光纤照明系统中光源、光纤的分类
光纤的简单分类

光缆的基本结构一般是由缆芯、加强钢丝、填充物和护套等几部分组成,另外根据需要还有防水层、缓冲层、绝缘金属导线等构件。
光纤的种类:(1)按工作波长:紫外光纤、可观光纤、近红外光纤、红外光纤(0.85pm、1.3pm、1.55pm)(2)折射率分布:阶跃(SI)型、近阶跃型、渐变(GI)型渐变折射率光纤又称自聚焦光纤,光纤折射率中心最高,沿径向递减,光束在光纤中传播,可以自动聚焦而不发生色散。
渐变折射率光纤适用于多模通信的传输,从而减少讯号的模式色散。
其他(三角型、W型、凹陷型)。
(3)传输模式:单模光纤(工作波长内,只能传输一个传播模式的光纤芯径一般为9或10μm,谱宽要窄,稳定性要好,可容许单模光束传输,可减除频宽及振模色散(Modal dispersion)的限制,但由于单模光纤芯径太小,较难控制光束传输,故需要极为昂贵的激光作为光源体)(含偏振保持光纤、非偏振保持光纤)、多模光纤(由于多模光纤中传输的模式多达数百个,各个模式的传播常数和群速率不同,使光纤的带宽窄,色散大,损耗也大,只适于中短距离和小容量的光纤通信系统,按工作波长以及其传播可能的模式分为多个模式的光纤50um)。
原材料:石英玻璃、多成分玻璃、塑料、复合材料(塑料包层、液体纤芯)、红外材料(2)光纤通信优点:传输频带极宽、通信容量极大;光纤衰减小,无中继设备,传输距离远;串扰小,信号传输质量高;光纤尺寸小,重量轻,便于传输和铺设;抗电磁干扰,保密性好;耐化学腐蚀;原料来源丰富,节约有色金属。
光纤通信缺点:光纤弯曲半径不宜过小;光纤的切断和连接操作技术复杂;分录、耦合麻烦。
光纤传感:以光为媒介,感知和传输外界信号的新型传感技术。
(1)按探测范围:单点传感、准分布传感、分布式传感。
(2)按调制方式:非本征型(非功能性):用光纤传输光信号(只传不感)。
本征型(功能性):感知外界信号,携带外界信号除传递光学信息外,还具有某些特殊的功能;光强;相位;偏振(磁光效应);波长(光纤光栅);频率(多普勒法)。
科学小制作光纤灯的原理

科学小制作光纤灯的原理
光纤灯是一种利用光纤传输光信号,实现变换颜色、闪烁等效果的照明装置。
光纤灯的原理主要包括以下几个方面:
1. 光源:光纤灯的光源通常采用高亮度的LED或者气体放电灯(如氙灯)。
LED 作为光源时,可以通过改变LED发射的颜色实现多种不同的光效;气体放电灯则通过电流激发气体产生特定的光线,作为光源。
2. 光纤传输:光纤是一种能够将光信号高效传输的透明纤维材料,它由一个或多个玻璃或塑料纤维组成。
光信号可以通过光纤的内部被多次反射,使得光能在光纤中远距离传输。
3. 光纤束:光纤束是由几条或更多的光纤组成,它将光源发出的光信号集中起来,形成整体的光束。
光纤束可以由聚光镜或反射镜等光学元件进行调整和控制,以实现所需的光线形状和分布。
4. 光纤末端处理:光纤灯的光纤末端通常进行特殊处理,如磨抛、修剪等,以便更好地控制光线的传播和散射。
常见的处理方式包括聚焦光束、散射光束等。
5. 控制系统:光纤灯往往配备有控制系统,通过改变光源的亮度、颜色、闪烁频率等参数,来实现不同的照明效果。
控制系统可以通过遥控器、触摸屏或计算机等方式进行操作。
总的来说,光纤灯的原理就是通过光源产生光信号,然后将光信号通过光纤传输到光纤末端,再进行特殊处理,最后通过控制系统改变光源的参数,实现不同的光效。
