滑块—木板模型专题附详细答案

合集下载

高考物理《滑块—木板模型》真题练习含答案

高考物理《滑块—木板模型》真题练习含答案

高考物理《滑块—木板模型》真题练习含答案1.如图所示,货车车厢中央放置一装有货物的木箱,该木箱可视为质点.已知木箱与车厢之间的动摩擦因数μ=0.4.下列说法正确的是()A.若货车向前加速时,木箱对车厢的摩擦力方向向左B.为防止木箱发生滑动,则货车加速时的最大加速度不能超过4 m/s2C.若货车行驶过程中突然刹车,木箱一定与车厢前端相撞D.若货车的加速度为5 m/s2时,木箱受到的摩擦力为静摩擦力答案:B解析:若货车向前加速时,车厢对木箱的摩擦力方向向左,根据牛顿第三定律得木箱对车厢的摩擦力方向向右,A错误;当摩擦力达到最大静摩擦力时刚好不发生相对滑动,最大加速度a=μg=4 m/s2,B正确;若货车行驶过程突然刹车,加速度小于等于4 m/s时木箱不会相对车厢滑动,发生相对滑动时也不一定与车的前端相撞,C错误;货车的加速度5 m/s2>4 m/s2,木箱已经发生相对滑动,木箱受到的摩擦力为滑动摩擦力,D错误.2.[2024·广东省中山市第一次模拟](多选)如图甲所示,物块A与木板B静止地叠放在水平地面上,A、B间的动摩擦因数μ=0.2,最大静摩擦力等于滑动摩擦力,地面光滑.现对A施加水平向右的大小不同的拉力F,测得B的加速度a与力F的关系如图乙所示,取g =10 m/s2,则()A.当F<24 N时,A、B间的摩擦力保持不变B.当F>24 N时,A、B间的摩擦力保持不变C.A的质量为4 kgD.B的质量为2 kg答案:BCD解析:由图乙可知,当F<24 N时,A、B保持相对静止,B的加速度逐渐增大,则A、B间的摩擦力逐渐增大;当F>24 N时,A、B发生相对滑动,A、B间滑动摩擦力保持不变,A错误,B正确;设A、B的质量分别为m1、m2,当F=24 N时,根据牛顿第二定律,对A,有F-μm1g=m1a,对B,有μm1g=m2a,解得A、B的质量分别为m1=4 kg,m2=2 kg,C、D正确.3.[2024·广西南宁市开学考试]如图所示,质量m A=2 kg的小物块A可以看作质点,以初速度v0=3 m/s滑上静止的木板B左端,木板B足够长,当A、B的速度达到相同后,A、B又一起在水平面上滑行直至停下.已知m B=1 kg,A、B间的动摩擦因数μ1=0.2,木板B 与水平面间的动摩擦因数μ2=0.1,g取10 m/s2.求:(1)小物块A刚滑上木板B时,A、B的加速度大小a A和a B;(2)A、B速度达到相同所经过的时间t;(3)A、B一起在水平面上滑行至停下的距离x.答案:(1)a A=2 m/s2,a B=1 m/s2(2)t=1 s(3)x=0.5 m解析:(1)根据题意可知,A与B之间的滑动摩擦力大小f1=μ1m A g=4 NB与水平面之间的滑动摩擦力大小f2=μ2(m A+m B)g=3 N当A刚滑上B时,由牛顿第二定律,对A有f1=m A a A对B有f1-f2=m B a B解得a A=2 m/s2,a B=1 m/s2(2)设A、B达到相同的速度为v,对A、B相对滑动的过程,由公式v=v0+at对A有v=v0-a A t对B有v=a B t解得t=1 s,v=1 m/s(3)以A、B整体为研究对象,由牛顿第二定律得f2=(m A+m B)a一起在水平面上滑行至停下过程0-v2=-2ax解得x=0.5 m4.[2024·辽宁省阜新市月考]如图所示,水平桌面上质量m1为0.01 kg的薄纸板上,放有一质量m2为0.04 kg的小水杯(可视为质点),小水杯距纸板左端距离x1为0.5 m,距桌子右端距离x2为1 m,现给纸板一个水平向右的恒力F,欲将纸板从小水杯下抽出.若纸板与桌面、水杯与桌面间的动摩擦因数μ1均为0.4,水杯与纸板间的动摩擦因数μ2为0.2,重力加速度g取10 m/s2,设水杯在运动过程中始终不会翻倒,则:(1)求F多大时,抽动纸板过程水杯相对纸板不滑动;(2)当F为0.4 N时,纸板的加速度是多大?(3)当F满足什么条件,纸板能从水杯下抽出,且水杯不会从桌面滑落?答案:(1)0.3 N(2)12 m/s2(3)F≥0.315 N解析:(1)当抽动纸板且水杯相对纸板滑动时,对水杯进行受力分析,根据牛顿第二定律得μ2m2g=m2a1,解得a1=2 m/s2对整体分析,根据牛顿第二定律得F1-μ1(m1+m2)g=(m1+m2)a1解得F1=0.3 N故当F1≤0.3 N抽动纸板过程水杯相对纸板不滑动;(2)当F2=0.4 N时,纸杯和纸板已经发生相对滑动,则有F2-μ2m2g-μ1(m1+m2)g=m1a解得a=12 m/s2(3)纸板抽出的过程,对纸板有F-μ2m2g-μ1(m1+m2)g=m1a纸板抽出的过程,二者位移关系满足x1=12at2-12a1t2纸板抽出后,水杯在桌面上做匀减速直线运动,设经历时间t′恰好到桌面右边缘静止,有μ1m2g=m2a′1由速度关系有a1t=a′1t′纸杯的位移关系有x2-12a1t2=a1t2×t′联立解得F=0.315 N所以,当F≥0.315 N时,纸板能从水杯下抽出,且水杯不会从桌面滑落.。

