高中数学第一章常用逻辑用语1.3充分条件、必要条件与命题的四种形式1.3.1推出与充分条件、必要条件课堂导学

合集下载

新教材2023年高中数学 第1章 集合与常用逻辑用语 1

新教材2023年高中数学 第1章 集合与常用逻辑用语 1
(2)(2021·上海徐汇区高一联考)已知x∈R,p:x2<x,q:x-a≤0, 若p是q的充分不必要条件,则实数a的取值范围是__{_a_|a_≥__1_}______.
[解析] (1)由题意,p:-1<x<3,q:-1<x<m+1,
因为 q 是 p 的必要不充分条件,即{x|-1<x<3} {x|-1<x<m+1},则 m+1>3,解得 m>2,即实数 m 的取值范围是{m|m>2}.
(2)必要性(由△ABC为等边三角形⇒a2+b2+c2=ab+ac+bc): 因为△ABC为等边三角形,所以a=b=c,所以a2+b2+c2=3a2,ab +ac+bc=3a2,故a2+b2+c2=ab+ac+bc. 综上可知,结论得证.
题型三
根据充分条件、必要条件求参数的取值范围
典例3 已知p:-4<x-a<4,q:(x-2)(x-3)<0,且q是p的充分
【对点练习】❶ (1)a,b中至少有一个不为零的充要条件是
( D)
A.ab=0
B.ab>0
C.a2+b2=0
D.a2+b2>0
(2)如果甲是乙的必要条件,丙是乙的充分条件,但不是乙的必要条
件,那么
(A )
A.丙是甲的充分不必要条件
B.丙是甲的必要不充分条件
C.丙是甲的充要条件
D.丙是甲的既不充分又不必要条件
关键能力 ·攻重难
题型探究
题型一
充要条件的判断与探究
典例1 (1)判断下列各题中,p是否为q的充要条件? ①在△ABC中,p:∠A>∠B,q:BC>AC; ②若a,b∈R,p:a2+b2=0,q:a=b=0; ③p:|x|>3,q:x2>9.

高中数学人教B版选修1-1课件:1.3.1 推出与充分条件、必要条件 (2)

高中数学人教B版选修1-1课件:1.3.1 推出与充分条件、必要条件 (2)
(4)p:m>0;q:方程 x2+x-m=0 有实根.
解:(1)四边形对角线互相平分 四边形是矩形;四边形是矩形 ⇒四边形对角线互相平分,故 p 是 q 的必要不充分条件. (2)x=1 或 x=2⇒x-1= x-1;x-1= x-1⇒x=1 或 x=2 , 故 p 是 q 的充要条件.
(3)在△ABC 中,∠A≠60° sinA≠ 23(如∠A=120°时,sinA= 23);在△ABC 中,sinA≠ 23⇒∠A≠60°,故 p 是 q 的必要不充分 条件. (4)m>0⇒方程 x2+x-m=0 的Δ =1+4m>0,即方程有实根;方程 x2+x-m=0 有实根,即Δ =1+4m≥0 m>0,故 p 是 q 的充分不 必要条件.
第一章 常用逻辑用语 1.3 充分条件、必要条件与命题的四种形式
1.3.1 推出与充分条件、必要条件
1.充分条件和必要条件 当命题“如果p,则q”经过推理证明判定是真命题时,我们就 说由p可以推出q,记作_p_⇒__q_,读作“p推出q”,又称p是q的 _充__分__条__件___,q是p的_必__要__条__件___.
m2>0.若p是q的充分不必要条件,求正实数m的取值范围.
【 思 路 点 拨 】 求命题p → 求命题q → 由题意列不等式组 → 求m的范围
解:解不等式 x2-8x-20>0, 得 p:A={x|x>10 或 x<-2}.(2 分) 解不等式 x2-2x+1-m2>0, 得 q:B={x|x>1+m 或 x<1-m,m>0}.(4 分) 依题意 p⇒q,但是 q 不能推出 p,说明 A B.…(6 分)
失误防范 证明p是q的充要条件应注意的地方: (1)首先应分清条件和结论,并不是在前面的就是条件.如若要证“p 是q的充要条件”,则p是条件,q是结论;若要证“p的充要条件是q”, 则q是条件,p是结论.这是易错点;

