高中数学-命题
高中数学思维导图:命题

不含逻辑连接词的命题
简单命题
真假判断 步骤
简单命题+ 逻辑连接词
复合命题
或
p或q
且
p且q
含义
且
非p
常用词
正面词语
都是,完全,负数,所有的,任意一个,大于, 小于,至少一个,至多一个,至多n个
否定词语
不都是,不完全,非负数,某些,某个,不大 于,不小于,一个没有,至少两个,至少(n+1) 个
逻辑连接词
等价
当相异的判断句具有相同的语义时,他们表达相同的命题
判断某一件事情的“陈述句”叫做命题。命题不是 指判断句本身,而是指所表达的语义。
基本结构:若则 p 则 q; p (条件),q(结论)
推出
符号
且
定义
四种命题
原命题:若p则q 逆命题:若q则p 定义
否命题:若 则
逆否命题:若 则
否命题与命题的否定
否命题:若 则 命题的否定:若 则
条件
充分不必要:若
且
逻辑推理 p是q的......条件
必要不充分:若 充要条件:若
且 且
既不充分也不必要:若
且
充分条件
必要条件
集合角度
充分不必要: 必要不充分:
充要条件:
不充分不必要:
且
适用:条件或结论是不等关系(或否命题)的命题 原命题 逆否命题
等价法 (命题转化)
逆命题 否命题
பைடு நூலகம்
条件判定
定义法
1:分析条件结论
关系
任意一个,每一个
所有的 一切 对每一个 任选一个 凡
成立 成立
成立 成立 成立
存在 至少有一个 对有些 对某个 有一个
高中数学命题知识点总结

高中数学命题知识点总结一、集合与函数概念1. 集合的基本概念- 集合的定义- 子集、并集、交集、补集- 集合的表示方法:列举法、描述法2. 函数的定义与性质- 函数的定义- 函数的域与值域- 函数的表示方法:解析式、图像、表格3. 常见函数类型- 一次函数、二次函数- 幂函数、指数函数、对数函数- 三角函数:正弦、余弦、正切4. 函数的基本操作- 函数的四则运算- 复合函数- 反函数与逆函数二、数列与数学归纳法1. 数列的概念- 数列的定义- 有穷数列与无穷数列- 数列的通项公式2. 等差数列与等比数列- 等差数列的通项公式与求和公式 - 等比数列的通项公式与求和公式3. 数列的性质与极限- 数列的单调性- 数列的极限概念- 极限的计算方法4. 数学归纳法- 数学归纳法的原理- 证明方法:基础步骤与归纳步骤三、解析几何1. 平面直角坐标系- 坐标系的定义- 点的坐标与距离公式- 直线的方程表示2. 圆与椭圆的方程- 圆的标准方程- 椭圆的标准方程及其性质3. 抛物线与双曲线- 抛物线的标准方程及其性质- 双曲线的标准方程及其性质4. 空间几何- 空间直角坐标系- 空间直线与平面的方程- 空间几何体的体积与表面积四、三角函数与恒等变换1. 三角函数的基本概念- 三角函数的定义- 三角函数的图像与性质2. 三角恒等式- 基本三角恒等式- 角的和差公式- 二倍角与半角公式3. 三角函数的应用- 解三角形问题- 三角函数在解析几何中的应用五、导数与微分1. 导数的概念- 导数的定义与几何意义- 常见函数的导数2. 导数的运算法则- 导数的四则运算- 链式法则、隐函数与参数方程的求导3. 微分的概念与应用- 微分的定义- 微分在近似计算中的应用六、积分1. 积分的概念- 不定积分的定义与性质- 定积分的定义与几何意义2. 积分的计算方法- 基本积分公式- 换元法与分部积分法3. 积分的应用- 积分在几何问题中的应用- 微积分基本定理及其应用七、概率与统计1. 概率的基本概念- 随机事件与概率的定义- 条件概率与独立事件2. 随机变量与概率分布- 离散型随机变量与连续型随机变量- 常见概率分布:二项分布、正态分布3. 统计的基本概念- 数据的描述性分析- 参数估计与假设检验以上是高中数学的主要命题知识点总结,涵盖了集合、函数、数列、解析几何、三角函数、导数、积分、概率与统计等核心领域。