这种原理使得光纤灯可以应用于室内照明、舞台照明、建筑装饰等多个领域。
光纤的分类与特点

光纤的分类与特点姓名:吴卉班级:国际学院09级08班学号:09212965光纤的简介光纤是光导纤维的简写,是一种利用光在玻璃或塑料制成的纤维中的全反射原理而达成的光传导工具。
在通讯中,光纤指由透明材料作成的纤芯和在它周围采用比纤芯的折射率稍低的材料作成的包层所被覆,并将射入纤芯的光信号,经包层界面反射,使光信号在纤芯中传播前进的媒体。
利用光导纤维进行的通信叫光纤通信。
一对金属电话线至多只能同时传送一千多路电话,而根据理论计算,一对细如蛛丝的光导纤维可以同时通一百亿路电话!铺设1000公里的同轴电缆大约需要500吨铜,改用光纤通信只需几公斤石英就可以了。
沙石中就含有石英,几乎是取之不尽的。
另外,利用光导纤维制成的内窥镜,可以帮助医生检查胃、食道、十二指肠等的疾病。
光导纤维胃镜是由上千根玻璃纤维组成的软管,它有输送光线、传导图像的本领,又有柔软、灵活,可以任意弯曲等优点,可以通过食道插入胃里。
光导纤维把胃里的图像传出来,医生就可以窥见胃里的情形,然后根据情况进行诊断和治疗。
就在刚刚公布的2009年度诺贝尔物理学奖获得者中,有“光纤之父”的华裔科学家高锟,凭借在光纤领域的卓著研究而获得此殊荣。
光纤的分类及其特点光纤主要是从工作波长、折射率分布、传输模式、原材料和制造方法上进行分类的。
(1)工作波长:紫外光纤、可观光纤、近红外光纤、红外光纤(0.85pm、1.3pm、1.55pm)。
红外光纤主要用于光能传送。
例如有:温度计量、热图像传输、激光手术刀医疗、热能加工等等,普及率尚低。
(2)折射率分布:突变型和渐变型光纤。
突变型:光纤中心芯到玻璃包层的折射率是突变的。
其成本低,模间色散高。
适用于短途低速通讯,如:工控。
但单模光纤由于模间色散很小,所以单模光纤都采用突变型。
渐变型光纤:光纤中心芯到玻璃包层的折射率是逐渐变小,可使高模光按正弦形式传播,这能减少模间色散,提高光纤带宽,增加传输距离,但成本较高,现在的多模光纤多为渐变型光纤。
光纤光缆的结构与分类

套层
一次涂覆层 包层 纤芯
套层
光纤的结构示意图
二、光纤分类 根据光纤的折射率、光纤材料、传输模式、光纤用途和制造工艺,有如下几种分类方法: 1.阶跃型和梯度型光纤(根据光纤的折射率分布函数) 阶跃光纤的纤芯与包层间的折射率阶跃变化的,即纤芯内的折射率分布大体上是均匀的,包层内的折射率分布也大体均匀,均可视为常数,但是纤芯和包层的折射率不同,在界面上发生突变。 梯度光纤纤芯内的折射率不是常量,而是从中心轴线开始沿径向大致按抛物线形状递减,中心轴折射率最大。
3.按传输模数分类 (1)单模光纤 单模光纤纤芯直径仅有几微米,接近光的波长。单模光纤通常是指跃变光纤中,内芯尺寸很小,光纤传输模数很少,原则上只能传送一种模数的光纤,常用于光纤传感器。这类光纤传输性能好、频带很宽,具有较好的线性度;但因内芯尺寸小,难以制造和耦合。 (2)多模光纤。 多模光纤纤芯直径约为50μm,纤芯直径远大于光的波长。通常是指跃变光纤中,内芯尺寸较大,传输模数很多的光纤。这类光纤性能较差,带宽较窄;但由于芯子的截面积大,容易制造、连接耦合比较方便,也得到了广泛应用。
塑 包 光 纤