高中数学选修1-1(人教B版)第一章常用逻辑用语1.3知识点总结含同步练习题及答案

高中数学选修1-1(人教B版)第一章常用逻辑用语1.3知识点总结含同步练习题及答案

q ”,那么
1 时,mx 2 − x + 1 = 0 无实数根; 4
1 ,则 mx 2 − x + 1 = 0 无实数根,真命题; 4
写出下列命题的逆命题、否命题和逆否命题,并判断它们的真假. (1)若 m ⋅ n < 0 ,则方程 mx 2 − x + n = 0 有实数根; (2)若 m ⩽ 0 或 n ⩽ 0,则 m + n ⩽ 0 . 解:(1)逆命题:若方程 mx 2 − x + n = 0 有实数根,则 m ⋅ n < 0 ,假命题 ; 否命题:若 m ⋅ n ⩾ 0 ,则方程 mx2 − x + n = 0 没有实数根,假命题 ; 逆否命题:若方程 mx 2 − x + n = 0 没有实数根,则 m ⋅ n ⩾ 0 ,真命题. (2)逆命题:若 m + n ⩽ 0 ,则 m ⩽ 0 或 n ⩽ 0 ,真命题; 否命题:若 m > 0 且 n > 0,则 m + n > 0 ,真命题 ; 逆否命题:若 m + n > 0 ,则 m > 0 且 n > 0 ,假命题 .
因为 p 是 q 的充分不必要条件,所以 A ⫋ B.故
{ 1 + m ⩾ 10, 或{ 1 + m > 10, 1 − m < −2, 1 − m ⩽ −2,
解得 m ⩾ 9 ,故实数 m 的取值范围是 [9, +∞).
2.若则命题的四种形式 描述: 若则命题 命题的常见形式为“若 p 则 q ”,其中 p 叫做命题的条件, q 叫做命题的结论. 逆命题 对于两个命题,如果一个命题的条件和结论分别是另一个命题的结论和条件,那么这两个命题称 为互逆命题.其中一个命题称为原命题(original proposition),另一个称为原命题的逆命 题(inverse proposition).也就是说,如果原命题为“若 p ,则 q ”,那么它的逆命题 为“若 q ,则 p ”. 否命题 对于两个命题,如果一个命题的条件和结论分别是另一个命题的条件的否定和结论的否定,那么 这两个命题称为互否命题.其中一个命题称为原命题,另一个称为原命题的否命题(negative proposition).也就是说,如果原命题为“若 p ,则 q ”,那么它的否命题为“若 ¬p ,则 ¬q ”. 逆否命题 对于两个命题,如果一个命题的条件和结论恰好是另一个命题的结论的否定和条件的否定,那么 这两个命题称为互为逆否命题.其中一个命题称为原命题,另一个称为原命题的逆否命

(人教课标版)普通高中课程标准实验教科书《数学》目录(B版)

(人教课标版)普通高中课程标准实验教科书《数学》目录(B版)