高中数学-命题测试题

高中数学-命题测试题
以下是一套高中数学命题测试题,共包括多个问题,涵盖了数学的各个知识点。
请认真阅读每个问题,并按照要求进行解答。
题目一:简单方程求解(10分)
已知方程2x + 3 = 9,求x的值。
题目二:函数求导(15分)
已知函数f(x) = 2x^3 - 3x^2 + 4x - 5,求f'(x)(即f(x)的导数)。
题目三:三角函数应用(20分)
已知直角三角形中,一条直角边的长度为3,另一条直角边的长度为4。
求这个直角三角形的斜边长度和所有角的正弦值、余弦值、正切值。
题目四:集合运算(15分)
已知集合A = {2, 3, 4, 5, 6},集合B = {4, 5, 6, 7, 8},求A与B的并集、交集和差集。
题目五:平面几何(20分)
已知平行四边形ABCD中,AB = 6cm,BC = 8cm,且∠ABC = 120°。
求平行四边形ABCD的面积。
题目六:概率计算(20分)
有6个红球、4个蓝球和5个绿球放入一个不透明的袋子中,将其
中一个球摸出来后放回,再摸一次。
求两次摸出的球都是红球的概率。
题目七:复数运算(15分)
已知复数z1 = 2 + 3i,z2 = 1 - 2i,求z1和z2的和、差、乘积和商。
题目八:数列求和(20分)
已知数列an = 3n - 2,求前10项的和Sn。
以上就是本次高中数学命题测试题的所有内容。
请根据要求自行解
答每个问题,并将答案写在答题卡上。
祝你顺利完成测试!。
高中数学命题及其关系知识点

高中数学命题及其关系知识点1、命题的四种形式及其相互关系是什么?(互为逆否关系的命题是等价命题。
)原命题与逆否命题同真、同假;逆命题是否命题同真同骗人。
2、对映射的概念了解吗?映射f:a→b,是否注意到a中元素的任意性和b中与之对应元素的唯一性,哪几种对应能构成映射?(一对一,多对一,容许b中存有元素并无原象。
)3、函数的三要素是什么?如何比较两个函数是否相同?(定义域、对应法则、值域)4、反函数存在的条件是什么?(一一对应函数)求反函数的步骤掌握了吗?(①反解x;②交换x、y;③标明定义域)5、反函数的性质有哪些?①互为反函数的图象关于直线y=x等距;②保存了原来函数的单调性、奇函数性;6、函数f(x)具备奇偶性的必要(非充份)条件就是什么?(f(x)定义域关于原点对称)高中数学复习计划要注意进度的安排,应该前紧后松,而不能前松后紧。
因为随着日期的推移,人的疲劳度越来越深,效率会有所下降,后面多留些时间,有利于随机应变,从容不迫,减少紧张,增强自信心。
在模拟考试之前,所有的系统复习应该全部结束;模拟考试之后所要做的,只是查补细小的漏洞,调整心情和体力,稳定状态,坚定信心。
绝对无法与老师的复习计划二者两张皮,自搞出一套。
负责管理初三教学的老师,通常都存有数年甚至数十年的教学经验,对如何指导同学们展开中考集训非常存有心得体会,这样的老师明确提出的复习计划,就是绝对无法忽略的。
你必须搞的就是,针对自己的特定情况予以调整。