(完整版)高中物理滑块-板块模型(解析版)

(完整版)高中物理滑块-板块模型(解析版)

滑块—木板模型一、模型概述滑块-木板模型(如图a),涉及摩擦力分析、相对运动、摩擦生热,多次互相作用,属于多物体多过程问题,知识综合性较强,对能力要求较高,另外,常见的子弹射击木板(如图b)、圆环在直杆中滑动(如图c)都属于滑块类问题,处理方法与滑块-木板模型类似。

二、滑块—木板类问题的解题思路与技巧:1.通过受力分析判断滑块和木板各自的运动状态(具体做什么运动);2.判断滑块与木板间是否存在相对运动。

滑块与木板存在相对运动的临界条件是什么?⑴运动学条件:若两物体速度或加速度不等,则会相对滑动。

⑵动力学条件:假设两物体间无相对滑动,先用整体法算出共同加速度,再用隔离法算出其中一个物体“所需要”的摩擦力f;比较f与最大静摩擦力f m的关系,若f > f m,则发生相对滑动;否则不会发生相对滑动。

3. 分析滑块和木板的受力情况,根据牛顿第二定律分别求出滑块和木板的加速度;4. 对滑块和木板进行运动情况分析,找出滑块和木板之间的位移关系或速度关系,建立方程.特别注意滑块和木板的位移都是相对地面的位移.5. 计算滑块和木板的相对位移(即两者的位移差或位移和);6. 如果滑块和木板能达到共同速度,计算共同速度和达到共同速度所需要的时间;7. 滑块滑离木板的临界条件是什么?当木板的长度一定时,滑块可能从木板滑下,恰好滑到木板的边缘达到共同速度(相对静止)是滑块滑离木板的临界条件。

【典例1】如图所示,在光滑水平面上有一质量为m1的足够长的木板,其上叠放一质量为m2的木块。

假定木块和木板之间的最大静摩擦力和滑动摩擦力相等。

现给木块施加一随时间t增大的水平力F=kt(k是常数),木板和木块加速度的大小分别为a1和a2。

下列反映a1和a2变化的图线中正确的是(如下图所示)()【答案】 A【典例2】如图所示,A 、B 两物块的质量分别为2m 和m ,静止叠放在水平地面上。

A 、B 间的动摩擦因数为μ,B 与地面间的动摩擦因数为12μ。

3.1滑块-木块模型(解析)

3.1滑块-木块模型(解析)

滑块—木块模型应用参考答案与试题解析一.多选题(共39小题)1.如图甲所示,质量为M的足够长的木板置于粗糙的水平面上,其上放置一质量为m的小物块,当木板受到水平拉力F的作用时,用传感器测出木板的加速度a与水平拉力F的关系如图乙所示,重力加速度g=10m/s2,下列说法中正确的是()A.小物块的质量m=0.5kgB.小物块与长木板间的动摩擦因数为0.2C.当水平拉力F=7N时,长木板的加速度大小为6m/s2D.当水平拉力F逐渐增大时,小物块的加速度一定逐渐增大【分析】当拉力较小时,m和M保持相对静止一起做匀加速直线运动,当拉力达到一定值时,m和M发生相对滑动,结合牛顿第二定律,运用整体和隔离法分析.【解答】解:对整体分析,由牛顿第二定律有:F﹣F0=(M+m)a,代入数据解得:M+m=1.5kg当F大于5N时,根据牛顿第二定律得:a=,知图线的斜率k==2,解得:M=0.5kg,滑块的质量为:m=1kg。

故A错误。

B、根据F大于5N的图线知,F=4时,a=0,即:0=2(F﹣F0)﹣,代入数据解得:μ=0.2,所以a=2(F﹣F0)﹣4,当F=7N时,长木板的加速度为:a=6m/s2。

根据μmg=ma′得:a′=μg=1m/s2,故BC正确。

D、由图象可知,当F>5N时,两物体发生相对滑动,此后小物体的加速度恒定,故D错误;故选:BC。

【点评】本题考查牛顿第二定律与图象的综合,知道滑块和木板在不同拉力作用下的运动规律是解决本题的关键,掌握处理图象问题的一般方法,通常通过图线的斜率和截距入手分析.2.如图所示,滑块放置在厚度不计的木板上,二者处于静止状态。