(人教课标版)普通高中课程标准实验教科书《数学》目录(B版)(人教课标版)普通高中课程标准实验教科书《数学》目录(B版)必修一第一章集合1.1集合与集合的表示方法1.1.1集合的概念1.1.2集合的表示方法1.2集合之间的关系与运算1.2.1集合之间的关系1.2.2集合的运算本章小结阅读与欣赏聪明在于学习,天才由于积累第二章函数2.1函数2.1.1函数2.1.2函数的表示方法2.1.3函数的单调性2.1.4函数的奇偶性2.1.5用计算机作函数的图象(选学)2.2一次函数和二次函数2.2.1一次函数的性质与图象2.2.3待定系数法2.3函数的应用(Ⅰ)2.4函数与方程2.4.1函数的零点2.4.2求函数零点近似解的一种计算方法——二分法本章小结阅读与欣赏函数概念的形成与发展第三章基本初等函数(Ⅰ)3.1指数与指数函数3.1.1实数指数幂及其运算3.1.2指数函数3.2对数与对数函数3.2.1对数及其运算3.2.2对数函数3.2.3指数函数与对数函数的关系3.3幂函数3.4函数的应用(Ⅱ)本章小结阅读与欣赏对数的发明必修二第一章立体几何初步1.1空间几何体1.1.1构成空间几何体的基本元素1.1.2棱柱、棱锥和棱台的结构特征1.1.3圆柱、圆锥、圆台和球1.1.4投影与直观图1.1.5三视图1.1.6棱柱、棱锥、棱台和球的表面积1.1.7柱、锥、台和球的体积实习作业1.2点、线、面之间的位置关系1.2.1平面的基本性质与推论1.2.2空间中的平行关系1.2.3空间中的垂直关系本章小结阅读与欣赏散发着数学芳香的碑文第二章平面解析几何初步2.1平面直角坐标系中的基本公式2.1.1数轴上的基本公式2.1.2平面直角坐标系中的基本公式2.2直线的方程2.2.1直线方程的概念与直线的斜率2.2.2直线方程的几种形式2.2.3两条直线的位置关系2.2.4点到直线的距离2.3圆的方程2.3.1圆的标准方程2.3.2圆的一般方程2.3.3直线与圆的位置关系2.3.4圆与圆的位置关系2.4空间直角坐标系2.4.1空间直角坐标系2.4.2空间两点的距离公式本章小结阅读与欣赏笛卡儿必修三第一章算法初步1.1算法与程序框图1.1.1算法的概念1.1.2程序框图1.1.3算法的三种基本逻辑结构和框图表示1.2基本算法语句1.2.1赋值、输入和输出语句1.2.2条件语句1.2.3循环语句1.3中国古代数学中的算法案例本章小结阅读与欣赏我国古代数学家秦九韶附录1解三元一次方程组的算法、框图和程序附录2Scilab部分函数指令表第二章统计2.1随机抽样2.1.2系统抽样2.1.4数据的收集2.2用样本估计总体2.2.1用样本的频率分布估计总体的分布2.2.2用样本的数字特征估计总体的数字特征2.3变量的相关性2.3.1变量间的相关关系2.3.2两个变量的线性相关本章小结阅读与欣赏蚂蚁和大象谁的力气更大附录随机数表第三章概率3.1事件与概率3.1.1随机现象3.1.2事件与基本事件空间3.1.3频率与概率3.1.4概率的加法公式3.2古典概型3.2.1古典概型3.2.2概率的一般加法公式(选学)3.3随机数的含义与应用3.3.1几何概型3.3.2随机数的含义与应用3.4概率的应用本章小结阅读与欣赏概率论的起源必修四第一章基本初等函数(Ⅱ)1.1任意角的概念与弧度制1.1.1角的概念的推广1.1.2弧度制和弧度制与角度制的换算1.2任意角的三角函数1.2.1三角函数的定义1.2.2单位圆与三角函数线1.2.3同角三角函数的基本关系式1.2.4诱导公式1.3三角函数的图象与性质1.3.1正弦函数的图象与性质1.3.2余弦函数、正切函数的图象与性质1.3.3已知三角函数值求角教学建模活动本章小结阅读与欣赏三角学的发展第二章平面向量2.1向量的线性运算2.1.1向量的概念2.1.2向量的加法2.1.3向量的减法2.1.4数乘向量2.1.5向量共线的条件与轴上向量坐标运算2.2向量的分解与向量的坐标运算2.2.1平面向量基本定理2.2.2向量的正交分解与向量的直角坐标运算2.2.3用平面向量坐标表示向量共线条件2.3平面向量的数量积2.3.1向量数量积的物理背景与定义2.3.2向量数量积的运算律2.3.3向量数量积的坐标运算与度量公式2.4向量的应用2.4.1向量在几何中的应用2.4.2向量在物理中的应用本章小结阅读与欣赏向量概念的推广与应用第三章三角恒等变换3.1和角公式3.1.1两角和与差的余弦3.1.2两角和与差的正弦3.1.3两角和与差的正切3.2倍角公式和半角公式3.2.1倍角公式3.2.2半角的正弦、余弦和正切3.3三角函数的积化和差与和差化积本章小结阅读与欣赏和角公式与旋转对称必修五第一章解三角形1.1正弦定理和余弦定理1.1.1正弦定理1.1.2余弦定理1.2应用举例本章小结阅读与欣赏亚历山大时期的三角测量第二章数列2.1数列2.1.1数列2.1.2数列的递推公式(选学)2.2等差数列2.2.1等差数列2.2.2等差数列的前n项和2.3等比数列2.3.1等比数列2.3.2等比数列的前n项和本章小结阅读与欣赏级数趣题无穷与悖论第三章不等式3.1不等关系与不等式3.1.1不等关系与不等式3.1.2不等式的性质3.2均值不等式3.3一元二次不等式及其解法3.4不等式的实际应用3.5二元一次不等式(组)与简单的线性规划问题3.5.1二元一次不等式(组)所表示的平面区域3.5.2简单线性规划本