假如某一部分科学知识就是你掌控得极好、平时考试没什么问题的内容,就足矣花掉些时间;若某一部分科学知识就是研习得不好、问题比较多的内容,就要多花掉些时间,在顺利完成了老师布置的内容之后再多看看多想要几遍,另外自己打听一些有关的参照题目搞,非把它学坚实不容。
在时间上,可以比老师的计划略快一步,无法比老师的计划快。
一定要把握好“量”,要给自己留有余地。
要好好考虑自己订的计划的可行性。
把几本书全背上几遍固然好,可是从体力、时间上来说根本不可能。
高中数学命题知识

高中数学命题知识在高中数学的学习中,命题知识是一个重要的组成部分。
它不仅是数学理论的基础,也是我们解决数学问题和进行逻辑推理的关键工具。
首先,我们来了解一下什么是命题。
简单来说,命题就是能够判断真假的陈述句。
比如,“2 加 3 等于5”,这是一个真命题;而“地球是方的”,这就是一个假命题。
但需要注意的是,像“明天会下雨吗?”这样的疑问句,或者“快过来!”这样的祈使句,都不是命题。
命题通常可以分为简单命题和复合命题。
简单命题就是不能再分解为更简单命题的命题,像“3 大于2”。
而复合命题则是由简单命题通过逻辑连接词组合而成的,常见的逻辑连接词有“且”“或”“非”。
比如,“2 是偶数且 3 是奇数”,这就是一个复合命题。
对于命题,我们还要关注它的条件和结论。
在“如果一个数能被 2整除,那么这个数是偶数”这个命题中,“一个数能被2 整除”就是条件,“这个数是偶数”就是结论。
了解了命题的基本概念后,我们再来看看命题的四种形式:原命题、逆命题、否命题和逆否命题。
原命题就是我们最初给出的那个命题,比如“若 a>b,则 a+c>b+c”。
逆命题则是将原命题的条件和结论互换位置得到的,上述例子的逆命题就是“若 a+c>b+c,则 a>b”。
否命题是对原命题的条件和结论都进行否定,这个例子的否命题是“若a≤b,则a+c≤b+c”。
逆否命题是将逆命题再进行否定,即“若a+c≤b+c,则a≤b”。
这里有一个重要的性质,原命题和逆否命题的真假性是相同的,逆命题和否命题的真假性也是相同的。
在判断命题的真假时,我们需要依靠已有的数学定义、定理和公理。
比如,根据三角形内角和定理,我们可以判断“一个三角形的内角和等于 180 度”是真命题。
命题的等价性也是一个重要的知识点。
两个命题如果在任何情况下真假性都相同,那么它们就是等价命题。
通过等价命题的转换,我们常常可以更方便地解决问题。
在解决与命题相关的问题时,我们要仔细分析命题的结构和含义,明确条件和结论之间的关系。
高中数学命题教学教案

高中数学命题教学教案
教学目标:通过学习本课时的内容,学生能够掌握数学命题的相关概念和方法,能够灵活运用数学命题解决实际问题。
教学重点:数学命题的概念和性质
教学难点:命题的逻辑运算
教学步骤:
第一步:导入新知识
1. 讲解数学命题的概念和性质,引导学生了解命题的定义和特点。
2. 通过一些实际例子,让学生理解什么是数学命题,如何判断一个语句是否是命题。
第二步:学习命题的逻辑运算
1. 讲解命题的逻辑运算符号及其运算规则,包括合取、析取、否定、等价、蕴含等运算。
2. 给学生一些练习题,让他们熟练运用逻辑运算解决问题。
第三步:巩固知识点
1. 给学生一些练习题,让他们巩固所学知识点。
2. 老师对学生的练习进行批改和讲解,帮助学生理解和纠正错误。
第四步:拓展应用
1. 给学生一些拓展应用题,让他们将所学知识运用到实际问题中。
