专题:滑块——木板模型(二)

合集下载

二、滑块、木板(平板车)模型

二、滑块、木板(平板车)模型

二、滑块、木板(平板车)模型例1、一质量为M 的长木板静止在光滑水平桌面上.一质量为m 的小滑块以水平速度v 0从长木板的一端开始在木板上滑动,直到离开木板.滑块刚离开木板时的速度为v 0/3.若把该木板固定在水平桌面上,其它条件相同,求滑块离开木板时的速度v .例2、一块质量为M 长为L 的长木板,静止在光滑水平桌面上,一个质量为m 的小滑块以水平速度v 0从长木板的一端开始在木板上滑动,直到离开木板,滑块刚离开木板时的速度为v 05.若把此木板固定在水平桌面上,其他条件相同.求: (1)求滑块离开木板时的速度v ;(2)若已知滑块和木板之间的动摩擦因数为μ,求木板的长度. 例3、如图所示,光滑的曲面轨道的水平出口跟停在光滑水平面上的平板小车的上表面相平,质量为m 的小滑块从光滑轨道上某处由静止开始滑下并滑下平板小车,使得小车在光滑水平面上滑动.已知小滑块从光滑轨道上高度为H 的位置由静止开始滑下,最终停到板面上的Q 点.若平板小车的质量为3m .用g 表示本地的重力加速度大小,求: (1)小滑块到达轨道底端时的速度大小v 0;(2)小滑块滑上小车后,平板小车可达到的最大速度V ; (3)该过程系统产生的总热量Q .v 0M m例4、如图所示,一质量为M 、长为l 的长方形木板B 放在光滑的水平地面上,在其右端放一质量为m 的小木块A ,m <M .现以地面为参照系,给A 和B 以大小相等、方向相反的初速度(如图),使A 开始向左运动、B 开始向右运动,但最后A 刚好没有滑离木板.以地面为参考系.(1)若已知A 和B 的初速度大小为v 0,求它们最后的速度的大小和方向; (2)若初速度的大小未知,求小木块A 向左运动到达的最远处(从地面上看)离出发点的距离.例5、如图所示,长木板ab 的b 端固定一挡板,木板连同档板的质量为M=4.0kg ,a 、b 间距离s=2.0m .木板位于光滑水平面上.在木板a 端有一小物块,其质量m =1.0kg ,小物块与木板间的动摩擦因数μ=0.10,它们都处于静止状态.现令小物块以初速v 0=4.0m/s 沿木板向前滑动,直到和挡板相碰.碰撞后,小物块恰好回到a 端而不脱离木板.求碰撞过程中损失的机械能.例6、如图所示,质量为m =5kg 的长木板放在水平地面上,在木板的最右端放一质量也为m =5kg 的物块A .木板与地面间的动摩擦因数μ1=0.3,物块与木板间的动摩擦因数μ2=0.2.现用一水平力F =60N 作用在木板上,使木板由静止开始匀加速运动,经过t =1s ,撤去拉力.设物块与木板间的最大静摩擦力等于滑动摩擦力.(g 取10m/s 2)求: (1)拉力撤去时,木板的速度大小.(2)要使物块不从木板上掉下,木板的长度至少多大.(3)在满足(2)的条件下,物块最终将停在距板右端多远处.v 0v例7、如图所示,光滑水平地面上停着一辆平板车,其质量为2m,长为L,车右端(A点)有一块静止的质量为m的小金属块.金属块与车间有摩擦,与中点C为界,AC段与CB段摩擦因数不同.现给车施加一个向右的水平恒力,使车向右运动,同时金属块在车上开始滑动,当金属块滑到中点C时,即撤去这个力.已知撤去力的瞬间,金属块的速度为v0,车的速度为2v0,最后金属块恰停在车的左端(B点)如果金属块与车的AC段间的动摩擦因数为μ1,与CB段间的动摩擦因数为μ2,求μ1与μ2的比值.FACBL例18、如图所示,质量m A为4.0kg的木板A放在水平面C上,木板与水平面间的动摩擦因数μ为0.24,木板右端放着质量m B为1.0kg的小物块B(视为质点),它们均处于静止状态.木板突然受到水平向右的12N·s的瞬时冲量I作用开始运动,当小物块滑离木板时,木板的动能E kA为8.0J,小物块的动能E kB为0.50J,重力加速度取10m/s2,求:(1)瞬时冲量作用结束时木板的速度v0;B (2)木板的长度L. ACL例1:【答案】0413v mM+解析:设第一次滑块离开木板时木板的速度为v 1,对系统,由动量守恒定律,得013v mv mMv =+ ①设滑块与木块间摩擦力为F ,木板长为L ,木板滑行距离为s .根据动能定理对木板,有2112Fs Mv =② 对滑块,有220011()()223v F s L mv m +=-③ 当木板固定时,对滑块,有2201122FL mv mv =-④联立以上各式解得0413v m v M=+ 例2.【答案】(1)01615v m M +;(2)208(12)25v mg Mμ- 解析:(1)设长木板的长度为l ,长木板不固定时,对M 、m 组成的系统,由动量守恒定律,得005v mv mMv '=+ ① 由能量守恒定律,得22200111()2252v mgl mv m Mv μ'=-- ②当长木板固定时,对m ,根据动能定理,有2201122mgl mv mv μ-=- ③联立①②③解得01615v mv M=+ (2)由①②两式解得208(12)25v ml g Mμ=- 例3:【答案】(1)2gH ;(2)124gH ;(3)34mgH 解析:滑块滑至Q 点时它与小车具有相同速度,这个速度大小为V ,则有:m g H m v =1202① m v m m V 3=+() ②22011(3)22Q mv m m V =-+ ③ 解得v g H 02= ④ V g H =142 ⑤ 34Q mgH =⑥例4.【答案】(1)0M m v M m -+,方向向右;(2)4M ml M+解析:(1)A 刚好没有滑离B 板,表示当A 滑到B 板的最左端时,A 、B 具有相同的速度.