章小结选修1-1第一章常用逻辑用语1.1命题与量词1.1.1命题1.1.2量词1.2基本逻辑联结词1.2.1“且”与“或”1.2.2“非”(否定)1.3充分条件、必要条件与命题的四种形式1.3.1推出与充分条件、必要条件1.3.2命题的四种形式本章小结阅读与欣赏什么是数理逻辑第二章圆锥曲线与方程2.1椭圆2.1.1椭圆及其标准方程2.1.2椭圆的几何性质2.2双曲线2.2.1双曲线及其标准方程2.2.2双曲线的几何性质2.3抛物线2.3.1抛物线级其标准方程2.3.2抛物线的几何性质本章小结阅读与欣赏圆锥面与圆锥曲线第三章导数及其应用3.1导数3.1.1函数的平均变化率3.1.2瞬时速度与导数3.1.3导数的几何意义3.2导数的运算3.2.1常数与幂函数的导数3.2.2导数公式表3.2.3导数的四则运算法则3.3导数的应用3.3.1利用导数判断函数的单调性3.3.2利用导数研究函数的极值3.3.3导数的实际应用本章小结阅读与欣赏微积分与极限思想选修1-2第一章统计案例1.1独立性检验1.2回归分析本章小结“回归”一词的由来附表相关性检验的临界值表第二章推理与证明2.1合情推理与演绎推理2.1.1合情推理2.1.2演绎推理2.2直接证明与间接证明2.2.1综合法与分析法2.2.2反证法本章小结阅读与欣赏《原本》与公理化思想数学证明的机械化——机器证明第三章数系的扩充与复数的引入3.1数系的扩充与复数的引入3.1.1实数系3.1.2复数的引入3.2复数的运算3.2.1复数的加法和减法3.2.2复数的乘法和除法本章小结复平面与高斯第四章框图4.1流程图4.2结构图本章小结阅读与欣赏冯·诺伊曼选修2-1第一章常用逻辑用语1.1命题与量词1.1.1命题1.1.2量词1.2基本逻辑联结词1.2.1“且”与“或”1.2.2“非”(否定)1.3充分条件、必要条件与命题的四种形式1.3.1推出与充分条件、必要条件本章小结阅读与欣赏什么是数理逻辑第二章圆锥曲线与方程2.1曲线与方程2.1.1曲线与方程的概念2.1.2由曲线求它的方程、由方程研究曲线的性质2.2椭圆2.2.1椭圆的标准方程2.2.2椭圆的几何性质2.3双曲线2.3.1双曲线的标准方程2.3.2双曲线的几何性质2.4抛物线2.4.1抛物线的标准方程2.4.2抛物线的几何性质2.5直线与圆锥曲线本章小结阅读与欣赏圆锥面与圆锥曲线第三章空间向量与立体几何3.1空间向量及其运算3.1.1空间向量的线性运算3.1.2空间向量的基本定理3.1.3两个向量的数量积3.1.4空间向量的直角坐标运算3.2空间向量在立体几何中的应用3.2.1直线的方向向量与直线的向量方程3.2.2平面的法向量与平面的向量表示3.2.3直线与平面的夹角3.2.4二面角及其度量3.2.5距离(选学)本章小结阅读与欣赏向量的叉积及其性质选修2-2第一章导数及其应用1.1导数1.1.1函数的平均变化率1.1.2瞬时速度与导数1.1.3导数的几何意义1.2导数的运算1.2.1常数函数与冥函数的导数1.2.2导数公式表及数学软件的应用1.2.3导数的四则运算法则1.3导数的应用1.3.1利用导数判断函数的单调性1.3.2利用导数研究函数的极值1.3.3导数的实际应用1.4定积分与微积分基本定理1.4.1曲边梯形面积与定积分1.4.2微积分基本定理本章小结阅读与欣赏微积分与极限思想第二章推理与证明2.1合情推理与演绎推理2.1.1合情推理2.1.2演绎推理2.2直接证明与间接证明2.2.1综合法与分析法2.2.2反证法2.3数学归纳法2.3.1数学归纳法2.3.2数学归纳法应用举例本意小结阅读与欣赏《原本》与公理化思想第三章数系的扩充与复数3.1数系的扩充与复数的概念3.1.1实数系3.1.2复数的概念3.1.3复数的几何意义3.2复数的运算3.2.1复数的加法与减法3.2.2复数的乘法3.2.3复数的除法本章小节阅读与欣赏复平面与高斯选修2-3第一章计数原理1.1基本计数原理1.2排列与组合1.2.1排列1.2.2组合1.3二项式定理1.3二项式定理1.3.2杨辉三角本章小结第二章概率2.1离散型随机变量及其分布列2.1.1离散型随机变量2.1.2离散型随机变量的分布列2.1.3超几何分布2.2条件概率与事件的独立性2.2.1条件概率2.2.2事件的独立性2.2.3独立重复试验与二项分布2.3随机变量的数字特征2.3.1离散型随机变量的数学期望2.3.2离散型随机变量的方差2.4正态分布本章小结阅读与欣赏关于“玛丽莲问题”的争论第三章统计案例3.1独立性检验3.2回归分析本章小结阅读与欣赏“回归”一词的由来附表选修3-1第一讲早期的算术与几何一古埃及的数学二两河流域的数学三丰富多彩的记数制度第二讲古希腊数学一希腊数学的先行者二毕达哥拉斯学派三欧几里得与《原本》四数学之神──阿基米德第三讲中国古代数学瑰宝一《周髀算经》与赵爽弦图二《九章算术》三大衍求一术四中国古代数学家第四讲平面解析几何的产生一坐标思想的早期萌芽二笛卡儿坐标系三费马的解析几何思想四解析几何的进一步发展第五讲微积分的诞生一微积分产生的历史背景二科学巨人牛顿的工作三莱布尼茨的“微积分”第六讲近代数学两巨星一分析的化身──欧拉二数学王子──高斯第七讲千古谜题一三次、四次方程求根公式的发现二高次方程可解性问题的解决三伽罗瓦与群论四古希腊三大几何问题的解决第八讲对无穷的深入思考一古代的无穷观念二无穷集合论的创立三集合论的进一步发展与完善第九讲中国现代数学的开拓与发展一中国现代数学发展概观二人民的数学家──华罗庚三当代几何大师──陈省身选修3-2暂缺选修3-3第一讲从欧氏几何看球面一平面与球面的位置关系二直线与球面的位置关系和球幂定理三球面的对称性第二讲球面上的距离和角一球面上的距离二球面上的角第三讲球面上的基本图形一极与赤道二球面二角形三球面三角形1.