现对木板施加一水平向右的恒力F,已知各个接触面均粗糙,且最大静摩擦力等于滑动摩擦力。

下列关于滑块和木板运动的v﹣t图象中可能正确的是(实线、虚线分别代表木板和滑块的v﹣t图象)()A.B.C.D.【分析】根据牛顿第二定律求出滑块不发生相对滑动的最大加速度,对整体分析,根据牛顿第二定律可得出F在一定的范围内二者一起做加速运动。

滑块木板模型(解析版)-高考物理5种类碰撞问题

滑块木板模型(解析版)-高考物理5种类碰撞问题

滑块木板模型【问题解读】两类情景水平面光滑,木板足够长,木板初速度为零水平面光滑,木板足够长,木板初速度不为零图示v ---t 图像物理规律动量守恒,最终二者速度相同mv 0=(m +M )v 共,机械能不守恒,损失的机械能等于产生的热量Q =fs =12mv 20-12(m +M )v 2,式中s 为木块在木板上相对滑动的距离,f 为木块与木板之间的摩擦力动量守恒,最终二者速度相同M v 0-mv 0=(m +M )v 共,机械能不守恒,损失的机械能等于产生的热量Q =fs =12mv 20+12M v 20-12(m +M )v 共2,式中s 为木块在木板上相对滑动的距离,f 为木块与木板之间的摩擦力。

【高考题典例】1.(14分)(2024年高考新课程卷)如图,一长度l =1.0m 的均匀薄板初始时静止在一光滑平台上,薄板的右端与平台的边缘O 对齐。

薄板上的一小物块从薄板的左端以某一初速度向右滑动,当薄板运动的距离Δl =l6时,物块从薄板右端水平飞出;当物块落到地面时,薄板中心恰好运动到O 点。

已知物块与薄板的质量相等。

它们之间的动摩擦因数μ=0.3,重力加速度大小g =10m/s 2。

求(1)物块初速度大小及其在薄板上运动的时间;解题思路本题考查的考点:动量守恒定律、动能定理、平抛运动规律。

(1)设物块质量m ,初速度为v 0,薄板质量m ,物块滑上薄板,由动量守恒定律mv 0=mv 1+mv 2μmgl =12mv 20-12mv 21-12mv 22物块在薄板上运动加速度a 1=μg =3m/s 2物块在薄板上运动位移s =7l /6v 20-v 21=2a 1s联立解得:v 0=4m/s ,v 1=3m/s ,v 2=1m/s由v 0-v 1=at 1,解得t 1=13s(2)物块抛出后薄板匀速运动,l2-Δl =v 2t 2解得t 2=13s平台距地面的高度h =12gt 22=59m2.(2023年高考选择性考试辽宁卷)如图,质量m 1=1kg 的木板静止在光滑水平地面上,右侧的竖直墙面固定一劲度系数k =20N /m 的轻弹簧,弹簧处于自然状态。