2. 引导学生思考数学命题在生活中的应用,并讨论其重要性。
第五步:总结复习
1. 对本课时的知识点进行总结复习,梳理逻辑运算的步骤和规则。
2. 鼓励学生提出问题,并对疑难点进行解答。
教学效果评价:
1. 参与度评价:观察学生在课堂上的积极参与程度。
2. 作业评价:检查学生对所学知识的掌握情况,提供及时反馈。
3. 测验评价:组织小测验,检验学生对数学命题的掌握情况。
4. 考试评价:在期末考试或模拟考试中设置相关题型,评估学生的学习效果。
高中数学命题试题及答案

高中数学命题试题及答案一、选择题(每题3分,共30分)1. 下列哪个选项不是实数集R的子集?A. 有理数集QB. 自然数集NC. 整数集ZD. 复数集C2. 若函数f(x) = 2x - 3,求f(5)的值。
A. 4B. 7C. 10D. 133. 已知a > 0,b < 0,且a + b > 0,下列哪个不等式是正确的?A. a > -bB. a < -bC. a ≤ -bD. a ≥ -b4. 若sin(θ) = 1/2,θ属于第一象限,求cos(θ)的值。
A. √3/2B. -√3/2C. 1/√2D. -1/√25. 一个圆的半径为5,求其面积。
A. 25πB. 50πC. 75πD. 100π6. 若a^2 - b^2 = 25,a + b = 10,求a - b的值。
A. 5B. 15C. 25D. 357. 已知等差数列的首项为3,公差为2,求第10项的值。
A. 23B. 25C. 27D. 298. 一个直角三角形的两条直角边分别为3和4,求斜边的长度。
A. 5B. 6C. 7D. 89. 函数y = x^2 + 2x - 3的顶点坐标是?A. (-1, -4)B. (-2, -3)C. (1, -4)D. (2, -3)10. 已知集合A = {1, 2, 3},B = {2, 3, 4},求A∪B。
A. {1, 2, 3}B. {1, 2, 3, 4}C. {2, 3}D. {1, 4}二、填空题(每题2分,共20分)11. 若f(x) = x^2 - 4x + 4,求f(x)的对称轴。
__________________12. 已知等比数列的首项为2,公比为3,求第5项的值。
__________________13. 一个正方体的体积为27立方米,求其边长。
__________________14. 求函数y = 3x + 2的反函数。
__________________15. 已知集合C = {x | x > 5},D = {x | x < 10},求C∩D。
四种命题课件-人教版高中数学

把下列命题改写成“若p则q”的形式,并
判定真假。
(1) 负数的平方是正数.
真命题
(2) 正方形的四条边相等.
真命题
(3) 等腰三角形两腰的中线相等 真命题
(4) 面积相等的两个三角形全等. 假命题
(5)偶函数的图象关于y轴对称 真命题
(6)垂直于同一个平面的两个平面 假命题
平行
(7)对顶角相等
真命题
命题:语句都是陈述句,并且可以判断真假。 真命题:判断为真的语句。 假命题:判断为假的语句。
例1.判断下列语句是不是命题?是真命题还是假命题
1) 空集是任何集合的子集
真命题
2) 若整数a是素数,则a是奇数. 3) 指数函数是增函数吗?
假命题 疑问句
4) 若空间中两条直线不相交,则这两条直线平行.假命题
1.1 命题及其关系
1.1.1 命题
学好要领
下列句子中,你能判断它们的真假吗?