球面三角形2.三面角3.对顶三角形4.球极三角形第四讲球面三角形一球面三角形三边之间的关系二、球面“等腰”三角形三球面三角形的周长四球面三角形的内角和第五讲球面三角形的全等1.“边边边”(s.s.s)判定定理2.“边角边”(s.a.s.)判定定理3.“角边角”(a.s.a.)判定定理4.“角角角”(a.a.a.)判定定理第六讲球面多边形与欧拉公式一球面多边形及其内角和公式二简单多面体的欧拉公式三用球面多边形的内角和公式证明欧拉公式第七讲球面三角形的边角关系一球面上的正弦定理和余弦定理二用向量方法证明球面上的余弦定理1.向量的向量积2.球面上余弦定理的向量证明三从球面上的正弦定理看球面与平面四球面上余弦定理的应用──求地球上两城市间的距离第八讲欧氏几何与非欧几何一平面几何与球面几何的比较二欧氏平行公理与非欧几何模型──庞加莱模型三欧氏几何与非欧几何的意义阅读与思考非欧几何简史选修3-4第一讲平面图形的对称群一平面刚体运动1.平面刚体运动的定义2.平面刚体运动的性质二对称变换1.对称变换的定义2.正多边形的对称变换3.对称变换的合成4.对称变换的性质5.对称变换的逆变换三平面图形的对称群第二讲代数学中的对称与抽象群的概念一n元对称群Sn二多项式的对称变换三抽象群的概念1.群的一般概念2.直积第三讲对称与群的故事一带饰和面饰二化学分子的对称群三晶体的分类四伽罗瓦理论选修4-1第一讲相似三角形的判定及有关性质一平行线等分线段定理二平行线分线段成比例定理三相似三角形的判定及性质1.相似三角形的判定2.相似三角形的性质四直角三角形的射影定理第二讲直线与圆的位置关系一圆周角定理二圆内接四边形的性质与判定定理三圆的切线的性质及判定定理四弦切角的性质五与圆有关的比例线段第三讲圆锥曲线性质的探讨一平行摄影二平面与圆柱面的截线三平面与圆锥面的截线选修4-2引言第一讲线性变换与二阶矩阵一线性变换与二阶矩阵(一)几类特殊线性变换及其二阶矩阵1.旋转变换2.反射变换3.伸缩变换4.投影变换5.切变变换(二)变换、矩阵的相等二二阶矩阵与平面向量的乘法(二)一些重要线性变换对单位正方形区域的作用第二讲变换的复合与二阶矩阵的乘法一复合变换与二阶矩阵的乘法二矩阵乘法的性质第三讲逆变换与逆矩阵一逆变换与逆矩阵1.逆变换与逆矩阵2.逆矩阵的性质二二阶行列式与逆矩阵三逆矩阵与二元一次方程组1.二元一次方程组的矩阵形式2.逆矩阵与二元一次方程组第四讲变换的不变量与矩阵的特征向量一变换的不变量——矩阵的特征向量1.特征值与特征向量2.特征值与特征向量的计算二特征向量的应用1.Aa的简单表示2.特征向量在实际问题中的应用选修4-5第一章不等式的基本性质和证明的基本方法1.1 不等式的基本性质和一元二次不等式的解法1.2基本不等式1.3绝对值不等式的解法1.4绝对值的三角不等式1.5不等式证明的基本方法本章小结第二章柯西不等式与排序不等式及其应用2.1 柯西不等式2.2排序不等式2.3平均值不等式(选学)2.4最大值与最小值问题,优化的数学模型本章小结阅读与欣赏第三章数学归纳法与贝努利不等式3.1数学归纳法原理3.2用数学归纳法证明不等式,贝努利不等式本章小结阅读与欣赏附录部分中英文词汇对照表后记选修4-6引言第一讲整数的整除一整除1.整除的概念和性质2.带余除法3.素数及其判别法二最大公因数与最小公倍数1.最大公因数2.最小公倍数三算术基本定理第二讲同余与同余方程一同余1.同余的概念2.同余的性质二剩余类及其运算三费马小定理和欧拉定理四一次同余方程五拉格朗日插值法和孙子定理六弃九验算法第三讲一次不定方程一二元一次不定方程二二元一次不定方程的特解三多元一次不定方程第四讲数伦在密码中的应用一信息的加密与去密二大数分解和公开密钥学习总结报告附录一剩余系和欧拉函数附录二多项式的整除性选修4-7引言第一讲优选法一什么叫优选法二单峰函数三黄金分割法——0.618法1.黄金分割常数2.黄金分割法——0.618法阅读与思考黄金分割研究简史四分数法1.分数法阅读与思考斐波那契数列和黄金分割2.分数法的最优性五其他几种常用的优越法1.对分法2.盲人爬山法3.分批试验法4.多峰的情形六多因素方法1.纵横对折法和从好点出发法2.平行线法3.双因素盲人爬山法第二讲试验设计初步一正交试验设计法1.正交表2.正交试验设计3.试验结果的分析4.正交表的特性二正交试验的应用选修4-9引言第一讲风险与决策的基本概念一风险与决策的关系二风险与决策的基本概念1.风险(平均损失)2.平均收益3.损益矩阵4.风险型决策探究与发现风险相差不大时该如何决策第二讲决策树方法第三讲风险型决策的敏感性分析第四讲马尔可夫型决策简介一马尔可夫链简介1.马尔可夫性与马尔可夫链2.转移概率与转移概率矩阵二马尔可夫型决策简介三长期准则下的马尔可夫型决策理论1.马尔可夫链的平稳分布2.平稳分布与马尔可夫型决策的长期准则3.平稳准则的应用案例说明:A版适用于文件生使用,B版适用于理科生使用,B 版比A版略难。