塑包光纤(Plastic Clad Fiber)是将高纯度的石英玻璃作成纤芯,而将折射率比石英稍低的如硅胶等塑料作为包层的阶跃型光纤。 它与石英光纤相比较,具有纤芯粗、数值孔径(N.A.)高的特点。因此,易与发光二极管LED光源结合,损耗也较小。所以,非常适用于局域网(LAN)和近距离通信。
色 散 位 移 光 纤
单模光纤的工作波长在1.3μm时,模场直径约9μm,其传输损耗约0.3dB/km。此时,零色散波长恰好在1.3μm处。 石英光纤中,从原材料上看1.55μm段的传输损耗最小(约0.2dB/km)。由于现在已经实用的掺铒光纤放大器(EDFA)是工作在1.55μm波段的,如果在此波段也能实现零色散,就更有利于1.55μm波段的长距离传输。
光纤的定义和分类

光纤的定义和分类光纤是一种用于传输光信号的细长柔软的材料。
它由一根或多根玻璃或塑料纤维组成,每根纤维都可以传输多个光信号。
光纤的分类主要根据其结构和用途进行。
一、光纤的定义光纤是一种采用光传输技术的通信线路,它利用光的全反射原理将光信号从发送端传输到接收端。
光纤的核心部分由高折射率的材料构成,外部由低折射率的材料包覆。
光信号在光纤中以光的形式传输,通过光的折射和反射来实现信号的传输。
二、光纤的分类根据光纤的结构和用途,光纤可以分为多种类型,主要包括:1. 单模光纤单模光纤的纤芯直径较小,光信号传播时只有一种传播模式,即只允许一束光线沿着光轴传播。
单模光纤主要用于长距离通信和高速数据传输,具有较低的传输损耗和较高的带宽。
2. 多模光纤多模光纤的纤芯直径较大,光信号传播时可以有多种传播模式,即可以同时传输多束光线。
多模光纤主要用于短距离通信和低速数据传输,具有较高的传输损耗和较低的带宽。
3. 双包层光纤双包层光纤在单模光纤的基础上增加了一层包层,可以减少光信号与外界的干扰。
双包层光纤主要用于特殊环境下的通信,如海底通信和高温环境下的通信。
4. 光纤光栅光纤光栅是在光纤中制造一定的折射率变化,用于光信号的调制和滤波。
光纤光栅主要用于光纤传感、光谱分析和光纤通信等领域。
5. 光纤传感器光纤传感器是利用光纤的特性来测量物理量或化学量的变化。
光纤传感器主要用于温度、压力、应变、湿度等参数的监测和测量。
光纤作为一种先进的通信传输介质,具有很多优点。
首先,光纤传输速度快,传输带宽大,可以满足高速大容量的数据传输需求。
其次,光纤具有较低的传输损耗,可以实现长距离的通信传输。
再次,光纤具有良好的抗干扰性能,可以在电磁干扰较强的环境下稳定工作。
此外,光纤还具有体积小、重量轻、不易受到外界影响等优点。
总结起来,光纤是一种用于传输光信号的通信线路,可以根据其结构和用途进行分类。
不同类型的光纤适用于不同的通信需求,如单模光纤适用于长距离通信,多模光纤适用于短距离通信。
光系统的名词解释

光系统的名词解释在现代科技的发展中,光系统成为了一个重要的领域,它涉及到我们生活和工作中各个方面的应用。
本文将对光系统中的一些重要名词进行解释,帮助读者更好地了解光系统的工作原理和应用场景。
一、光系统光系统是指利用光学原理和技术来处理光信号的系统。
它由光源、光纤、光学器件等组成,并结合了光学、电子、计算机等多个学科领域的知识。
光系统主要用于光通信、激光加工、成像、显示等领域。
二、光源光源是光系统中的核心组成部分,它能够产生光信号。
常见的光源有白炽灯、荧光灯、LED等。
其中,LED(Light Emitting Diode,发光二极管)是一种半导体器件,具有小巧、高亮度、低功耗等优点,在光通信、照明等领域得到广泛应用。