⑴若直线a∥b,则直线a和直线b无公共点 能源自⑵画一个角等于已知角; 不能
⑶刘翔是世界冠军;
能
⑷垂直于同一条直线的两个平面平行 能
⑸请借我一枝钢笔。不能
⑹玫瑰花是动物。 能
⑺熊猫没有翅膀。
能
⑻若a2= b2,则a=b。 能
题是D( )
A. a,b都不是奇数,则a+b是偶数 B. a+b是偶数 ,则a,b都是奇数 C. a+b是偶数 ,则a,b都不是奇数 D. a+b不是偶数,则a,b不都是奇数;
作业:写出下列各命题的逆命题,否命题,逆 否命题,并判断各命题的真假:
(1)菱形的四条边都相等
(2)若 x2 x 2 0 ,则x 1 且 x 2
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
1.1.1 命题(教师用书独具)●三维目标1.知识与技能理解命题的概念和命题的构成,能判断给定陈述句是否为命题,能判断命题的真假;能把命题改写成“若p,则q”的形式.2.过程与方法多让学生举命题的例子,培养他们的辨析能力;以及培养他们的分析问题和解决问题的能力.3.情感、态度与价值观通过学生的参与,激发学生学习数学的兴趣.●重点、难点重点:命题的概念、命题的构成.难点:分清命题的条件、结论和判断命题的真假.(教师用书独具)●教学建议命题的概念在初中已经学习过,可以通过回顾初中知识引入,讲清命题概念中的两个问题,判断是否为陈述句,能否判断真假;重点放在命题的形式和判断命题真假的教学中,基于教材内容简单且以前曾经接触过,可以采用提问式、讨论式的教学方法,让学生在讨论、回答问题的过程中学习知识,增长技能,进而突破重难点.●教学流程创设问题情境,引出命题的概念,通过实例形成概念原型.⇒引导学生结合初中学习过的命题概念,比较、分析,揭示命题的特点及构成形式.⇒通过引导学生回答所提问题理解判断命题真假的方法.⇒通过例1及其变式训练,使学生掌握如何判断一个语句是否为命题.⇒通过例2及其互动探究,使学生掌握命题真假的判断方法,并对相关知识进行复习.⇒通过例3及其变式训练,完成对命题形式的认识与巩固,学会对命题进行改写.⇒归纳整理,进行课堂小结,整体认识本节课所学知识.⇒完成当堂双基达标,巩固所学知识并进行反馈矫正.(对应学生用书第1页)观察下列实例:①一条直线l,不是与平面α平行就是相交;②4是集合{1,2,3,4}的元素;③若x∈R,方程x2-x+2=0无实根;④作△ABC∽△A′B′C′上述语句中,哪些能判断真假?【提示】①、②、③、④是祈使句不能判断真假.1.定义在数学中,把用语言、符号或式子表达的,可以判断真假的陈述句叫做命题.2.分类①真命题:判断为真的语句叫做真命题;②假命题:判断为假的语句叫做假命题.1.“同位角相等”是命题吗?如果是命题,是真命题还是假命题?【提示】是命题,为假命题.2.你能把“同位角相等”写成“若……,则……”的形式吗?【提示】若两个角为同位角,则这两个角相等.命题的形式:“若p,则q”,其中命题的条件是p,结论是q.)(对应学生用书第1页判断下列语句是否为命题,并说明理由.(1)x-2>0;(2)梯形是不是平面图形呢?(3)若a与b是无理数,则ab是无理数;(4)这盆花长得太好了!(5)若x<2,则x<3.【思路探究】(1)这些语句是陈述句吗?(2)你能判断它们的真假吗?【自主解答】(1)不是命题,因为变量x的值没有给定,不能判断真假.(2)不是命题,疑问句不是命题.(3)是命题,因为此语句是陈述句且是假的.(反例a=b=2)(4)不是命题,感叹句不是命题.(5)是命题,因为此语句是陈述句且是真的.判断一个语句是否为命题的步骤:(1)语句格式是否为陈述句,只有陈述句才有可能是命题.(2)该语句能否判断真假,语句叙述的内容是否与客观实际相符,是否符合已学过的公理、定理,是明确的,不能模棱两可.