高中数学常用逻辑用语

高中数学常用逻辑用语

逆否命题: 若 q 则 p
结论1:要写出一个命题的另外三个命
题关键是分清命题的题设和结论(即
把原命题写成“若p则q”的形式)
注意:三种命题中最难写 的是否命题。 高中数学常用逻辑用语
三、四种命题之间的 关系
原命题
பைடு நூலகம்若p则q
互逆 逆命题
若q则p




否命题
逆否命题
若﹁p则﹁q
互逆 若﹁q则﹁p
高中数学常用逻辑用语
x∈N”是“x∈M∩N”的
B
A.充要条件
B必要不充分条件
C充分不必要 D既不充分也不必要
注、集合法
2、a∈R,|a|<3成立的一个必要不充分条件是
A.a<3 B.|a|<2 C.a2<9 D.0<a<2
A
高中数学常用逻辑用语
练习5、
1.已知p是q的必要而不充分条件, 那么┐p是┐q的___充__分_不__必__要_条__件__.
(2)从这个假设出发,经过推理 论证,得出矛盾;
(3) 由矛盾判定假设不正确, 从而肯定命题的高中数结学常用论逻辑正用语 确。
归谬 结论
1.写出命题“当c>0时,若a>b, 则ac>bc“的逆命题,否命题 与逆否命题,并分别判断他们的真假
2.写出命题“若x≠a且x≠b, 则x2-(a+b)x+ab≠0”的否命题
充分非必要条件
2) 若A B且B A,则甲是乙的
必要非充分条件
3)若A B且B A,则甲是乙的
既不充分也不必要条件 4)若A=B ,则甲是高中乙数学的常用逻充辑用分语 且必要条件。
注意点
1.在判断条件时,要特别注意的是它们能否互相 推出,切不可不加判断以单向推出代替双向推出.