设此速度为v ,A 和B 的初速度的大小为v 0,由动量守恒可得00()Mv mv M m v -=+解得0M mv v M m-=+,方向向右①(2)A 在B 板的右端时初速度向左,而到达B 板左端时的末速度向右,可见A 在运动过程中必经历向左作减速运动直到速度为零,再向右作加速运动直到速度为v 的两个阶段.设l 1为A 开始运动到速度变为零过程中向左运动的路程,l 2为A 从速度为零增加到速度为v 的过程中向右运动的路程,L 为A 从开始运动到刚到达B 的最左端的过程中B 运动的路程,如图所示.设A 与B 之间的滑动摩擦力为f ,根据动能定理,对B ,有2201122fL Mv Mv =- ② 对A ,有21012fl mv =③ 2212fl mv =④ 由几何关系L +(l 1-l 2)=l ⑤ 由①②③④⑤式解得14M ml l M+= ⑥例5.【答案】2.4J解析:设木块和物块最后共同的速度为v ,由动量守恒定律得v M m mv )(+=①设全过程损失的机械能为E ,则220)(2121v M m mv E +-=②用s 1表示从物块开始运动到碰撞前瞬间木板的位移,W 1表示在这段时间内摩擦力对木板所做的功.用W 2表示同样时间内摩擦力对物块所做的功.用s 2表示从碰撞后瞬间到物块回到a 端时木板的位移,W 3表示在这段时间内摩擦力对木板所做的功.用W 4表示同样时间内摩擦力对物块所做的功.用W 表示在全过程中摩擦力做的总功,则 W 1=1mgs μ③ W 2=)(1s s mg +-μ ④ W 3=2mgs μ- ⑤ W 4=)(2s s mg -μ⑥ W =W 1+W 2+W 3+W 4⑦用E 1表示在碰撞过程中损失的机械能,则 E 1=E -W⑧由①~⑧式解得mgs v Mm mM E μ221201-+=⑨代入数据得E 1=2.4J ⑩例6.【答案】(1)4m/s ;(2)1.2m ;(3)0.48m解析:(1)若在时间t =1s 内,物块与长木板一起运动,加速度为a ,则122F mg ma μ-=① 物块受合外力2f ma mg μ=>②说明物块在长木板上发生了相对滑动.设撤去F 时,长木板的速度为v ,滑块速度为v ,由动量定理可知,对物块,有22mgt mv μ=③ 对系统,有112(2)F mg t mv mv μ-=+④代入数据解得v 1=4m/s ,v 2=2m/s拉力撤去时,长木板的速度大小为4m/s .(2)设撤去拉力后,经时间t 1,两者获得共同速度为v ,由动量定理可知, 对物块,有212mgt mv mv μ=-⑤ 对长木板,有211112mgt mgt mv mv μμ--=- ⑥将v 1和v 2的数值代入解得t 1=0.2s ,v =2.4m/s在t =1s 内,物块相对于长木板的位移s 1=(v 1-v 2)t /2=1m ⑦ 在t 1=0.2s 内,物块相对于长木板的位移s 2=(v 1-v 2)t 1/2=0.2m ⑧木板的长度最小值为L =s 1+s 2=1.2m(3)滑块与木板有了共同速度后,在摩擦力作用下均做减速运动,物块相对于木板向右运动,木板和物块先后停下,设木板位移为x 1,物块位移为x 2,由动能定理,得22111(2)02mg mg x mv μμ-=-⑨ 222102mgx mv μ-=-⑩这段时间内物块相对于木板的位移s 3=x 2-x 1 =0.72m . 物块最终离板右端的距离d =s 1+s 2-s 3 =0.48m例7.【答案】2321=μμ解析:设水平恒力F 作用时间为t 1.对金属块使用动量定理F f t 1=mv 0-0即μ1mgt 1=mv 0,得t 1=01v gμ 对小车有(F -F )t =2m ×2v -0,得恒力F =5μmg金属块由A →C 过程中做匀加速运动,加速度a 1=f F m=g mmg11μμ=小车加速度11215222f F F mg mga g mmμμμ--===金属块与小车位移之差22202111111111(2)()222v s a t a t g g gμμμ=-=- 而2L s =,所以,201v gLμ=从小金属块滑至车中点C 开始到小金属块停在车的左端的过程中,系统外力为零,动量守恒,设共同速度为v ,由2m ×2v 0+mv 0= (2m +m )v ,得v =35v 0 由能量守恒有22200011152(2)3()22223L mg mv m v m v μ=+⨯⨯-⨯⨯,得20223v gLμ= 所以,2321=μμ例8.【答案】0.50m解析:(1)设水平向右为正方向,有I =m A v 0 ① 代入数据得v 0=3.0m/s②(2)设A 对B 、B 对A 、C 对A 的滑动摩擦力的大小分别为F AB 、F BA 和F CA ,B 在A 滑行的时间为t ,B 离开A 时A 和B 的速度分别为v A 和v B ,有 -(F BA +F CA )t =m A v A -m A v A ③ F AB t =m B v B④ 其中F AB =F BA F CA =μ(m A +m B )g⑤设A 、B 相对于C 的位移大小分别为s A 和s B , 有2211()22BA CA A A A A F F s m v m v -+=- ⑥ F AB s B =E kB⑦ 动量与动能之间的关系为2A A A kA m v m E =⑧ 2B B B kB m v m E =⑨ 木板A 的长度L =s -s⑩代入数据解得L=0.50m。