三、光纤光纤是用于传输光信号的介质,它由一根或多根纤维组成,每根纤维又由芯部和包层构成。
在光纤中,光信号通过光的全反射原理在芯部中传输,大大减少了信号的衰减和失真。
光纤被广泛应用于光通信、激光器、医疗器械等领域。
四、光学器件光学器件是光系统中用于调节、控制和处理光信号的器件。
光学器件包括光衰减器、光波分复用器、光放大器等。
其中,光衰减器用于调整光信号的强度,光波分复用器用于将多个信号在光纤中进行复用和分离,光放大器用于增强光信号的强度。
这些器件的应用使得光系统能够更加灵活和高效地处理光信号。
五、光通信光通信是一种利用光纤传输信息的通信方式。
相比传统的电信方式,光通信具有传输速度快、带宽大、抗干扰能力强等优势。
光通信技术被广泛应用于长距离通信、数据中心互联、移动通信等领域,推动了现代通信技术的发展。
六、激光加工激光加工是利用激光束来加工物体的一种技术。
激光通过光学系统的聚焦和控制,能够实现对材料的切割、打孔、焊接等加工过程。
激光加工技术在工业制造、医疗器械、汽车制造等领域得到广泛应用,提高了生产效率和产品质量。
七、光学成像光学成像是利用光学系统来获取物体图像的技术。
光学成像主要应用于摄影、医学影像、航天探测等领域。
光纤的结构及分类

光纤的结构及分类光纤是一种能够将光信号传输的特殊材料,它以其高带宽、低损耗和抗干扰能力强等优势,被广泛应用于通信、医疗、军事等领域。
光纤的结构和分类对于其应用的效果和性能起着重要作用。
一、光纤的结构光纤的基本结构包括纤芯、包层和包护层三部分。
纤芯是光信号传输的核心部分,它由高折射率材料制成,光信号在纤芯中传输。
包层是纤芯的外层,由低折射率材料构成,起到引导光信号的作用。
包护层是光纤的最外层,由塑料或聚合物材料制成,主要用于保护纤芯和包层,防止光信号的损耗和干扰。
二、光纤的分类根据光纤的传输模式不同,可以将光纤分为单模光纤和多模光纤两大类。
1. 单模光纤单模光纤的纤芯直径较小,通常为8-10微米,纤芯和包层的折射率差异较大。
由于纤芯较小,光线在光纤中传播时只有一条径路,因此称为单模光纤。
单模光纤的传输损耗较小,能够传输更远距离的信号,具有高带宽和高传输速率的特点。
单模光纤主要应用于长距离通信和高速数据传输领域。
2. 多模光纤多模光纤的纤芯直径较大,通常为50-100微米,纤芯和包层的折射率差异较小。
由于纤芯较大,光线在光纤中传播时会有多条径路,因此称为多模光纤。
多模光纤的传输损耗较大,传输距离较短,传输速率较低。
多模光纤主要应用于局域网、视频监控和短距离通信等领域。
除了按照传输模式分类,光纤还可以根据使用环境不同进行分类。
1. 室内光纤室内光纤是指用于建筑物内部的光纤,主要用于局域网、数据中心和室内通信等场合。
室内光纤采用低烟无卤材料制造,具有阻燃、低毒、低烟的特点。
室内光纤通常外层为白色或黄色,易于识别和安装。
2. 室外光纤室外光纤是指用于户外环境的光纤,主要用于长距离通信和城域网等场合。
室外光纤采用特殊的护套材料,具有良好的抗拉强度和耐候性。
室外光纤通常外层为黑色,能够抵御紫外线和恶劣天气的影响。
总结:光纤作为一种重要的信息传输介质,在现代通信领域起着不可替代的作用。
光纤的结构和分类对于其传输性能和应用场景有着重要影响。
光纤照明系统的组成及特点

光纤照明系统的组成及特点光纤照明系统是一种常用的照明系统,它利用光纤作为传输介质,将光源和被照明物相分离,广泛应用于建筑、景观、展示柜、广告灯箱等领域。