判断下列语句是否为命题,并说明理由.(1)一条直线l,与平面α不是平行就是相交;(2)若xy=1,则x,y互为倒数;(3)作△ABC∽△A′B′C′.【解】(1)是命题.直线l与平面α有相交、平行、l在平面α内三种关系,为假.(2)是命题.因xy=1时,x,y互为倒数,为真.(3)不是命题,祈使句不是命题.判断下列语句是否是命题,若是,判断其真假,并说明理由.(1)函数y=sin4x-cos4x的最小正周期是π;(2)若x=4,则2x+1<0;(3)一个等比数列的公比大于1时,该数列为递增数列;(4)求证:x∈R时,方程x2-x+2=0无实根.【思路探究】语句――→命题定义判定是否是命题――→证明举反例真假命题【自主解答】(1)(2)(3)是命题,(4)不是命题.命题(1)中,y=sin4x-cos4x=sin2x-cos2x=-cos 2x,显然其最小正周期为π,为真命题.命题(2)中,当x=4,2x+1>0,是假命题.命题(3)中,当等比数列的首项a1<0,公比q>1时,该数列为递减数列,是假命题.(4)是一个祈使句,没有作出判断,不是命题.1.真假命题的判定方法:(1)真命题的判定方法:真命题的判定过程实际就是利用命题的条件,结合正确的逻辑推理方法进行正确逻辑推理的一个过程.判断命题为真的关键是弄清命题的条件,选择正确的逻辑推理方法.(2)假命题的判定方法:通过构造一个反例否定命题的正确性,这是判断一个命题为假命题的常用方法.2.解决本类问题的难点是对相关知识的理解与掌握.在本例中,把不是命题的改为命题后,再把假命题改为真命题.【解】(2)是假命题,改为真命题为:若x=4时,则2x+1>0.(3)是假命题,改为真命题为:一个等比数列的公比大于1,首项大于零时,该数列为递增数列.(4)不是命题,改为真命题为:若x∈R,则方程x2-x+2=0无实根.把下列命题改写成“若p,则q”的形式,并判断命题的真假.(1)两个周长相等的三角形面积相等;(2)已知x,y为正整数,当y=x+1时,y=3,x=2;(3)当m>1时,x2-2x+m=0无实根;(4)当abc=0时,a=0且b=0且c=0.【思路探究】(1)这些命题的条件与结论分别是什么?(2)第2小题中大前提“已知x、y为正整数”该怎样处理?【自主解答】(1)若两个三角形周长相等,则这两个三角形面积相等,假命题;(2)已知x,y为正整数,若y=x+1,则y=3,x=2,假命题;(3)若m>1,则x2-2x+m=0无实根,真命题;(4)若abc=0,则a=0且b=0且c=0,假命题.1.解决本例问题的关键是找准命题的条件和结论,进而化成“若p,则q”的形式.2.对于命题的大前提,应当写在前面,不要写在条件中;对于改写时语句不通顺的情况,要适当补充使语句顺畅.把下列命题改写成“若p,则q”的形式,并判断命题的真假.(1)奇数不能被2整除;(2)当(a-1)2+(b-1)2=0时,a=b=1;(3)两个相似三角形是全等三角形;(4)在空间中,平行于同一个平面的两条直线平行.【解】(1)若一个数是奇数,则它不能被2整除,是真命题;(2)若(a-1)2+(b-1)2=0,则a=b=1,是真命题;(3)若两个三角形是相似三角形,则这两个三角形是全等三角形,是假命题.(4)在空间中,若两条直线平行于同一个平面,则这两条直线平行,是假命题.(对应学生用书第4页)因知识欠缺,导致对命题真假判断失误判断下列命题的真假.(1)若a >b ,则1a <1b;(2)x =1是方程(x -1)(x -2)=0的一个根. 【错解】 (1)真命题. (2)假命题.【错因分析】 (1)误认为“两数比较大小时,大数的倒数反而小”,而忽视a 、b 的条件,当a >0,b <0时,a >b 但1a >1b.