牛顿运动定律的应用:牛顿运动定律的应用之“滑块—木板模型”

牛顿运动定律的应用:牛顿运动定律的应用之“滑块—木板模型”

一、模型特征上、下叠放两个物体,并且两物体在摩擦力的相互作用下发生相对滑动,滑块-木板模型(如图所示),涉与摩擦力分析、相对运动、摩擦生热,多次互相作用,属于多物体多过程问题,知识综合性较强,对能力要求较高,故频现于高考试卷中。

二、常见的两种位移关系滑块从木板的一端运动到另一端的过程中,若滑块和木板向同一方向运动,则滑块的位移和木板的位移之差等于木板的长度;若滑块和木板向相反方向运动,则滑块的位移和木板的位移之和等于木板的长度。

三、滑块—木板类问题的解题思路与技巧:1.通过受力分析判断滑块和木板各自的运动状态(具体做什么运动);2.判断滑块与木板间是否存在相对运动。

滑块与木板存在相对运动的临界条件是什么?⑴运动学条件:若两物体速度或加速度不等,则会相对滑动。

⑵动力学条件:假设两物体间无相对滑动,先用整体法算出共同加速度,再用隔离法算出其中一个物体“所需要”的摩擦力f;比较f与最大静摩擦力f m的关系,若f> f m,则发生相对滑动;否则不会发生相对滑动。

3. 分析滑块和木板的受力情况,根据牛顿第二定律分别求出滑块和木板的加速度;4. 对滑块和木板进行运动情况分析,找出滑块和木板之间的位移关系或速度关系,建立方程.特别注意滑块和木板的位移都是相对地面的位移.5. 计算滑块和木板的相对位移(即两者的位移差或位移和);6. 如果滑块和木板能达到共同速度,计算共同速度和达到共同速度所需要的时间;7. 滑块滑离木板的临界条件是什么?当木板的长度一定时,滑块可能从木板滑下,恰好滑到木板的边缘达到共同速度(相对静止)是滑块滑离木板的临界条件。

[名师点睛]1. 此类问题涉与两个物体、多个运动过程,并且物体间还存在相对运动,所以应准确求出各物体在各个运动过程中的加速度(注意两过程的连接处加速度可能突变),找出物体之间的位移(路程)关系或速度关系是解题的突破口。