2024届高考物理微专题:“滑块-木板”模型问题

2024届高考物理微专题:“滑块-木板”模型问题

微专题24“滑块-木板”模型问题1.“滑块—木板”模型问题中,靠摩擦力带动的那个物体的加速度有最大值:a m =F fm m.假设两物体同时由静止开始运动,若整体加速度小于该值,则二者相对静止,二者间是静摩擦力;若整体加速度大于该值,则二者相对滑动,二者间为滑动摩擦力.2.滑块由滑板的一端运动到另一端的过程中,若滑块和滑板同向运动,位移之差等于板长;若反向运动,位移大小之和等于板长.1.如图所示,静止在水平地面上的木板(厚度不计)质量为m 1=1kg ,与地面间的动摩擦因数为μ1=0.2,质量为m 2=2kg 且可看成质点的小物块与木板和地面间的动摩擦因数均为μ2=0.4,以v 0=4m/s 的水平初速度从左端滑上木板,经过t =0.6s 滑离木板,g 取10m/s 2,以下说法正确的是()A .木板的长度为1.68mB .小物块离开木板时,木板的速度为1.6m/sC .小物块离开木板后,木板的加速度大小为2m/s 2,方向水平向右D .小物块离开木板后,木板与小物块将发生碰撞答案D 解析由于μ2m 2g >μ1(m 1+m 2)g ,对木板,由牛顿第二定律得μ2m 2g -μ1(m 1+m 2)g =m 1a 1,解得a 1=2m/s 2,即物块在木板上以加速度大小a 2=μ2g =4m/s 2向右减速滑行时,木板以加速度大小a 1=2m/s 2向右加速运动,在0.6s 时,物块的速度v 2=1.6m/s ,木板的速度v 1=1.2m/s ,B 错误;物块滑离木板时,物块位移为x 2=v 0+v 22t =1.68m ,木板位移x 1=v 12t =0.36m ,两者相对位移为x =x 2-x 1=1.32m ,即木板长度为1.32m ,A 错误;物块离开木板后,木板做减速运动,加速度大小为a 1′=μ1g =2m/s 2,方向水平向左,C 错误;分离后,物块在地面上的加速度大小为a 2′=μ2g =4m/s 2,在地面上物块会滑行x 2′=v 222a 2′=0.32m ,木板会滑行x 1′=v 122a 1′=0.36m ,所以两者会相碰,D 正确.2.(多选)如图a ,一长木板静止于光滑水平桌面上,t =0时,小物块(可视为质点)以速度v 0滑上长木板左端,最终小物块恰好没有滑出长木板;图b 为物块与木板运动的v -t 图像,图中t 1、v 0、v 1已知.重力加速度大小为g .由此可求得()A .木板的长度B .物块的质量C .物块与木板的质量之和D .物块与木板之间的动摩擦因数答案AD 解析根据最终小物块恰好没有滑出长木板,由图像可求出木板的长度为L =v 1+v 02t 1-v 12t 1=v 02t 1,故A 符合题意;物块的质量不能求出来,也无法求出木板的质量,故不能求出物块与木板的质量之和,故B 、C 不符合题意;对物块,根据图像可以求出物块匀减速阶段的加速度大小,即a =v 0-v 1t 1,由牛顿第二定律可知a =F f m =μmg m=μg ,联立解得物块与木板之间的动摩擦因数为μ=v 0-v 1gt 1,故D 符合题意.3.(多选)一长轻质薄硬纸片置于光滑水平地面上,其上放质量均为1kg 的A 、B 两物块,A 、B 与薄硬纸片之间的动摩擦因数分别为μ1=0.3,μ2=0.2,水平恒力F 作用在A 物块上,如图所示.已知最大静摩擦力等于滑动摩擦力,g 取10m/s 2.下列说法正确的是()A .若F =1.5N ,则A 物块所受摩擦力大小为1.5NB .若F =8N ,则B 物块的加速度大小为2.0m/s 2C .无论力F 多大,A 与薄硬纸片都不会发生相对滑动D .无论力F 多大,B 与薄硬纸片都不会发生相对滑动答案BC 解析A 与硬纸片间的最大静摩擦力为F f A =μ1m A g =0.3×1×10N =3N ,B 与硬纸片间的最大静摩擦力为F f B =μ2m B g =0.2×1×10N =2N .当B 刚要相对于硬纸片滑动时静摩擦力达到最大值,由牛顿第二定律得F f B =m B a 0,得a 0=2m/s 2.对整体,有F 0=(m A +m B )×a 0=2×2N =4N ,即F ≥4N 时,B 将相对纸片运动,此时B 受到的摩擦力F B =2N ,则对A 分析,A 受到的摩擦力也为2N ,所以A 的摩擦力小于最大静摩擦力,故A 和纸片间不会发生相对运动;则可知,当拉力为8N 时,B 与纸片间的摩擦力即为滑动摩擦力为2N ,此后增大拉力,不会改变B 的受力,其加速度大小均为2m/s 2,由于轻质薄硬纸片看作没有质量,故无论力F 多大,A 和纸片之间不会发生相对滑动,故B 、C 正确,D 错误;F =1.5N<4N ,所以A 、B 与纸片保持相对静止,整体在F 作用下向左匀加速运动,对A 根据牛顿第二定律得F -F f =m A a ,所以A 物块所受摩擦力F f <F =1.5N ,故A 错误.4.如图所示,长木板放置在水平面上,一小物块置于长木板的中央,长木板和物块的质量均为m ,物块与木板间的动摩擦因数为μ,木板与水平面间的动摩擦因数为μ4,已知最大静摩擦力与滑动摩擦力大小相等,重力加速度为g .现对物块施加一水平向右的拉力F ,则木板的加速度a 的大小可能是()A .μgB.13μgC.23μg D.F 2m -14μg 答案D 解析若物块和木板之间不发生相对滑动,物块和木板一起运动,对木板和木块组成的整体,根据牛顿第二定律可知:F -14μ·2mg =2ma ,解得:a =F 2m -14μg ;若物块和木板之间发生相对滑动,对木板,水平方向受两个摩擦力的作用,根据牛顿第二定律,有:μmg -14μ·2mg =ma ,解得:a =12μg ,故A 、B 、C 错误,D 正确.5.(多选)如图所示,在桌面上有一块质量为m 1的薄木板,薄木板上放置一质量为m 2的物块,现对薄木板施加一水平恒力,使得薄木板能被抽出而物块也不会滑出桌面.物块与薄木板、薄木板与桌面间的动摩擦因数均为μ,最大静摩擦力等于滑动摩擦力,重力加速度为g ,则下列说法正确的是()A .物块在薄木板上滑动的时间和在桌面上滑动的时间相等B .拉力越大,物块刚离开薄木板时的速度越大C .薄木板对物块的摩擦力方向与拉力方向相同D .