(2)因为方程的根为x =1或x =2,解题时误认为x =1不全面,而没有分析清逻辑关系. 【防范措施】 平时学习时一定要对每一个基础知识理解透彻. 【正解】 (1)假命题 (2)真命题1.判断一个语句是否是命题要注意两点:(1)是不是陈述句;(2)能否判断真假.2.命题的真假判断要结合已有知识,进行严格的逻辑推理,对于描述较为简洁的命题可以分清条件和结论后改写成“若p,则q”的形式再加以判断.(对应学生用书第4页)1.下列语句中是命题的是( )A.π2是无限不循环小数B.3x≤5C.什么是“温室效应” D.《非常学案》真好呀!【解析】疑问句和祈使句不是命题,C、D不是命题,对于B无法判断真假,只有A 是命题.【答案】 A2.下列命题中是假命题的是( )A.5是15的约数B.对任意实数x,有x2<0C.对顶角相等D.0不是奇数【解析】对任意实数x,有x2≥0,所以B为假命题.A、C、D均为真命题.【答案】 B3.把命题“垂直于同一平面的两条直线互相平行”改写成“若p,则q”的形式为________.【答案】若两条直线都垂直于同一个平面,则这两条直线互相平行4.判断下列语句是否为命题,若是命题,判断其真假.(1)求证:2是无理数.(2)若G2=ab,则a、G、b成等比数列.(3)末位数字是0的整数能被5整除.(4)你是高二的学生吗?【解】(1)不是命题,(2)假命题,(3)真命题,(4)不是命题.一、选择题1.(郑州高二检测)在空间,下列命题正确的是( )A.平行直线的平行投影重合B.平行于同一直线的两个平面平行C.垂直于同一平面的两个平面平行D.垂直于同一平面的两条直线平行【解析】A中平行投影可能平行,A为假命题.B、C中的两个平面可以平行或相交,为假命题.由线面垂直的性质,D为真命题.【答案】 D2.命题“6的倍数既能被2整除,也能被3整除”的结论是( )A.这个数能被2整除B.这个数能被3整除C.这个数既能被2整除,也能被3整除D.这个数是6的倍数【解析】“若p,则q”的形式:若一个数是6的倍数,则这个数既能被2整除,也能被3整除.【答案】 C3.下列命题中,是真命题的是( )A.{x∈R|x2+1=0}不是空集B.若x2=1,则x=1C .空集是任何集合的真子集D .若1x =1y,则x =y【解析】 A 中方程在实数范围内无解,故为假命题;B 中,若x 2=1,则x =±1,也为假命题;因为空集是任何非空集合的真子集,故C 为假命题,D 为真.【答案】 D4.给出命题:方程x 2+ax +1=0没有实数根,则使该命题为真命题的a 的一个值可以是( )A .4B .2C .0D .-3【解析】 方程无实根应满足Δ=a 2-4<0即a 2<4,故当a =0时适合条件. 【答案】 C 5.有下列命题:①若xy =0,则|x |+|y |=0;②若a >b ,则a +c >b +c ;③矩形的对角线互相垂直. 其中真命题共有( ) A .0个B .1个C .2个【解析】 ①由x ·y =0得到x =0或y =0, 所以|x |+|y |=0不正确,是假命题;②当a >b 时,有a +c >b +c 成立,正确,所以是真命题; ③矩形的对角线不一定垂直,不正确.是假命题. 【答案】 B 二、填空题6.把“正弦函数是周期函数”写成“若p ,则q ”的形式是________. 【答案】 若函数为正弦函数,则此函数是周期函数.7.如果命题“若x ∈A ,则x +1x≥2”为真命题,则集合A 可以是________.(写出一个即可)【解析】 当x >0时,有x +1x≥2,故A 可以为{x |x >0}.【答案】 {x |x >0}8.下列命题:①若xy =1,则x ,y 互为倒数,②平行四边形是梯形,③若a >b ,则ac 2>bc 2,④若x 、y 互为相反数,则x +y =0,其中真命题为________.