求解中应注意联系两个过程的纽带,每一个过程的末速度是下一个过程的初速度。

滑块与木板问题

滑块与木板问题

当木板的加速度a2> a1时,滑块将相对于木板向左滑动,直至脱离木板 F-f=m a2>m a1 F> f +m a1=20N …………③ 即当F>20N,且保持作用一般时间后,小滑块将从木板上滑落下来。 (2)当恒力F=22.8N时,木板的加速度a2',由牛顿第二定律得F-f=Ma2' 解得:a2'=4.7m/s2………④ 设二者相对滑动时间为t,在分离之前 小滑块:x1=½ a1t2 …………⑤ 木板:x1=½ a2't2 …………⑥ 又有x2-x1=L …………⑦ 解得:t=2s …………⑧
对滑块有F0-μ mg=mam
所以 F0=μ mg+mam=2N
(2)将滑块从木板上拉出时,木板受滑动摩擦力f=μ mg,此时木板的加速度a2为
a2=f/M=μmg/M =1m/s2. 由匀变速直线运动的规律,有(m与M均为匀加速直线运动)木 板位移 x2= ½ a2t2 ① 滑块位移 x1= ½ a1t2 ③ ②
F的大小范围.
(2)若其它条件不变,恒力F=22.8N,且始终作用在M上,求m在M上滑动的时 间. m M F
chenzhs
[解析](1)小滑块与木板间的滑动摩擦力
f=μFN=μmg=4N…………①
a1=f/m=μg=4m/s2 …②
M
f
m
f
F
滑动摩擦力f是使滑块产生加速度的最大合外力,其最大加速度
F
B A F′
B A
图(2)
图(1)
答案:根据图(1),设A、B间的静摩擦力达到最大值fm时,系统的加速度为 a.根据牛顿第二定律有:F=(mA+mB)a ①
f
m
fm=mAa

新教材高中物理精品课件 动力学和能量观点的综合应用(二)——“传送带”和“滑块—木板”模型

新教材高中物理精品课件 动力学和能量观点的综合应用(二)——“传送带”和“滑块—木板”模型

(1)小物块和长木板的加速度各为多大;
(2)长木板的长度;
图2
(3)通过计算说明:互为作用力与反作用力的摩擦力 0.5 m/s2 (2)3 m (3)见解析
解析 (1)长木板与小物块间摩擦力Ff=μmg=4 N
小物块的加速度 a1=F-mFf=2 m/s2 长木板的加速度 a2=FMf=0.5 m/s2。 (2)小木块对地位移 x1=21a1t2=4 m 长木板对地位移 x2=12a2t2=1 m 长木板长L=x1-x2=3 m。 (3)摩擦力对小物块做功W1=-Ffx1=-16 J
解得 h≥3.6 m。


答案 (1)4 m/s (2)h<3.0 m (3)x=2 h-3(m) h≥3.6 m
倾斜传送带问题
【例 2】 (多选)(2021·山东日照市模拟)如图 2 所示,现将一长
为 L、质量为 m 且分布均匀的金属链条通过装有传送带的
斜面输送到高处。斜面与传送带靠在一起连成一直线,与
水平方向夹角为 θ,斜面部分光滑,链条与传送带之间的动
摩擦因数为常数。传送带以较大的恒定速率顺时针转动。
已知链条处在斜面或者传送带上任意位置时,支持力都均
图2
匀作用在接触面上。将链条放在传送带和斜面上,当位于
传送带部分的长度为L4时,链条恰能保持静止。现将链条从位于传送带部分的长度
为L3的位置由静止释放,则下列说法正确的是(假设最大静摩擦力等于滑动摩擦
物块受到的摩擦力为Ff=ma3=1.6 N 此过程运动t2=t0-t1=1 s的位移为 x2=v1t2+12a3t22=(4×1+12×0.8×12) m=4.4 m
所以摩擦力做的功为 W=μmgx1+Ffx2=23.04 J。

4.5 专题二滑块-木板模型课件—2021-2022学年高一上学期物理人教版(2019)必修一

4.5 专题二滑块-木板模型课件—2021-2022学年高一上学期物理人教版(2019)必修一

【例题 2】 质量 M=3 kg 的长木板放在光滑的水平面上,在 水平恒力 F=11 N 作用下由静止开始向右运动,如图所示,当速 度达到 1 m/s 时,将质量 m=4 kg 的物块轻轻放到木板的右端, 已知物块与木板间的动摩擦因数 μ=0.2,g 取 10 m/s2,求:
(1)物块经多少时间与木板保持相对静止; (2)在这一段时间内,物块相对于木板滑行的距离多大; (3)物块与木板相对静止后,物块受到的摩擦力多大.
答案 1 s
动力学专题二 滑块-木板模型
滑块-木板模型分为: 无动力模型和有动力模型
无动力滑块-木板模型问题的三个分析
(1)受力分析:主要是摩擦力的分析
❶初始时刻:比较滑块运动速度和木板速度(确认相对运动状态),从 而弄清摩擦力的有无、性质、方向 ❷共速时刻:意味着摩擦力发生突变(可以有无突变, 性质突变,方向突变) ❸或速度为零时刻:摩擦力是否突变
地面光滑
❶初始时刻:相对运动状态?摩擦力的有无、性质、方向? 分别作何运动?
❷木板足够长,谁先减速为零?
❸足够长,最后共速时,运动方向如何?
1.(滑块—木板模型)(多选)如图所示,一足够长的木板静止 在粗糙的水平面上,t=0 时刻滑块从木板的左端以速度 v0 水平向 右滑行,木板与滑块间存在摩擦,且最大静摩擦力等于滑动摩擦
答案:(1)1.5m/s2,1m/s2,0.5m/s2 (2)3 :2 (3)20m
有动力滑块—木板模型 1.外力逐渐增大过程中三个临界点的摩擦力分析和运动分析 ❶力较小时:各自摩擦力特点,整体都未动(地面粗糙时才有) ❷力较大时:各自摩擦力特点,整体一起动 ❸力很大时:各自摩擦力特点,发生相对运动 2. 两个角度的临界点分析: ❶恰好相对滑动的受力条件: f=fmax ❷恰好相对滑动的加速度条件:a整体=a局部最大