拉力的最小值为μ(2m 1+m 2)g答案AC 解析物块在薄木板上相对滑动过程,从静止加速至速度v 时离开木板,加速度大小为μg ,在桌面上滑动的过程,受桌面滑动摩擦力作用,加速度大小为μg ,从速度v 减速至静止,由对称性可知,物块在薄木板上滑动的时间和在桌面上滑动的时间相等,A 正确;拉力越大,物块在薄木板上滑行时间越短,由v =μgt 可知,物块刚离开薄木板时的速度v 越小,B 错误;物块在薄木板上滑行过程,相对薄木板向左运动,故受到的滑动摩擦力向右,与拉力方向相同,C 正确;物块加速过程的加速度为μg ,薄木板的临界加速度为μg ,整体由牛顿第二定律可得F -μ(m 1+m 2)g =(m 1+m 2)μg ,解得F =2μ(m 1+m 2)g .为使薄木板能抽出,故拉力的最小值应大于2μ(m 1+m 2)g ,D 错误.6.如图甲所示,一质量为M 的长木板静置于光滑水平面上,其上放置一质量为m 的小滑块.木板受到水平拉力F 作用时,用传感器测出长木板的加速度a 与水平拉力F 的关系如图乙所示,重力加速度g =10m/s 2,下列说法正确的是()A .小滑块的质量m =3kgB .小滑块与长木板之间的动摩擦因数为0.1C .当水平拉力F =7N 时,长木板的加速度大小为3m/s 2D .当水平拉力F 增大时,小滑块的加速度一定增大答案C 解析由a -F 图像可知,小滑块的最大加速度为2m/s 2,对小滑块分析有μmg =ma m ,解得μ=0.2,B 错误;由a -F 图像可知,外力大于6N 后两物体相对滑动,对长木板受力分析有F-μmg =Ma ,整理得a =1M F -μmg M .由a -F 图像可知图像的斜率为k =1M ,代入数据解得1M=k =26-41,解得M =1kg.由a -F 图像可知,外力小于6N 时,两物体有共同加速度,外力等于6N 时,两物体加速度为2m/s 2,对整体分析有F =(M +m )a ,解得M +m =3kg ,则有m =2kg ,A 错误;由a -F 图像可知,外力大于6N 后两物体相对滑动,相对滑动后小滑块的加速度不随外力的增大而改变,D 错误;由a -F 图像可知,外力大于6N 后两物体相对滑动,对长木板受力分析有F -μmg =Ma ′,当水平拉力F =7N 时,代入数据得长木板的加速度大小为3m/s 2,C 正确.7.(多选)如图所示,有一倾角θ为37°、下端固定一弹性挡板的光滑斜面,挡板与斜面垂直.一长木板质量为M ,下端距挡板的距离为L ,上端放有一质量为m 的小物块,长木板由静止自由下滑,与挡板每次发生碰撞后均以原速率弹回,且每次碰撞的时间极短,小物块和木板的运动始终与斜面平行.已知m ∶M =1∶2,长木板上表面与小物块之间的动摩擦因数为μ=0.5,取sin 37°=0.6,cos 37°=0.8,重力加速度为g ,不计空气阻力.则下列说法正确的有()A.长木板第一次与挡板碰撞后的瞬间,小物块的加速度大小为0.2gB.长木板第一次与挡板碰撞后的瞬间,长木板的加速度大小为0.8gC.若长木板的长度为10L,则第三次碰撞前小物块已从长木板上滑落D.若长木板的长度为10L,则第三次碰撞前小物块仍没有从长木板上滑落答案ABD解析长木板第一次与挡板碰撞后的瞬间,对木板,有Mg sinθ+μmg cosθ=Ma1,a1=0.8g.对物块,有mg sinθ-μmg cosθ=ma2,a2=0.2g,选项A、B正确;木板从开始下滑到与挡板第一次碰撞v02=2gL sinθ,碰后木板与挡板往复碰撞,加速度不变,相邻两次碰撞的时间为t=2v00.8g=5v02g.若木板足够长,物块一直向下加速,加速度不变,则木板第一次与挡板碰撞到第二次碰撞的过程,两者相对位移x1=2v0t-12(a1-a2)t2=25v028g,物块的速度为v=v0+0.2gt=1.5v0.木板第二次与挡板碰撞到第三次碰撞的过程,两者相对位移x2=(1.5v0+v0)t-12 (a1-a2)t2=35v028g,则第三次碰前,两者的相对位移为x1+x2=15v022g=9L.木板长10L,故第三次碰撞前小物块仍没有从长木板上滑落,故C错误,D正确.8.如图所示,在光滑水平面上一质量为M=3kg的平板车以v0=1.5m/s的速度向右匀速滑行,某时刻(开始计时)在平板车左端加一大小为8.5N、水平向右的推力F,同时将一质量为m=2kg的小滑块(可视为质点)无初速度地放在小车的右端,最终小滑块刚好没有从平板车上掉下来.已知小滑块与平板车间的动摩擦因数μ=0.2,重力加速度g=10m/s2,求:(1)两者达到相同速度所需要的时间t;(2)平板车的长度l.答案(1)3s(2)2.25m解析(1)小滑块相对平板车滑动时,设小滑块和平板车的加速度大小分别为a1、a2,根据牛顿第二定律有μmg=ma1,F-μmg=Ma2解得a1=2m/s2,a2=1.5m/s2又a1t=v0+a2t解得t =3s.(2)两者达到相同速度后,由于F m +M=1.7m/s 2<a 1,可知它们将一起做匀加速直线运动.从小滑块刚放在平板车上至达到与平板车相同速度的过程中,滑块向右的位移大小为x 1=12a 1t 2平板车向右的位移大小为x 2=v 0t +12a 2t 2又l =x 2-x 1解得l =2.25m.9.如图所示,在倾角为θ=37°的足够长斜面上放置一质量M =2kg ,长度L =1.5m 的极薄平板AB ,在薄平板上端A 处放一质量m =1kg 的小滑块(可视为质点),将小滑块和薄平板同时无初速度释放,已知小滑块与薄平板之间的动摩擦因数为μ1=0.25,薄平板与斜面之间的动摩擦因数为μ2=0.5,sin 37°=0.6,cos 37°=0.8,取g =10m/s 2,求:(1)释放后,小滑块的加速度大小a 1和薄平板的加速度大小a 2;(2)从释放到小滑块滑离薄平板经历的时间t .答案(1)4m/s 21m/s 2(2)1s 解析(1)设释放后,滑块会相对于平板向下滑动,对滑块:由牛顿第二定律有mg sin 37°-F f1=ma 1其中F N1=mg cos 37°,F f1=μ1F N1解得a 1=g sin 37°-μ1g cos 37°=4m/s 2对薄平板,由牛顿第二定律有Mg sin 37°+F f1′-F f2=Ma 2其中F N2=(m +M )g cos 37°,F f2=μ2F N2,F f1′=F f1解得a 2=1m/s 2a 1>a 2,假设成立,即滑块会相对于平板向下滑动.(2)设滑块滑离时间为t ,由运动学公式,有x 1=12a 1t 2,x 2=12a 2t 2,x 1-x 2=L 解得:t =1s .。

