg的长木板静止在水平地面上,某时刻一质量M=1 kg 的小铁块以水平向左v0=9 m/s的速度从木板的右端滑上木板.已知木板与地面间的动摩擦因数μ1=0.1,铁块与木板间的动摩擦因数μ2=0.4,取重力加速度g=10 m/s2,木板足够长,求:(1)铁块相对木板滑动时木板的加速度的大小;(2)铁块与木板摩擦所产生的热量Q和木板在水平地面上滑行的总路程x.【题型2】图甲中,质量为m1=1 kg的物块叠放在质量为m2=3 kg的木板右端.木板足够长,放在光滑的水平面上,木板与物块之间的动摩擦因数为μ1=0.2.整个系统开始时静止,重力加速度g取10 m/s2.甲(1)在木板右端施加水平向右的拉力F,为使木板和物块发生相对运动,拉力F至少应为多大?(2)在0~4 s内,若拉力F的变化如图乙所示,2 s后木板进入μ2=0.25的粗糙水平面,在图丙中画出0~4 s内木板和物块的v-t图象,并求出0~4 s内物块相对木板的位移大小和整个系统因摩擦而产生的内能.【题型3】如图所示,水平地面上有一质量为M且足够长的长木板,一个质量为m的煤块(可视为质点)放在长木板的最右端。
2023届新高考物理重点突破:第19讲 专题:滑块和弹簧

第19讲 专题:滑块和弹簧知识图谱木板、滑块模型中的动力学问题知识精讲一.滑块—木板模型的特点1.滑块—木板模型是指上、下叠放两个物体位于地面或桌面上,并且两物体在相对的摩擦力的作用下,一起或者发生相对运动。
涉及摩擦力分析、相对运动、摩擦生热,多 次互相作用,属于多物体多过程问题,知识综合性较强。
2.模型特点(1) 相互作用:滑块之间的摩擦力分析。
另外,需要外力的作用。
(2)相对运动:具有相同的速度时相对静止。
两相互作用的物体在速度相同,但加速度不相同时,两者之间同样有位置的变化,发生相对运动。
(3)通常所说物体运动的位移、速度、都是对地而言。
(4)求位移和速度通常会用到牛顿第二定律和运动学公式以及动能定理。
二.滑块—木板模型问题的主要分类已知A 滑块和B 木板的质量分别为A m 和B m ,静止叠放在水平面上,A 和B 之间的动摩擦系数是1μ,B 与地面之间的动摩擦系数是2μ,设最大静摩擦力等于滑动摩擦力。
1.当水平作用力施加在下面的木板上的情况由图可知,滑块和木板之间的最大静摩擦力为11A f m g μ=,地面对木板的最大静摩擦力为22A B ()f m g m g μ=+。
物理过程分析:当F 较小时,A 和B 一起保持静止;当F 增加时,A 和B 保持相对静止,并且一起向右加速运动;当继续增加F 时,存在一个临界值(定义为1F ),A 相对于B 向左滑动, A 的加速度由滑块和木板之间的最大静摩擦力(11A f m g μ=)提供,此时,以A 和B 为研究对象时,可以计算12A B A B 1()()F m m g m m g μμ=+++(此时,A B 1a a g μ==,受力分析如图)。
滑块和木板的运动状态分类如下:(1)当水平拉力20F f <≤,A 和B 保持静止状态,且他们之间的静摩擦力为零。
(2)当水平拉力21f F F <≤时,A 和B 保持相对静止,一起向右加速运动,此时可以把A 和B 看成一个整体,对整体的受力分析可以计算出共同的加速度:2A B A B ()()F m m ga m m μ-+=+ 。
滑块木板模型(解析版)--动力学中的九类常见问题

动力学中的九类常见问题滑块木板模型【模型精讲】“滑块-木板模型”一般涉及两个物体的受力分析(整体与隔离法)和多个运动过程的过程,而且涉及相对运动,是必修1牛顿定律和受力分析的重点应用,也是高考的重点和难点问题。