滑块木板模型类型归纳

滑块木板模型类型归纳

滑块木板模型类型归纳滑块-木板模型是物理学中一个经典的动力学问题,通常涉及到摩擦力、加速度、力和运动等概念。

这个问题之所以重要,是因为它能够以简单的形式展现摩擦力、相对运动以及能量转换等复杂物理现象。

在不同的物理情境下,滑块-木板模型的具体形式和解决方法也会有所差异。

下面,我们将详细介绍几种常见的滑块-木板模型类型。

一、基本滑块-木板模型1.1 类型一:滑块在木板上滑动在这个最基本的模型中,一个滑块沿着一个水平木板滑动。

滑块和木板之间存在摩擦力,这个摩擦力会影响滑块的运动。

根据摩擦力的方向和大小,可以将这种情况进一步细分为滑动摩擦和静摩擦。

1.2 类型二:多个滑块和木板组合在更复杂的模型中,可能会有多个滑块和木板组合在一起。

这些滑块和木板之间也可能存在摩擦力,而且它们的运动状态可能会互相影响。

例如,两个滑块通过一根轻绳相连,在受到外力作用时,两个滑块的运动状态将会相互依赖。

二、复杂情境下的滑块-木板模型2.1 类型三:斜面上的滑块-木板模型当滑块和木板放置在斜面上时,重力将会成为一个重要的因素。

滑块和木板之间的摩擦力以及斜面的角度都会影响它们的运动。

这个模型涉及到重力分量、斜面上的摩擦力和滑块的运动状态等多个物理量的计算。

2.2 类型四:旋转的滑块-木板模型在这个模型中,滑块或木板可能会绕着一个固定的轴旋转。

这种情况下,滑块和木板之间的摩擦力以及滑块自身的旋转状态都需要考虑。

这个模型涉及到旋转动力学和平衡条件等复杂物理概念。

三、特殊条件下的滑块-木板模型3.1 类型五:滑块和木板间的动摩擦系数变化在某些情况下,滑块和木板之间的动摩擦系数可能会随着它们之间的相对速度或受力情况而变化。

这种情况下的滑块-木板模型需要根据实际情况来确定摩擦系数的取值。

3.2 类型六:滑块和木板的质量变化在某些问题中,滑块或木板的质量可能会发生变化,例如,滑块在运动过程中可能会失去一部分质量。

这种情况下,滑块-木板模型的解决方案需要考虑到质量变化对摩擦力和其他物理量的影响。

滑块—木板模型探究

滑块—木板模型探究

2)当 μ
′(
M +m )
g <F ≤F0 时二者相对静止,以
g
F -μ
′(
M +m )
共同的加速度 a=
做加速运动 .
M +m
3)当 F >F0 时二者发生相对运动,则
对 A 有 F -μmg=maA ;
对 B 有μmg-μ
′(
m +M )
g=MaB .
g
F -μmg
′(
M +m )
μmg-μ
,
,其 中
将质 量 分 别 为 m 、
M 的物块
A 、木板 B 叠 放 在 水 平 地 面
图4
上,
A 与B 之 间 的 动 摩 擦 因
数为μ,
B 与地 面 之 间 的 动 摩 擦 因 数 为μ
′,
A 可看作
质点,
B 的长度为L ,现给 B 一个向右的初速度v0 .
分别对 A 、
B 应 用 牛 顿 第 二 定 律 有μmg =maA ,
μ
度相等之后继 续 做 相 对 运 动,都 做 减 速 运 动,而 且 A
相对 B 向前运动 .
对 A 有μmg=ma
得到 a


A,
A =μ
g.
对 B 有μ
得到
′(
M +m )

B,
g-μmg=Ma
m +M
m
a

′g- μg>μg=a

B=
A,
M μ
M
从二者同速后至均停下来的各自位移分别为
v2
v2
-2
物块的加速度大 小 a


1 =a1 =μ1g =2 ms .

