假设检验的总结 Hypothesis Testing Summary
计量经济学第5章假设检验

假设检验中的小概率原理
假设检验中的小概率原理
什么小概率? 1. 在一次试验中,一个几乎不可能发生的事
件发生的概率 2. 在一次试验中小概率事件一旦发生,我们
就有理由拒绝原假设 3. 小概率由研究者事先确定
5-17
假设检验中的小概率原理
由以往的资料可知,某地新生儿的平均体重为3190克,从今年的新生儿中随机 抽取100个,测得其平均体重为3210克,问今年新生儿的平均体重是否为 3190克(即与以往的体重是否有显著差异)?
决策:
在 = 0.05的水平上拒绝H0
结论:
有证据表明新机床加工的零件 的椭圆度与以前有显著差异
5-56
2 已知均值的检验
(P 值的计算与应用)
第1步:进入Excel表格界面,选择“插入”下拉菜单 第2步:选择“函数”点击 第3步:在函数分类中点击“统计”,在函数名的菜单下选
与原假设对立的假设 表示为 H1
5-12
确定适当的检验统计量
什么检验统计量?
1.用于假设检验决策的统计量 2.选择统计量的方法与参数估计相同,需考虑
是大样本还是小样本 总体方差已知还是未知
检验统计量的基本形式为 Z X 0 n
5-13
规定显著性水平(significant level)
(P-value)
1. 是一个概率值
2. 如果原假设为真,P-值是抽样分布中大
于或小于样本统计量的概率
左侧检验时,P-值为曲线上方小于等于检
验统计量部分的面积
右侧检验时,P-值为曲线上方大于等于检
验统计量部分的面积
3. 被称为观察到的(或实测的)显著性水平
5-44
双侧检验的P 值
假设检验

x − μ0
= 山区总体 μ? 抽样误差 总体均数之差 +抽样误差
10
≠
医学统计二·研2010
9
医学统计二·研2010
基本步骤1
建立检验假设
H0无效假设null hypothesis, H1备择假设alternative hypothesis
基本步骤1
注意
假设只针对总体 H0、H1互相对立,缺一不可 H0通常是:总体均数相等 μ1 = μ2 ,总体率 相等,总体分布是某一特定分布等 μ H1是H0的对立: 1 ≠ μ2 μ1 < μ2 μ1 > μ2 H1反映了检验的单双侧,它是由研究目的 决定的,而不是由样本决定的
需要从总体上对问题做出判断 无法观察到全部个体
假设检验的基本思想
先建立一个关于样本所属总体的假设,考察 在假设条件下随机样本的特征信息是否属小 概率事件
若为小概率事件,则怀疑假设成立有悖于该样本 所提供特征信息,因此拒绝假设 反之,不拒绝假设
小概率事件(p=0.05)在随机抽样中还是可能发 生的,只是发生的概率很小
0 = 1 − C4 × 0.010 × 0.99 4
假设检验是用来判断样本与样本,样本与总 体的差异是由抽样误差引起还是本质差别造 成的统计推断方法。
医学统计二·研2010 3
= 0.039
医学统计二·研2010
4
假设检验(hypothesis testing)
依据:小概率事件在一次随机抽样中不 大可能发生 为何要做假设检验:
不拒绝实际上是不成立的H0, “存伪” II型错误的概率用β表示
医学统计二·研2010 27
图4.1 I、II型错误示意(以单侧t检验为例)
假设检验 Hypothesis Test

Rev. B Printed 2021/4/2 © 2001 by Sigma Breakthrough Technologies, Inc.
“假设” 与决策风险
我们依据已知的风险程度和置信度进行判断,接受或 拒绝一项 “假设” 因此,我们必须在分析前预先确定决策风险的大小及 可接受的检验灵敏度( test sensitivity ) 一旦上述值设定完成后,我们就有足够的数据来决定 理想的抽样大小 我们也必须考虑实际的成本、时间及可获得资源的限 制,以制定合理的抽样计划
★ 适当地处理不确定性 ★ 降低主观因素 ★ 质疑假设 ★ 避免重要信息的遗漏 ★ 决策错误的风险管理
假设检验-10
Rev. B Printed 2021/4/2 © 2001 by Sigma Breakthrough Technologies, Inc.
实际上
我们可能在流程不佳的情况下,却得到良好的流程样本 我们可能在流程良好的状况下,抽取到不良的流程样本 不论何种状况,我们都可能做出错误的推断
流程改善方法论
福源集团成本抑减
假设检验(Hypothesis Testing)简介
Rev. B Printed 2021/4/2 © 2001 by Sigma Breakthrough Technologies, Inc.
步骤 I: 定义(Define)
项目启动
. 项目启动 (项目定义表) . 项目背景, 选择理由 . 客户需求分析(VOC/VOB)
潜在关键影响因素的初步挖掘
. 全部影响因素分析(流程图 / 鱼刺图) . 定性确定关键因素(因果矩阵) . 关键因素失效模式分析, 评价控制计划,
并提出初步改善措施(快赢)
假设检验-1
假设检验