为了系统地研究这个模型,我们将此模型分作四类:1、滑块以一定的初速度滑上木板。
2、木板瞬间获得一个初速度。
3、滑块水平方向受力。
4、木板水平方向受力。
【方法归纳】在滑块-木板模型中,经常需判断滑块和木板共速后,之后的运动二者是否会发生相对滑动。
图1和图2是典型的滑块与木板共速瞬间的情况,图1两者都不受力,图2中木板B受力,且F大于B的最大静摩擦力。
1.分析图1,A受滑动摩擦力一定做减速运动,A减速后,B有相对于A向右运动的趋势,所以A也会受到向左的摩擦力,所以A也减速。
但问题是:A受的是静摩擦力还是滑动摩擦力?如果A受静摩擦力,说明AB 相对无滑动,二者加速度相同;如果A收滑动摩擦力,则说明AB有相对滑动,二者加速度不同。
判断要点:滑块A由摩擦力提供加速度,所以滑块A的最大加速度 a A max=μ1g判断方法:假定AB无相对滑动,二者加速度相同,则可以用整体法求出共同的加速a共=μ2g。
若a共≦ a A max(等效于μ2≦μ1),二者将以共同的加速度μ2g做匀减速运动;若a共>a A max(等效于μ2>μ1),二者将以不同的加速度做匀减速运动,其中a A=μ1g,a B=μ2m+Mg-μ1mgM2.分析图2,题设F大于B的最大静摩擦力,则B受滑动摩擦力,加速向右运动,A受到的摩擦力水平向右,A也会加速向右。
仍然需要判断二者是否发生相对滑动。
判断要点:滑块A由摩擦力提供加速度,所以滑块A的最大加速度a A max=μ1g。
判断方法:假定AB 无相对滑动,二者加速度相同,则可以用整体法求出共同的加速度a 共=F -μ2m +M gm +M。
若a 共≦a A max =μ1g ,二者将以共同的加速度a 共做匀加速运动;若a 共>a A max =μ1g ,二者将以不同的加速度做匀加速运动,其中a A =μ1g ,a B =F -μ2m +M g -μ1mgM【滑块-木板模型分类讨论】一、滑块以一定的初速度滑上木板。
高中物理滑块木板模型动能定理解

高中物理滑块木板模型动能定理解高中物理滑块木板模型是一种常见的力学模型,用来研究物体在斜面上滑动的问题。
动能定理是描述物体动能变化的定理,它表达了物体的动能变化等于物体所受力的功。
下面我将详细介绍高中物理滑块木板模型及其动能定理的原理和应用。
首先,我们来介绍一下高中物理滑块木板模型的基本概念。
滑块木板模型由一条倾斜的木板和一个放置在木板上的滑块组成。
滑块与木板之间有一定的摩擦力,可以通过改变木板的角度或滑块的质量来研究滑块在木板上滑动的性质。
在滑块木板模型中,我们考虑滑块在斜面上的运动。
当斜坡上无滑动摩擦力时,滑块只受到重力作用,其加速度仅受到斜面角度和重力加速度的影响。
当斜坡上存在摩擦力时,滑块的加速度还会受到摩擦力对滑块的阻碍。
动能定理是描述物体动能变化的定理。
根据动能定理,物体的动能变化等于物体所受力的功。
在高中物理滑块木板模型中,滑块在斜坡上滑动时,通过斜坡上的重力和摩擦力对滑块进行功。
根据动能定理,滑块的动能变化等于这些力的功之和。
具体来说,滑块的动能变化可以用下式表示:△K = Wg + Wf其中,△K表示滑块的动能变化,Wg表示重力对滑块做的功,Wf 表示摩擦力对滑块做的功。
重力对滑块做的功可以用如下公式表示:Wg = mgh其中,m表示滑块的质量,g表示重力加速度,h表示滑块的垂直高度。
摩擦力对滑块做的功可以用如下公式表示:Wf = fdcosθ其中,f表示滑块和斜面之间的摩擦力,d表示滑块在斜面上的位移,θ表示斜面的倾角。