高一物理期末复习专题强化:滑块--木板模型

高一物理期末复习专题强化:滑块--木板模型

班级姓名学号专题强化:滑块--木板模型【教学目标】1、掌握滑块—滑板类问题的主要题型及特点。

2、强化受力分析,运动过程分析;抓住运动状态转化时的临界条件。

【课堂活动】例1:质量m=1kg的滑块(滑块大小忽略不计)放在质量为M=2kg的长木板左端,木板放在光滑的水平地面上,滑块与木板之间的动摩擦因数为μ=0.2,木板长L=75cm,开始时两者都处于静止状态,如图所示,试求:(1)用水平恒力F0拉滑块,使滑块与木板以相同的速度一起滑动,力F0的最大值应为多少?(2)用水平恒力F1=2N拉滑块,此时滑块与木板间摩擦力多大?(3)用水平恒力F2=8N拉滑块向木板的右端运动,求滑块运动到木板右端所用的时间.(4)用水平恒力F2=8N拉滑块向木板的右端运动,经过3s后撤去,要使滑块不从木板上掉下来,木板至少多长?(5)滑块以某一初速度从木板左端滑上木板,为了保证滑块不从木板的右端滑落,滑块滑上长木板的初速度应为多大?例2:如图所示,光滑水平面上静止放着长L=4 m,质量为M=3 kg的木板,一个质量为m=1 kg的小物体(可视为质点)放在木板的最右端,m和M之间的动摩擦因数μ=0.1,今对木板施加一水平向右的拉力F,(g取10 m/s2)(1)为使两者保持相对静止,F不能超过多少?(2)用水平恒力F1=7N拉木板,此时木板的加速度多大?(3)如果水平恒力F1=7 N,求小物体离开木板时的速度?(4)用水平恒力F1=7N拉木板向右运动,经过4s后撤去,要使滑块不从木板上掉下来,木板至少多长?(5)若木板以速度v0=2m/s向右作匀速直线运动,将滑块轻轻放在木板上的右端,它们相对静止时,滑块与木板左端的相距多远?【课堂活动】1.质量为m的长木板放在光滑的水平面上,质量为0.5m的物块放在长木板上,整个系统处于静止状态.若对物块施加水平拉力(如图甲),使物块能从长木板上滑离,需要的拉力至少为F1;若对长木板施加水平拉力(如图乙),也使物块能从长木板上滑离,需要的拉力至少为F2,则F1:F2为( )A.1:2 B.2:1 C.2:3 D.3:22.如图所示,质量为M=2kg的长木板位于光滑水平面上,质量为m=1kg的物块静止在长木板上,两者之间的滑动摩擦因数为µ=0.5.重力加速度g取10m/s2,物块与长木板之间的最大静摩擦力等于两者之间的滑动摩擦力。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

专题:滑块——木板模型(二)——动量守恒定律的应用1.把滑块、木板看作一个整体,摩擦力为内力,在光滑水平面上滑块和木板组成的系统动量守恒.2.由于摩擦生热,把机械能转化为内能,系统机械能不守恒.应由能量守恒求解问题. 3.注意:滑块不滑离木板时最后二者有共同速度.例1.一质量为m 2,长为L 的长木板静止在光滑水平桌面上。

一质量为m 1的小滑块以水平速度v 从长木板的一端开始在木板上滑动,直到离开木板 , 滑块刚离开木板时的速度为v 0/3。

已知小滑块与木板之间的动摩擦因数为μ,求:⑵小滑块刚离开木板时木板的速度为多少?例2.如图所示,质量为M=1kg 的长木板,静止放置在光滑水平桌面上,有一个质量为m=0.2kg ,大小不计的物体以6m/s 的水平速度从木板左端冲上木板,在木板上滑行了2s 后与木板相对静止。

试求:(g 取10m/s 2) ⑴ 木板获得的速度⑵ 物体与木板间的动摩擦因数例3.如图所示,长木板A 在光滑的水平面上向左运动,v A =1.2m /s .现有小物体B(可看作质点)从长木板A 的左端向右水平地滑上小车,v B =1.2m /s ,A 、B 间的动摩擦因数是0.1,B 的质量是A 的3倍.最后B 恰好未滑下A ,且A ,B 以共同的速度运动,g=10m /s 2.求: (1)A ,B 共同运动的速度的大小; (2)A 向左运动的最大位移; (3)长木板的长度.例4.长为1.5m 的长木板B 静止放在水平冰面上,小物块A 以某一初速度从木板B 的左端滑上长木板B ,直到A 、B 的速度达到相同,此时A 、B 的速度为0.4m/s ,然后A 、B 又一起在水平冰面上滑行了8.0cm 后停下.若小物块A 可视为质点,它与长木板B 的质量相同,A 、B 间的动摩擦因数μ1=0.25.求:(取g =10m/s 2) (1)木块与冰面的动摩擦因数. (2)小物块相对于长木板滑行的距离.(3)为了保证小物块不从木板的右端滑落,小物块滑上长木板的初速度应为多大?例5.如图所示,质量为M =2 kg 的长木板静止在光滑水平面上,现有一质量m =1 kg 的小滑块(可视为质点)以v 0=3.6 m/s 的初速度从左端沿木板上表面冲上木板,带动木板一起向前滑动。