专题 动力学中的“滑块木板模型” (解析版)

专题 动力学中的“滑块木板模型” (解析版)

专题18 动力学中的“滑块木板模型”常考点动力学中的“滑块木板模型”分析【典例1】质量m0=30kg、长L=1m的木板放在水平面上,木板与水平面的动摩擦因数μ1=0.15.将质量m=10kg的小木块(可视为质点),以v0=4m/s的速度从木板的左端水平滑到木板上(如图所示),小木块与木板面的动摩擦因数μ2=0.4(最大静摩擦力近似等于滑动摩擦力,g取10m/s2),则以下判断中正确的是()A.木板一定向右滑动,小木块不能滑出木板B.木板一定向右滑动,小木块能滑出木板C.木板一定静止不动,小木块能滑出木板D.木板一定静止不动,小木块不能滑出木板【解析】木块受到的滑动摩擦力为F f2,方向向左F f2=μ2mg=40N木板受到木块施加的滑动摩擦力为F′f2,方向向右,大小为F′f2=F f2=40N木板受地面的最大静摩擦力等于滑动摩擦力,即F f1=μ1(m+m0)g=60NF f1方向向左F′f2<F f1木板静止不动,木块向右做匀减速运动,设木块减速到零时的位移为x,则由0-v2=-2μ2gx得x=2m>L=1m故小木块能滑出木板。

【典例2】如图所示,一块足够长的轻质长木板放在光滑水平地面上,质量分别为m A =1kg 和m B =2kg 的物块A 、B 放在长木板上,A 、B 与长木板间的动摩擦因数均为μ=0.4,最大静摩擦力等于滑动摩擦力。

现用水平拉力F 拉A ,取重力加速度g =10m/s 2。

改变F 的大小,B 的加速度大小可能为( )A .1.5m/s 2B .2.5m/s 2C .3.5m/s 2D .4.5m/s 2【解析】物块A 、B 放在轻质长木板上,二者所受摩擦力大小相等,由于A 物块所受最大静摩擦小于B 物块的。

故B 物块始终相对长木板静止,当拉力增加到一定程度时,A 相对长木板滑动,B 所受的最大合力等于A 的最大静摩擦力,即B Amax A f f m g μ==根据牛顿第二定律,有B B Bmax f m a =可知B 的最大加速度为2Bmax 2m /s a =【典例3】如图所示,质量为M =5kg 的足够长的长木板B 静止在水平地面上,在其右端放一质量m =1kg 的小滑块A (可视为质点)。