本文将介绍光纤照明系统的组成和特点。
组成光纤照明系统主要由以下四个部分组成:光源光源是光纤照明系统的重要组成部分,它产生光线并将光线传递到光纤中。
常用的光源有白炽灯、氙气灯、LED等。
其中LED光源由于其高效节能、色彩美观等特点被越来越广泛地应用于光纤照明系统中。
光纤光纤是光纤照明系统的传输介质,有塑料光纤和玻璃光纤两种,由于玻璃光纤有较高的折射率和透光率,因此在光纤传输质量和传输距离方面更具优势。
光纤末端光纤末端是将光线投射到被照明物上的部分,其形状和大小可以根据被照明物的大小和形状进行设计。
驱动装置驱动装置用于控制光源发出的光线的亮度和颜色,并将其传输到光纤中,从而实现对被照明物的照明。
特点光纤照明系统具有以下几个特点:安全性高光纤照明系统的光源和电源可以分离,因此光纤照明系统相对于传统照明系统而言更加安全,不会产生火灾和爆炸等安全隐患。
灵活性强光纤照明系统的光源、光纤和光纤末端可以弯曲和切割,因此可以根据被照明物的大小和形状进行灵活配置,使其更加适应不同的照明需要。
能耗低光纤照明系统可以利用LED等高效节能的光源,因此其能耗比传统照明系统更低,可以显著降低能源消耗和能源成本。
光线自然光纤照明系统的光线自然、均匀,不会产生闪烁和眩光等不良影响,因此更加舒适和环保。
长寿命光纤照明系统的光源寿命长,可以达到20,000至50,000小时以上,因此维护成本低,减少了更换照明设备的频率和使用成本。
总之,光纤照明系统具有灵活性强、安全性高、能耗低、光线自然、长寿命等多个优点,逐渐成为照明行业的趋势和主流。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
光纤照明系统中光源、光纤的分类
由于通讯事业快速发展的需要,开发出了优质价廉的玻璃光学纤维,然后被引入
了光纤照明。
年代末,日本三菱公司将塑料光纤推入市场,并于年制成了第一种大芯径塑料光
学纤维。
八十年代初期,光纤照明开始步入实用阶段。
光纤照明系统具有全可见光辐射,光衰小,不易损坏,寿命长,能源利用率高,
维护费用低等特点,因而具有广阔的应用前景。
光纤照明系统的构成及原理光纤照明系统是由光源光导纤维和光输出元件三部分
构成的照明系统,其基本特征是光源可以放置在远离被照区域的其它地方,因此光源
产生的热量和全部供电系统也就与被照物体分隔开。
由于光线通过光纤的距离一般较长,所以由光纤输出的光没有热辐射。
光纤照明系统基本上有两种类型一种是端面发光的,一种是侧面发光的。
端面发光系统是将发光体发出的光从光纤束首端面通过完全内反射传输至末端面,光纤束的末端面通常安装有适当的光输出装置,以给出所要求的光分布形式。
侧面发光系统是将发光体发出的光从光纤束的侧面透射出来,并且整段光纤的亮
度都非常均匀,类似于霓虹灯的效果。
两种发光系统的原理如图所示。
光纤照明系统的效率即光电转换效率,而取决于光纤首端面的祸合效率及传输过程中的透过率。
当发光体发出的光以合适的角度入射到光纤束端面时,光线发生完全内反射,光损失最小如图当光线的入射角大于时,光纤则从光纤壁折射逸出如图对于普通的光纤材料,入射角度最大不应超过30一疆窈图光纤发光原理图端面发光系统发光体侧面发光系统发光体。
侧面发光光纤束。
光输出装置。