【解析】 ①是真命题,②平行四边形不是梯形,假命题,③若a >b ,则ac 2≥bc 2,故为假命题,④为真命题.【答案】 ①④ 三、解答题9.把下列命题改写成“若p ,则q ”的形式,并判断真假: (1)实数的平方是非负数;(2)等底等高的两个三角形是全等三角形; (3)当ac >bc 时,a >b ;(4)角的平分线上的点到角的两边的距离相等.【解】 (1)若一个数是实数,则它的平方是非负数,真命题. (2)若两个三角形等底等高,则这两个三角形是全等三角形,假命题. (3)若ac >bc ,则a >b ,假命题.(4)若一个点是一个角的平分线上的点,则该点到这个角的两边的距离相等,真命题. 10.判断下列命题的真假并说明理由. (1)合数一定是偶数;(2)若ab >0,且a +b >0,则a >0且b >0; (3)若m >14,则方程mx 2-x +1=0无实根.【解】 (1)假命题.例如9是合数,但不是偶数. (2)真命题.因为ab >0,则a 、b 同号. 又a +b >0故a 、b 不能同负, 故a 、b 只能同正,即a >0且b >0. (3)真命题.因为当m >14时,Δ=1-4m <0;∴方程无实根.11.若命题“ax 2-2ax -3>0不成立”是真命题,求实数a 的取值范围. 【解】 因为ax 2-2ax -3>0不成立, 所以ax 2-2ax -3≤0恒成立. (1)当a =0时,-3≤0成立;(2)当a ≠0时,应满足⎩⎪⎨⎪⎧a <0,Δ≤0,解之得-3≤a <0.由(1)(2),得a 的取值范围为[-3,0].(教师用书独具)下列四个命题:①若向量a,b满足a·b<0,则a与b的夹角为钝角;②已知集合A={正四棱柱},B={长方体},则A∩B=B;③在平面直角坐标系内,点M(|a|,|a-3|)与N(cos α,sin α)在直线x+y-2=0的异侧;④规定下式对任意a,b,c,d都成立.⎝ ⎛⎭⎪⎫a b c d 2=⎝ ⎛⎭⎪⎫a b c d ·⎝ ⎛⎭⎪⎫a b c d =⎝ ⎛⎭⎪⎫a 2+bc ab +bd ac +cd bc +d 2,则⎝ ⎛⎭⎪⎫-sin α cos α cos α sin α2=⎝ ⎛⎭⎪⎫1 00 1.其中真命题是________(将你认为正确的命题序号都填上).【解析】 当a 与b 的夹角为π时,有a·b <0,但此时的夹角不为钝角,所以①是错误的;因为正四棱柱的底面是正方形,所以A ∩B =A ,故②也是错误的;因为|a |+|a -3|-2≥|a -a +3|-2=1>0,cos α+sin α-2=2sin ⎝ ⎛⎭⎪⎫α+π4-2<0,所以点M ,N在直线x +y -2=0的异侧,故③是真命题;根据题意有⎝ ⎛⎭⎪⎫-sin α cos α cos α sin α2=⎝ ⎛⎭⎪⎫-sin α cos α cos α sin α·⎝ ⎛⎭⎪⎫-sin α cos α cos α sin α =⎝ ⎛⎭⎪⎫-sin α2+cos 2α -sin αcos α+cos αsin α-sin αcos α+cos αsin α cos 2α+sin 2α=⎝ ⎛⎭⎪⎫1 001,所以④是真命题,故填③④. 【答案】 ③④把下面命题补充完整,使其成为一个真命题.若函数f (x )=3+log 2x (x >0)的图象与g (x )的图象关于x 轴对称,则g (x )=________. 【解析】 设g (x )图象上任一点(x ,y ),则它关于x 轴的对称点为(x ,-y ),此点在f (x )的图象上,故有:-y =3+log 2x 成立,即y =-3-log 2x (x >0).【答案】 -3-log 2x (x >0)。