高中数学人教B版选修1-1课件:1.3.2 命题的四种形式

高中数学人教B版选修1-1课件:1.3.2 命题的四种形式
第一章 常用逻辑用语 1.3 充分条件、必要条件与命题的四种形式
1.3.2 命题的四种形式
1.了解四种命题的概念,会写出某命题的逆命题、否命 题 和逆否命题. 2.认识四种命题之间的关系以及真假性之间的关系.(重点) 3.利用命题真假的等价性解决简单问题.(难点、易错点)
知识点一、四种命题的概念
【答案】 1
题目类型三、等价命题的应用
证明:如果p2+q2=2,则p+q≤2. 【思路探究】 可以写出该命题的逆否命题,证明其逆否命 题正确,由原命题与其逆否命题的等价性可知原命题也正确.
证明:该命题的逆否命题为:若 p+q>2,则 p2+q2≠2. 因为 p2+q2≥12(p+q)2. 又因为 p+q>2,所以(p+q)2>4,所以 p2+q2>2, 即 p+q>2 时,p2+q2≠2 成立. 所以如果 p2+q2=2,则 p+q≤2 成立.
的函数是单调函数”,B错.逆否命题为“单调函数不是周期函
数,C错,所以选D.
(2)根据逆否命题的定义可知命题“若α=
π 4
,则tan
α=1”的
逆否命题是:若tan α≠1,则α≠4π.
【答案】 (1)D (2)若tan α≠1,则α≠π4
题目类型二、四种命题真假的判断
写出下列命题的逆命题、否命题、逆否命题,然后 判断真假.
3.互为逆否命题等价.当一个命题的真假不易判断时,可通 过判定其逆否命题的真假来判断.
有下列四个命题: ①“若b=3,则b2=9”的逆命题; ②“全等三角形的面积相等”的否命题; ③“若c<1,则x2+2x+c=0有实根”的逆命题; ④“若A∩B=A,则A⊆B”的逆否命题. 其中真命题的个数是________.
(2)两个命题互为逆命题或互为否命题时,它们的真假性 没有关系 .

原创2:1.3.2 命题的四种形式

原创2:1.3.2 命题的四种形式

(2)逆命题:若方程 mx2-x+n=0 有实数根,则 m·n<0. 否命题:若 m·n≥0,则方程 mx2-x+n=0 没有实数根. 逆否命题:若方程 mx2-x+n=0 没有实数根,则 m·n≥0.
题型二 四种命题真假的判断 【例 2】 有下列四个命题: ①“若 x+y=0,则 x,y 互为相反数”的否命题; ②“若 a>b,则 a2>b2”的逆否命题; ③“若 x≤-3,则 x2-x-6>0”的否命题; ④“同位角相等”的逆命题. 其中真命题的个数是________. [思路探索] 可先逐一分清两个命题的条件和结论,再利用有关 知识判断真假.
4分
即 4a-7≥0,
解得 a≥74.
8分
因为 a≥74,所以 a≥1,所以原命题为真.
又因为原命题与其逆否命题等价,所以逆否命题为真.12 分
【题后反思】 由于原命题和它的逆否命题有相同的真假性,即 互为逆否命题的命题具有等价性,所以我们在直接证明某一个 命题为真命题有困难时,可以通过证明它的逆否命题为真命题, 来间接地证明原命题为真命题.
(2)“如果 p,则 q”的否定为“如果 p,则綈 q”,其否命题为
“如果綈 p,则綈 q”. (3)命题的否定的真假性与原命题相反,而否命题的真假性与原 命题的真假性没有关系.
题型一 四种命题之间的转换 【例 1】 写出以下命题的逆命题、否命题和逆否命题. (1)如果直线垂直于平面内的两条相交直线,那么这条直线垂直 于平面; (2)如果 x>10,那么 x>0; (3)当 x=2 时,x2+x-6=0. [思路探索] 可先分清命题的条件和结论,写成“若 p,则 q” 的形式,再写出逆命题、否命题和逆否命题.
解 (1)逆命题:如果直线垂直于平面,那么直线垂直于平面内 的两条相交直线; 否命题:如果直线不垂直于平面内的两条相交直线, 那么直线不垂直于平面; 逆否命题:如果直线不垂直于平面,那么直线不垂直于平面内 的两条相交直线. (2)逆命题:如果 x>0,那么 x>10; 否命题:如果 x≤10,那么 x≤0; 逆否命题:如果 x≤0,那么 x≤10.