假设检验假设检验(Hypothesis Testing)是数理统计学中根据一定假设条件由样本推断总体的一种方法。
具体作法是:根据问题的需要对所研究的总体作某种假设,记作H0;选取合适的统计量,这个统计量的选取要使得在假设H0成立时,其分布为已知;由实测的样本,计算出统计量的值,并根据预先给定的显著性水平进行检验,作出拒绝或接受假设H0的判断。
常用的假设检验方法有u—检验法、t检验法、χ2检验法(卡方检验)、F—检验法,秩和检验等。
中文名假设检验外文名 hypothesis test提出者 K.Pearson 提出时间 20世纪初1、简介假设检验又称统计假设检验(注:显著性检验只是假设检验中最常用的一种方法),是一种基本的统计推断形式,也是数理统计学的一个重要的分支,用来判断样本与样本,样本与总体的差异是由抽样误差引起还是本质差别造成的统计推断方法。
其基本原理是先对总体的特征作出某种假设,然后通过抽样研究的统计推理,对此假设应该被拒绝还是接受作出推断。
[1]2、基本思想假设检验的基本思想是小概率反证法思想。
小概率思想是指小概率事件(P<0.01或P<0.05)在一次试验中基本上不会发生。
反证法思想是先提出假设(检验假设H0),再用适当的统计方法确定假设成立的可能性大小,如可能性小,则认为假设不成立,若可能性大,则还不能认为假设成立。
[2] 假设是否正确,要用从总体中抽出的样本进行检验,与此有关的理论和方法,构成假设检验的内容。
设A是关于总体分布的一项命题,所有使命题A成立的总体分布构成一个集合h0,称为原假设(常简称假设)。
使命题A不成立的所有总体分布构成另一个集合h1,称为备择假设。
如果h0可以通过有限个实参数来描述,则称为参数假设,否则称为非参数假设(见非参数统计)。
如果h0(或h1)只包含一个分布,则称原假设(或备择假设)为简单假设,否则为复合假设。
对一个假设h0进行检验,就是要制定一个规则,使得有了样本以后,根据这规则可以决定是接受它(承认命题A正确),还是拒绝它(否认命题A正确)。
假设检验的基本思想

假设检验的基本思想假设检验的基本思想⼀、总结⼀句话总结:> 假设检验的基本思想是【“⼩概率事件”原理】,其统计推断⽅法是带有某种概率性质的【反证法】。
> 【⼩概率思想】是指⼩概率事件在⼀次试验中基本上不会发⽣。
> 【反证法思想】是先提出检验假设,再⽤适当的统计⽅法,利⽤⼩概率原理,确定假设是否成⽴。
即为了检验⼀个假设H0是否正确,⾸先假定该假设H0正确,然后根据样本对假设H0做出接受或拒绝的决策。
【如果样本观察值导致了“⼩概率事件”发⽣,就应拒绝假设H0,否则应接受假设H0】。
> 对于不同的问题,检验的显著性⽔平α不⼀定相同,⼀般认为,事件发⽣的概率【⼩于0.1、0.05或0.01等】,即“⼩概率事件”。
1、假设检验(hypothesis testing)?> 假设检验(hypothesis testing),⼜称统计假设检验,是⽤来判断【样本与样本、样本与总体的差异是由抽样误差引起还是本质差别造成的统计推断⽅法】。
> 【显著性检验】是假设检验中最常⽤的⼀种⽅法,也是⼀种最基本的统计推断形式,其【基本原理】是【先对总体的特征做出某种假设】,然后通过抽样研究的统计推理,对此假设应该被拒绝还是接受做出推断。
> 常⽤的【假设检验⽅法】有【Z检验、t检验、卡⽅检验、F检验等】⼆、假设检验的基本思想来看看百度百科的说法:假设检验(hypothesis testing)假设检验(hypothesis testing),⼜称统计假设检验,是⽤来判断样本与样本、样本与总体的差异是由抽样误差引起还是本质差别造成的统计推断⽅法。
显著性检验是假设检验中最常⽤的⼀种⽅法,也是⼀种最基本的统计推断形式,其基本原理是先对总体的特征做出某种假设,然后通过抽样研究的统计推理,对此假设应该被拒绝还是接受做出推断。
常⽤的假设检验⽅法有Z检验、t检验、卡⽅检验、F检验等基本思想假设检验的基本思想是“⼩概率事件”原理,其统计推断⽅法是带有某种概率性质的反证法。
六西格玛工具HypothesisTest假设检验完整版