侧面发光光纤束图光线在光纤束内的反射情况要提高系统的祸合效率,首先要解决照射到光纤束端面上的光斑的均匀性问题,图给出了两种祸合系统的光路示意图。
产一一一,叮光纤束连结端一气七只甲罗反射器发光体图椭球面反射系统。
发光体准确定位困难。
光斑均匀性差有黑斑反光镜图光学组件光学组件系统。
易于更换光源。
光斑均匀性好此外,还有一种最新的聚焦光学祸合系统,它将专用灯泡与特殊的光学界面配合使用,使光斑均匀度大大提高,系统效率达到最大,如图所示。
图聚焦式光学辐合系统精确的积分式反射器极小的灯泡发光体聚焦透镜透镜的光学外延压制的光纤束光纤照明系统用光源光纤照明系统中发光体一般由装有灯泡,驱
动灯泡的电子触发器装置以及控制和导引光线照射到光纤束上的高精密度的光学界面装置组成。
根据照明场所要求的不同,通常光源可选用卤钨灯,石英金属卤化物灯,陶瓷金属卤化物灯及新型的聚焦式灯泡,这种新型聚焦式灯泡是一种高气压微型放电灯,有效发光体尺寸不可准确定位于反射器的焦点,工作状态非常稳定,与该灯配套使用的光学界面装置是一个精密的透镜系统,它的一部分在发光体内,另一部分在光纤的连结端,两者配合,实现了最大的光祸合效率系统光路见图表给出了使用不同光源的光纤照明系统的照明效果。
表使用不同光源的光纤照明系统的照明效果光源种功率显色色温寿命发光在直径长度适用的类指数体长的光纤未端的最大光度光通量纤长度卤钨灯石英金属卤化物灯陶瓷金一属卤化物灯新型聚一焦式灯泡光导纤维光源发出的光要聚焦于光纤束的输入端面上,新一代的光纤束在其端面处设有内置的光学系统,再配上新型灯泡,使照射到光纤束上的光通量大幅度提高,从而提高光祸合效率,同时还可起到对光纤的隔热保护作用。
光纤束的输入端面经过抛光处理,紧密压制成一束不用粘结剂还会进一步提高光祸合效率。
光纤束分为端面发光和侧面发光的。
端面发光的光纤束由若干根直径几十微米至几毫米的光导纤维组成。
通常一个光源可以供给根直径的光导纤维组成的光纤束,如图所示。
光纤的结构如图所示。
侧面发光的光纤束如图所示,它是由纯净的,不掺杂质的丙烯酸酷制成一的,光纤的直径一般为构示意图。
一图给出了侧面发光光纤系统的几何平面结图端面发光光纤束连结端端面发光光纤光纤束末端图端面发光光纤的结构光导纤维芯体包层保护套光纤端部一毛礁纂二二书兰立皿一图连结端侧面发光光纤透明的稳定防护套侧面发光光纤束光纤端帽P狐从纤维束曰氢一蔚沪爵噶图几种侧面发光光纤系统的结构图一个发光体光纤长度可达图系统或巧图系统一个发光体环状光纤长度可达3 m(图系统)或图系统两个发光体光纤长度可达图系统或图系统几个发光体光纤总长度最大为每段光纤的长度可达30图系统或图系统光输出元件光纤照明系统中光输出元件的作用是控制和引导光线,使之照射到被照物上,以代替传统照明方式的灯泡。
根据光纤照明系统用途的不同,在光纤终端可以装配许多不同的光输出元年,如反射镜透镜滤色片或散射体等,通过这些元件组合成不同的定向照明或投光照明装置以获得不同的照明效果。
光纤照明系统的应用光纤照明是一种新型的照明系统,广泛应用于商品展示广告标志交通信号娱乐场所建筑装饰照明等。
由于光纤照明中的光线没有热量红外线而且绝大部分的紫外线被滤除,因此特别适宜于博物馆美术馆画廊等艺术品和文物的照明。
光纤照明系统中光源及电源远离照明区域,特别适合于潮湿环境水下和易燃易爆等危险场合的照明。
此外,应用于装饰照明时,在光源和光输出元件之间设置彩色转盘滤色片或类似光圈和快门之类的元件可以造成千变万化五彩缤纷的特殊照明效果。