专题05 滑块木板模型(教师版) 2025年高考物理模型归纳

专题05 滑块木板模型(教师版) 2025年高考物理模型归纳

专题05 滑块木板模型目录【模型归纳】 (1)模型一光滑面上外力拉板 (1)模型二光滑面上外力拉块 (1)模型三粗糙面上外力拉板 (1)模型四粗糙面上外力拉块 (2)模型五粗糙面上刹车减速 (2)【常见问题分析】 (2)问题1.板块模型中的运动学单过程问题 (2)问题2.板块模型中的运动学多过程问题1——至少作用时间问题 (3)问题3.板块模型中的运动学多过程问题2——抽桌布问题 (3)问题4.板块模型中的运动学粗糙水平面减速问题 (4)【模型例析】 (4)【模型演练】 (18)条件:a>a1max即μ2>μ1m1刹车加速度:a1=μ1gm2刹车加速度:a2=μ2(m1+m2)g-μ1m1g)]/m2加速度关系:a1<a2A .小物块在03t t =时刻滑上木板C .小物块与木板的质量比为3︰4【答案】ABD【详解】A .v t -图像的斜率表示加速度,可知时刻滑上木板,故A 正确;【答案】(1)4m/s;1s3;(2)59【详解】(1)物块在薄板上做匀减速运动的加速度大小为(1)施加推力时,物块A的加速度的大小;(2)物块A、B碰撞后的瞬间各自的速度大小;(1)若对A施加水平向右的拉力F,A、(2)若对A施加水平向右的恒力7 F=图(a) 图(b)μ1及小物块与木板间的动摩擦因数μ2;【答案】(1)1m/s;0.125m;(2)0.25m;3m/s2;(3)43【详解】(1)由于地面光滑,则m1、m2组成的系统动量守恒,则有【例7】如图,两个滑块A和B的质量分别为m A=1 kg和m B=5 kg,放在静止于水平地面上的木板的两端,两者与木板间的动摩擦因数均为μ1=0.5;木板的质量为m=4 kg,与地面间的动摩擦因数为μ2=0.1.某时刻A、B两滑块开始相向滑动,初速度大小均为v0=3 m/s.A、B相遇时,A与木板恰好相对静止.设最大静摩擦力等于滑动摩擦力,取重力加速度大小g=10 m/s2.求:(1)B与木板相对静止时,木板的速度;(2)A、B开始运动时,两者之间的距离.【审题指导】:如何建立物理情景,构建解题路径①首先分别计算出B与板、A与板、板与地面间的滑动摩擦力大小,判断出A、B及木板的运动情况.②把握好几个运动节点.③由各自加速度大小可以判断出B与木板首先达到共速,此后B与木板共同运动.④A与木板存在相对运动,且A运动过程中加速度始终不变.⑤木板先加速后减速,存在两个过程.【解析】:(1)滑块A和B在木板上滑动时,木板也在地面上滑动。

深圳高中物理滑块及木板模型专题及答案

深圳高中物理滑块及木板模型专题及答案
专题Ⅱ 滑块及木板模型专题
例1、一质量为M的长木板静止在光滑水平桌面上.一质量为m的小滑块以水平速度v0从长木板的一端开始在 木板上滑动,直到离开木板.滑块刚离开木板时的速度为v0/3.若把该木板固定在水平桌面上,其它条件相 同,求滑块离开木板时的速度v.
例 2、一块质量为 M 长为 L 的长木板,静止在光滑水平桌面上,一个质量为 m 的小滑块以水平速度 v0 从长 v 木板的一端开始在木板上滑动,直到离开木板,滑块刚离开木板时的速度为 0.若把此木板固定在水平桌面 5 上,其他条件相同.求: (1)求滑块离开木板时的速度 v; (2)若已知滑块和木板之间
碰撞+弹簧模型专题
例 1、如图所示,位于光滑水平桌面上的小滑块 P 和 Q 都可视作质点,质量相等.Q 与轻质弹簧相连.设 Q 静止, P 以某一初速度向 Q 运动并与弹簧发生碰撞. 在整个碰撞过程中, 弹簧具有的最大弹性势能等于 ( ) A.P 的初动能 B.P 的初动能的 1/2 Q P C.P 的初动能的 1/3 D.P 的初动能的 1/4
例 2、如图所示,质量为 1.0kg 的物体 m1,以 5m/s 的速度在水平桌面上 AB 部分的左侧向右运动,桌面 AB 部分与 m1 间的动摩擦因数μ=0.2, AB 间的距离 s=2.25m, 桌面其他部分光滑。 m1 滑到桌边处与质量为 2.5kg 的静止物体 m2 发生正碰,碰撞后 m2 在坚直方向上落下 0.6m 时速度大小为 4m/s,若 g 取 10m/s2,问 m1 碰 撞后静止在什么位置?
与它碰后以原速率反弹(碰后立即撤去该障碍物) .求 B 与 A 的粗糙面之间的动摩擦因数 和滑块 B 最终 2 停在木板 A 上的位置. (g 取 10m/s ) (深圳晏老师 150-0206-5320)
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