通过将重力功和摩擦力功代入动能定理的公式,可以得到滑块的动能变化的表达式。
动能定理在物理学中有广泛的应用。
首先,动能定理可以用来计算滑块在斜面上的运动速度。
通过将动能定理的公式进行转换,可以得到滑块的末速度的表达式。
其次,动能定理可以用来研究滑块与斜面之间的摩擦力的大小和方向。
通过观察滑块的动能变化和速度的变化,可以确定摩擦力的大小和方向。
此外,动能定理还可以用来分析滑块与斜面之间的能量转换。
“滑块—木板”模型全攻略

“滑块—木板”模型全攻略一、引言近年来,“滑块—木板”模型在非线性动力学领域中引起了广泛关注。
该模型简单而具有丰富的物理现象,包括周期振荡、混沌行为等,这使得它成为研究非线性系统的重要工具之一。
本文将系统地介绍“滑块—木板”模型的基本原理、数学描述、动力学行为以及数值模拟方法,以期帮助读者理解和应用该模型。
二、基本原理“滑块—木板”模型是由一块光滑的水平桌面作为“木板”,上面放置一块质量为m的物体作为“滑块”。
当物体沿x轴方向移动时,有一恢复力作用在滑块上,大小与滑块与木板之间的接触力成正比,方向与滑块的速度相反。
此外,还考虑滑块与木板之间的摩擦力以及外加力的作用。
三、数学描述假设滑块位于原点,速度为v,摩擦系数为μ。
接触力与滑块速度的关系可以用一个线性函数来描述:F = -kx - γv,其中F为恢复力,k为弹性系数,γ为阻尼系数。
根据牛顿第二定律,滑块所受合力等于质量乘以加速度,即ma = -kx -γv。
这是一个二阶常微分方程。
四、动力学行为1. 无外加力的情况下,当γ为负值时,系统呈现周期性振荡;当γ为正值时,系统呈现发散行为。
这两种情况下滑块的运动轨迹在相空间中呈现不同的相图。
2. 外加周期性力的驱动下,当驱动频率与滑块的固有频率接近时,系统呈现共振现象。
3. 外加随机力的驱动下,当驱动强度逐渐增大时,系统会出现无规则的混沌行为。
五、数值模拟方法为了研究“滑块—木板”模型的动力学行为,可以通过数值模拟来模拟系统的时间演化过程。
1. 使用数值方法求解上述微分方程,如欧拉法、改进的欧拉法、四阶龙格-库塔法等。
2. 通过选择合适的参数值,观察系统的运动轨迹和相图,以及相空间中的吸引子结构来分析系统的动力学行为。
3. 利用数值模拟方法,可以在不同参数条件下研究系统的稳定性、周期性运动、混沌行为等。
六、应用和研究展望“滑块—木板”模型在研究复杂非线性系统以及混沌行为方面具有重要应用价值。
目前,该模型已经广泛应用于力学、物理、生物学等多个领域。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
滑块—木板模型的动力学分析
湖北省黄梅县第五中学石成美
在高三物理复习中,滑块—木板模型作为力学的基本模型经常出现,是对一轮复习中直线运动和牛顿运动定律有关知识的巩固和应用。
这类问题的分析有利于培养学生对物理情景的想象能力,为后面动量和能量知识的综合应用打下良好的基础。
滑块—木板模型的常见题型及分析方法如下:
例1如图1所示,光滑水平面上放置质量分别为m、2m的物块A和木板B,A、B间的最大静摩擦力为μmg,现用水平拉力F拉B,使A、B以同一加速度运动,求拉力F的最大值。
分析:为防止运动过程中A落后于B(A不受拉力F的直接作用,靠A、B间的静摩擦力加速),A、B一起加速的最大加速度由A决定。
解答:物块A能获得的最大加速度为:.
∴A、B一起加速运动时,拉力F的最大值为:
.
变式1例1中若拉力F作用在A上呢?如图2所示。
解答:木板B能获得的最大加速度为:。
∴A、B一起加速运动时,拉力F的最大值为:
.