已知滑块与木板间的动摩擦因数μ=0.1,重力加速度g 取10 m/s 2。

求: (1)滑块在木板上滑动过程中,长木板受到的摩擦力大小f 和方向; (2)滑块在木板上滑动过程中,滑块相对于地面的加速度大小; (3)若长木板足够长,滑块与长木板达到的共同速度v 。

v作业巩固1.如图所示,在光滑的水平面上有一质量为M 的长木板,以速度v 0向右做匀速直线运动,将质量为m 的小铁块轻轻放在木板上的A 点,这时小铁块相对地面速度为零,小铁块相对木板向左滑动.由于小铁块和木板间有摩擦,最后它们之间相对静止,已知它们之间的动摩擦因数为μ,问:(1)小铁块跟木板相对静止时,它们的共同速度多大? (2)它们相对静止时,小铁块与A 点距离多远? (3)在全过程中有多少机械能转化为内能?2.(多选)质量为M 、内壁间距为L 的箱子静止于光滑的水平面上,箱子中间有一质量为m 的小物块,小物块与箱子底板间的动摩擦因数为μ.初始时小物块停在箱子正中间,如图10所示.现给小物块一水平向右的初速度v ,小物块与箱壁碰撞N 次后恰又回到箱子正中间,并与箱子保持相对静止.设碰撞都是弹性的,则整个过程中,系统损失的动能为( )A .12mv 2B .12mMm +Mv2C .12NμmgLD .NμmgL3.将一长木板静止放在光滑的水平面上,如图甲所示,一个小铅块(可视为质点)以水平初速度v 0由木板左端向右滑动,到达右端时恰能与木板保持相对静止。

小铅块运动过程中所受的摩擦力始终不变,现将木板分成A 和B 两段,使B 的长度和质量均为A 的2倍,并紧挨着放在原水平面上,让小铅块仍以初速度v 0由木块A 的左端开始向右滑动,如图乙所示,则下列有关说法正确的是( )A. 小铅块恰能滑到木板B 的右端,并与木板B 保持相对静止B. 小铅块将从木板B 的右端飞离木板C. 小铅块滑到木板B 的右端前就与木板B 保持相对静止D. 小铅块在木板B 上滑行产生的热量等于在木板A 上滑行产生热量的2倍4.如图所示,固定的光滑圆弧面与质量为6 kg的小车C的上表面平滑相接,在圆弧面上有一个质量为2 kg的滑块A,在小车C的左端有一个质量为2 kg的滑块B,滑块A与B均可看做质点.现使滑块A从距小车的上表面高h=1.25 m处由静止下滑,与B碰撞后瞬间粘合在一起共同运动,最终没有从小车C上滑出.已知滑块A、B与小车C的动摩擦因数均为μ=0.5,小车C与水平地面的摩擦忽略不计,取g=10 m/s2.求:(1)滑块A与B碰撞后瞬间的共同速度的大小;(2)小车C上表面的最短长度.5.如图所示,质量m1=0.3 kg的小车静止在光滑的水平面上,车长L=15 m,现有质量m2=0.2 kg 可视为质点的物块,以水平向右的速度v0=2 m/s从左端滑上小车,最后在车面上某处与小车求保持相对静止。

物块与车面间的动摩擦因数μ=0.5,取g=10 m/s2,(1)物块在车面上滑行的时间t;(2)要使物块不从小车右端滑出,物块滑上小车左端的速度v′0不超过多少?6.如图所示,质量m A为4.0 kg的木板A放在水平面C上,木板与水平面间的动摩擦因数μ为0.24,木板右端放着质量m B为1.0 kg的小物块B(视为质点),它们均处于静止状态.木板突然受到水平向右的12 N·s的瞬时冲量I作用开始运动,当小物块滑离木板时,木板的动能E KA为8.0 J,小物块的动能E KB为0.50 J,重力加速度取10 m/s2,求:(1)瞬时冲量作用结束时木板的速度v0;(2)木板的长度L.7.如图所示,水平光滑地面上停放着一辆小车,左侧靠在竖直墙壁上,小车的四分之一圆弧轨道AB是光滑的,在最低点B与水平轨道BC相切,BC的长度是圆弧半径的10倍,整个轨道处于同一竖直平面内。