牛顿定律——滑块和木板模型专题
一.“滑块—木板模型”问题的分析思路
1.模型特点:上、下叠放两个物体,并且两物体在摩擦力的相互作用下发生相对滑动.2.建模指导
解此类题的基本思路:
(1)分析滑块和木板的受力情况,根据牛顿第二定律分别求出滑块和木板的加速度
(2)对滑块和木板进行运动情况分析,找出滑块和木板之间的位移关系或速度关系,
建立方程.特别注意滑块和木板的位移都是相对地面的位移.
例1、m A=1 kg,m B=2 kg,A、B间动摩擦因数是0.5,水平面光滑.
用10 N水平力F拉B时,A、B间的摩擦力是
用20N水平力F拉B时,A、B间的摩擦力是
例2、如图所示,物体A叠放在物体B上,B置于光滑水平面上,A、B质量分别为m A =6 kg,m B=2 kg,A、B之间的动摩擦因数μ=0.2,开始时F=10 N,此后逐渐增加,若使AB不发生相对运动,则F的最大值为
针对练习1、如图5所示,物体A叠放在物体B上,B置于光滑水平面上,A、B质量分别为m A=6 kg,m B=2 kg,A、B之间的动摩擦因数μ=0.2,开始时F=10 N,此后逐渐增加,在增大到45 N的过程中,则()
A.当拉力F<12 N时,物体均保持静止状态
B.两物体开始没有相对运动,当拉力超过12 N
时,开始相对运动
C.两物体从受力开始就有相对运动
D.两物体始终没有相对运动
例3、如图所示,质量M=8 kg的小车放在光滑的水平面上,在小车左端加一水平推力F =8 N,当小车向右运动的速度达到1.5 m/s时,在小车前端轻轻地放上一个大小不计,质量为m=2 kg的小物块,小物块与小车间的动摩擦因数μ=0.2,当二者达到相同速度时,物块恰好滑到小车的最左端.取g=10 m/s2.则:
(1)小物块放上后,小物块及小车的加速度各为多大?
(2)小车的长度L是多少?
针对练习2、如图所示,木板静止于水平地面上,在其最右端放一可视为质点的木块.已知木块的质量m=1kg ,木板的质量M=4kg ,长L=2.5m ,上表面光滑,下表面与地面之间的动摩擦因数μ=0.2.现用水平恒力F=20N 拉木板,g 取10m/s 2
,求:
(1)木板的加速度;
(2)要使木块能滑离木板,水平恒力F 作用的最短时间;
(3)如果其他条件不变,假设木板的上表面也粗糙,其上表面与木块之间的动摩擦因素为3.01=μ,欲使木板能从木块的下方抽出,需对木板施加的最小水平拉力.
(4)若木板的长度、木块的质量、木板的上表面与木块之间的动摩擦因数、木板与地面间的动摩擦因数都不变,只将水平恒力增加为30N ,则木块滑离木板需要多长时间?
牛顿定律——滑块和木板模型专题答案
例1、3.3 N 5 N
例2、48 N
针对练习1、答案 D
解析 当A 、B 间的静摩擦力达到最大静摩擦力,即滑动摩擦力时,A 、B 才会发生相对运动.此时对B 有:F fmax =μm A g =12 N ,而F fmax =m B a ,a =6 m/s 2,即二者开始相对运动时的加速度为6 m/s 2,此时对A 、B 整体:F =(m A +m B )a =48 N ,即F >48 N 时,A 、B 才会开始相对运动,故选项A 、B 、C 错误,D 正确.
例3、答案 (1)2 m/s 2 0.5 m/s 2 (2)0.75 m
解析 (1)以小物块为研究对象,由牛顿第二定律,得
μmg =ma 1
解得a 1=μg =2 m/s 2
以小车为研究对象,由牛顿第二定律,得F -μmg =Ma 2
解得a 2=F -μmg M
=0.5 m/s 2 (2)由题意及运动学公式:a 1t =v 0+a 2t
解得:t =v 0a 1-a 2
=1 s 则物块运动的位移x 1=12
a 1t 2=1 m 小车运动的位移x 2=v 0t +12
a 2t 2=1.75 m L =x 2-x 1=0.75 m
针对练习2、
解析 (1)木板受到的摩擦力F f =μ(M +m )g =10 N
木板的加速度a =F -F f M =2.5 m/s 2.
(2分) (2)设拉力F 作用时间t 后撤去
F 撤去后,木板的加速度为a ′=-F f M =-2.5 m/s 2
(2分) 木板先做匀加速运动,后做匀减速运动,且a =-a ′,故
at 2=L
解得t =1 s ,即F 作用的最短时间为1 s .
(2分) (3)设木块的最大加速度为a 木块,木板的最大加速度为a 木板,则μ1mg =ma 木块 (2分) 得a 木块=μ1g =3 m/s 2
对木板:F 1-μ1mg -μ(M +m )g =Ma 木板 (2分)
木板能从木块的下方抽出的条件为a 木板>a 木块
解得F 1>25 N .
(2分) (4)木块的加速度a 木块′=μ1g =3 m/s 2 (1分) 木板的加速度a 木板′=F 2-μ1mg -μ(M +m )g M =4.25 m/s 2
(1分) 木块滑离木板时,两者的位移关系为x 木板-x 木块=L ,即
12a 木板′t 2-12a 木块′t 2=L (2分) 代入数据解得t =2 s . (2分)
答案 (1)2.5 m/s 2 (2)1 s (3)大于25 N (4)2 s
分析滑块—木板模型问题时应掌握的技巧
1.分析题中滑块、木板的受力情况,求出各自的加速度.
2.画好运动草图,找出位移、速度、时间等物理量间的关系.
3.知道每一过程的末速度是下一过程的初速度.
4.两者发生相对滑动的条件:(1)摩擦力为滑动摩擦力.(2)二者加速度不相等.。

相关文档
最新文档