变式2在变式1的基础上再改为:B与水平面间的动摩擦因数为(认为最大静摩擦力等于滑动摩擦力),使A、B以同一加速度运动,求拉力F的最大值。
解答:木板B能获得的最大加速度为:
设A、B一起加速运动时,拉力F的最大值为F m,则:
解得:
例2 如图3所示,质量M=8kg的小车放在光滑的水平面上,在小车右端加一水平恒力F,F=8N,当小车速度达到1.5m/s时,在小车的前端轻轻放上一大小不计、质量m=2kg的物体,物体与小车间的动摩擦因数μ=0.2,小车足够长,求物体从放在小车上开始经t=1.5s通过的位移大小。
(g取10m/s2)
解答:物体放上后先加速:a1=μg=2m/s2
此时小车的加速度为:
当小车与物体达到共同速度时:
v共=a1t1=v0+a2t1
解得:t1=1s ,v共=2m/s
以后物体与小车相对静止:(∵,物体不会落后于小车)
物体在t=1.5s内通过的位移为:s=a1t12+v共(t-t1)+ a3(t-t1)2=2.1m
练习1如图4所示,在水平面上静止着两个质量均为m=1kg、长度均为L=1.5m的木板A和B,A、B间距s=6m,在A的最左端静止着一个质量为M=2kg的小滑块C,A、B与C之间的动摩擦因数为μ1=0.2,A、B与水平地面之间的动摩擦因数为μ2=0.1。
最大静摩擦力可以认为等于滑动摩擦力。
现在对C施加一个水平向右的恒力F=4N,A和C开始运动,经过一段时间A、B相碰,碰后立刻达到共同速度,C瞬间速度不变,但A、B并不粘连,求:经过时间t=10s时A、B、C的速度分别为多少?(已知重力加速度g=10m/s2)
解答:假设力F作用后A、C一起加速,则:
而A能获得的最大加速度为:
∵∴假设成立
在A、C滑行6m的过程中:∴v1=2m/s
A、B相碰过程,由动量守恒定律可得:mv1=2mv2 ∴v2=1m/s
此后A、C相对滑动:,故C匀速运动;
,故AB 也匀速运动。
设经时间t2,C从A右端滑下:v1t2-v2t2=L∴t2=1.5s
然后A、B分离,A减速运动直至停止:a A=μ2g=1m/s2,向左
,故t=10s时,v A=0.
C在B上继续滑动,且C匀速、B加速:a B=a0=1m/s2
设经时间t4,C.B速度相等:∴t4=1s
此过程中,C.B的相对位移为:,故C 没有从B的右端滑下。
然后C.B一起加速,加速度为a1,加速的时间为:
故t=10s时,A、B、C的速度分别为0,2.5m/s,2.5m/s.
练习2如图5所示,质量M=1kg的木板静止在粗糙的水平地面上,木板与地面间的动摩擦因数,在木板的左端放置一个质量m=1kg、大小可以忽略的铁块,铁块与木板间的动摩擦因数,取g=10m/s2,试求:
(1)若木板长L=1m,在铁块上加一个水平向右的恒力F=8N,经过多长时间铁块运动到木板的右端?
(2)若在铁块上施加一个大小从零开始连续增加的水平向右的力F,通过分析和计算后,请在图6中画出铁块受到木板的摩擦力f2随拉力F大小变化的图象。
(设木板足够长)
(解答略)答案如下:(1)t=1s
(2)①当F≤N时,A、B相对静止且对地静止,f2=F;
②当2N<F≤6N时,M、m相对静止,
③当F>6N时,A、B发生相对滑动,N.
画出f2随拉力F大小变化的图象如图7所示。
从以上几例我们可以看到,无论物体的运动情景如何复杂,这类问题的解答有一个基本技巧和方法:在物体运动的每一个过程中,若两个物体的初速度不同,则两物体必然相对滑动;若两个物体的初速度相同(包括初速为0),则要先判定两个物体是否发生相对滑动,其方法是求出不受外力F作用的那个物体的最大临界加速度并用假设法求出在外力F作用下整体的加速度,比较二者的大小即可得出结论。