六西格玛工具HypothesisTest假设检验完整版
六西格玛管理中,由于总体的参数是未知的,只能通过对总体随机变量的抽样,使用样本来估计总体的分布。
我们常说的统计分析,基本是参数估计和假设检验两方面的内容,大约80%以上是关于假设检验的,MSA、归回分析、DOE等都是以假设检验为基础。
下面是常用的假设检验类型:
数据类型假设检验目的
分
类
离散型
Chi-squaretest
卡方检验比较两组或多组数据的方
差
比
例
连续型t-test
T检验
比较两组数据的平均值
均
值Paired t-test
成对T检验
当两组数据成对,比较两组数据
的
平均值
ANOVA
比较两组或多组数据的平
均值
Test for equal variances
等方差检验
(F-test, Bartlett’s test,
Levene’s test)
比较两组或多组数据的方
差
方
差
这篇文章对这些假设检验逐步讲解,包括假设检验的概念,包括区间估计、t和F分布以及P-Value、各种假设检验的概念和方法。
假设检验(Hypothesis Testing)

假设检验(HypothesisTesting)假设检验是用来判断样本与样本,样本与总体的差异是由抽样误差引起还是本质差别造成的统计推断方法。
其基本原理是先对总体的特征作出某种假设,然后通过抽样研究的统计推理,对此假设应该被拒绝还是接受作出推断。
生物现象的个体差异是客观存在,以致抽样误差不可避免,所以我们不能仅凭个别样本的值来下结论。
当遇到两个或几个样本均数(或率)、样本均数(率)与已知总体均数(率)有大有小时,应当考虑到造成这种差别的原因有两种可能:一是这两个或几个样本均数(或率)来自同一总体,其差别仅仅由于抽样误差即偶然性所造成;二是这两个或几个样本均数(或率)来自不同的总体,即其差别不仅由抽样误差造成,而主要是由实验因素不同所引起的。
假设检验的目的就在于排除抽样误差的影响,区分差别在统计上是否成立,并了解事件发生的概率。
在质量管理工作中经常遇到两者进行比较的情况,如采购原材料的验证,我们抽样所得到的数据在目标值两边波动,有时波动很大,这时你如何进行判定这些原料是否达到了我们规定的要求呢?再例如,你先后做了两批实验,得到两组数据,你想知道在这两试实验中合格率有无显著变化,那怎么做呢?这时你可以使用假设检验这种统计方法,来比较你的数据,它可以告诉你两者是否相等,同时也可以告诉你,在你做出这样的结论时,你所承担的风险。
假设检验的思想是,先假设两者相等,即:μ=μ0,然后用统计的方法来计算验证你的假设是否正确。
假设检验的基本思想1.小概率原理如果对总体的某种假设是真实的,那么不利于或不能支持这一假设的事件A(小概率事件)在一次试验中几乎不可能发生的;要是在一次试验中A竟然发生了,就有理由怀疑该假设的真实性,拒绝这一假设。
2.假设的形式H0——原假设,H1——备择假设双尾检验:H0:μ = μ0,单尾检验:,H1:μ < μ0,H1:μ > μ0假设检验就是根据样本观察结果对原假设(H0)进行检验,接受H0,就否定H1;拒绝H0,就接受H1。
Hypothesis_Testing(统计学假设检验)

2. Next, we obtain a random sample from the population. For example,
批注本地保存成功开通会员云端永久保存去开通
Statistics for Business (ENV)
Chapter 9
INTRODUCTION TO HYPOTHESIS TESTING
1
Hypothesis Testing
9.1
9.2 9.3
Null and Alternative Hypotheses and Errors in Testing z Tests about a Population with known s t Tests about a Population with unknown s
2
Hypothesis testing-1
Researchers usually collect data from a sample and then use the sample data to help answer questions about the population. Hypothesis testing is an inferential statistical process that uses limited information from the sample data as to reach a general conclusion about the population.
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
Pros 优点
Cons不足
容易理解 Easy to understand
需要很多数据 Requires a lot of data
可以检查单个因子的显著性 Can check for factor significance
需要很多类似堆叠数据的操作Lots of stacking data and manipulation
不能评价哪些因子重要度更高Cannot tell which factors are most important
那么有没有试验数量少一些,还可以同时研究多个因子的 工具呢?
对简单的评价比较有用Useful for simple qualification activities
一次一因子发不能评估多个因子间的交互 作用One factor-at-a-time experiments miss factor interactions 不能生成转换方程(回归方程、关系方 程)Cannot generate transfer functions 可以检验的范围比较小Tests a limited range of the design space
可以评估因子的许多水准 Can evaluate multiple levels
学习了假设检验就相当于掌握了新的说服 力Gain hypothesis testing experience to aid in learning the “power tools”
可以对鱼骨图中那些潜在因子进行筛选 Can use for some screening of a fishbone chart