可视为质点的物块从A点正上方某处无初速下落,恰好落入小车圆弧轨道滑动.,然后沿水平轨道滑行至轨道末端C处恰好没有滑出。

已知物块到达圆弧轨道最低点B时对轨道的压力是物块重力的9倍,小车的质量是物块的3倍,不考虑空气阻力和物块落入圆弧轨道时的能量损失。

求:(1)物块开始下落的位置距水平轨道BC的竖直高度是圆弧半径的几倍.(2)物块与水平轨道BC间的动摩擦因数μ.8.如图所示,两物块A、B并排静置于高h=0.80m的光滑水平桌面上,物块的质量均为M=0.60kg。

一颗质量m=0.10kg的子弹C以v0=100m/s的水平速度从左面射入A,子弹射穿A 后接着射入B并留在B中,此时A、B都没有离开桌面。

已知物块A的长度为0.27m,A离开桌面后,落地点到桌边的水平距离s=2.0m。

设子弹在物块A、B 中穿行时受到的阻力保持不变,g取10m/s2。

(1)物块A和物块B离开桌面时速度的大小分别是多少;(2)求子弹在物块B中穿行的距离;(3)为了使子弹在物块B中穿行时物块B未离开桌面,求物块B到桌边的最小距离。

9.如图所示,水平地面上静止放置一辆小车A,质量m A=4 kg,上表面光滑,小车与地面间的摩擦力极小,可以忽略不计.可视为质点的物块B置于A的最右端,B的质量m B=2 kg.现对A施加一个水平向右的恒力F=10 N,A运动一段时间后,小车左端固定的挡板与B发生碰撞,碰撞时间极短,碰后A、B粘合在一起,共同在F的作用下继续运动,碰撞后经时间t=0.6 s,二者的速度达到v t=2 m/s.求:(1)A开始运动时加速度a的大小;(2)A、B碰撞后瞬间的共同速度v的大小;(3)A的上表面长度l.10.如图所示,质量M=3.5 kg的小车静止于光滑水平面上靠近桌子处,其上表面与水平桌面相平,小车长L=1.2 m,其左端放有一质量为0.5 kg的滑块Q.水平放置的轻弹簧左端固定,质量为1 kg的小物块P置于桌面上的A点并与弹簧的右端接触.此时弹簧处于原长,现用水平向左的推力将P缓慢推至B点(弹簧仍在弹性限度内)时,推力做的功为W F=6 J,撤去推力后,P沿桌面滑到小车上并与Q相碰,最后Q停在小车的右端,P停在距小车左端0.5 m处.已知AB间距L1=5 cm,A点离桌子边沿C点距离L2=90 cm,P与桌面间的动摩擦因数μ1=0.1.(g=10 m/s2)求:=0.4,P、Q与小车表面间的动摩擦因数μ(1)P到达C点时的速度v C的大小;(2)P与Q碰撞后瞬间Q的速度大小.11.如图,有一固定长度的木板C放在光滑水平面上,木板上面放置可视为质点的木块A、B,A、B、C的质量均相等.木块A、B相距0.2m,放在木板上适当的位置,它们与木板间的动摩擦因数相同均为μ=0.2,两物块均在同一直线上,开始时都处于静止状态.某时刻同时使物体A、B分别以速度v01=3m/s、v02=1m/s向相反方向运动,g取10m/s2,如图所示.问:(1)在A、B同时运动的过程中,木板C的运动状态应该怎样?请说明理由.(2)若要使A、B最终不滑离木板,木板C的长度至少为多少?12.如图所示,质量为m A=2kg的木板A静止在光滑水平面上,一质量为m B=1kg的小物块B 以某一初速度v0从A的左端向右运动,当A向右运动的路程为L=0.5m时,B的速度为v B=4m/s,此时A的右端与固定竖直挡板相距x。

已知木板A足够长(保证B始终不从A上掉下来),A与挡板碰撞无机械能损失,A、B之间的动摩擦因数为μ=0.2,g取10m/s2(1)求B的初速度值v0;(2)当x满足什么条件时,A与竖直挡板只能发生一次碰撞?13.如图所示,质量为m3=2kg的滑道静止在光滑的水平面上,滑道的AB部分是半径为R =0.3m的四分之一圆弧,圆弧底部与滑道水平部分相切,滑道水平部分右端固定一个轻弹簧.滑道除CD部分粗糙外其他部分均光滑.质量为m2=3kg的物体2(可视为质点)放在滑道的B点,现让质量为m1=1kg的物体1(可视为质点)自A点由静止释放.两物体在滑道上的C点相碰后粘为一体(g=10m/s2).求:(1)物体1从释放到与物体2相碰的过程中,滑道向左运动的距离;(2)若CD=0.2m,两物体与滑道的CD部分的动摩擦因数都为μ=0.15,求在整个运动过程中,弹簧具有的最大弹性势能;(3)物体1、2最终停在何处.。

相关文档
最新文档