高中数学:常用逻辑用语

高中数学:常用逻辑用语

常用逻辑用语一、知识框架1.命题定义:用语言、符号或式子表达的、可以判断正误的陈述语句,叫做命题。

其中,判断为真的即为真命题,为假的即为假命题。

2.命题的判断以及命题真假的判断(1)命题的判断:①判断该语句是否是陈述句;②能否判断真假。

(2)命题真假的判断:首先,分清条件与结论,其次,再判断命题真假。

3.一般地,用p 和q 分别表示原命题的条件和结论,用¬p 和¬q 表示p 与q 的否定,即如下:(四种命题的关系)4.充分条件和必要条件 (1)充分条件:如果A 成立,那么B 成立,则条件A 是B 成立的充分条件。

(2)必要条件:如果A 成立,那么B 成立,这时B 是A 的必然结果,则条件B 是A 成立的必要条件。

(3)充要条件:如果A 既是B 成立的充分条件,又是B 成立的必要条件,则A 是B 成立的充要条件,与此同时,B 也一定是A 成立的重要条件,所以此时,A 、B 互为充要条件。

【注意】充分条件与必要条件是完全等价的,是同一逻辑关系“A =>B ”的不同表达方法。

5.逻辑联结词(1)不含逻辑联结词的命题是简单命题,由简单命题和逻辑联结词“或”“且”“非”构成的命题是复合命题,它们有以下几种形式:p 或q (p ∨q );p 且q (p ∧q );非p (¬p )。

(2)逻辑联结词“或”“且”“非”的含义的理解 在集合中学习的“并集”“交集”“补集”与逻辑联结词中的“或”“且”“非”关系十分密切。

6.量词与命题量词名称 常见量词表示符号全称量词 所有、一切、任意、全部、每一个、任给等 ∀存在量词 存在一个、至少有一个、某个、有些、某些等∃命 题 表述形式 原命题 若p 则q 逆命题 若q 则p 否命题 若¬p 则¬q 逆否命题若¬q 则¬p(2)全称命题与特称命题 命题全称命题“()x p M x ,∈∀”特称命题“()00,x p M x ∈∃”定义短语“对所有的”“对任意一个”等,在逻辑中通常叫做全称量词,用符号“∀”表示。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

1.3.1 推出与充分条件、必要条件
课堂导学
三点剖析
一、充分条件与必要条件的判断
【例1】在下列各题中,判断A是B的什么条件,并说明理由.
(1)A:|p|≥2,p∈R.B:方程x2+px+p+3=0有实根;
(2)A:圆x2+y2=r2与直线ax+by+c=0相切.B:c2=(a2+b2)r2.
解析:(1)当|p|≥2时,例如p=3,则方程x2+3x+6=0无实根,而方程x2+px+p+3=0有实根,必有p≤-2或p≥6,可推出|p|≥2,故A是B的必要不充分条件.
(2)若圆x2+y2=r2与直线ax+by+c=0相切,圆心到直线ax+by+c=0的距离等于r,即r=,所以c2=(a2+b2)r2;反过来,若c2=(a2+b2)r2,则=r成立,说明
x2+y2=r2的圆心(0,0)到直线ax+by+c=0的距离等于r,即圆x2+y2=r2与直线ax+by+c=0相切,故A是B的充分必要条件.
温馨提示
对于涉及充分必要条件判断的问题,必须以准确、完整理解充分、必要条件的概念为基础,有些问题需转化为等价命题后才容易判断.
二、探究充分条件与必要条件
【例2】设定义域为R的函数f(x)=则关于x的方程f2(x)+bf(x)+c=0
有7个不同实数解的充要条件是( )
A.b<0且c>0
B.b>0且c<0
C.b<0且c=0
D.b≥0且c=0
解析:f(x)=
故函数f(x)的图象如右图.
由图知,f(x)图象关于x=1对称,且f(x)≥0,
若方程f2(x)+bf(x)+c=0 ①有7个解,则方程t2+bt+c=0 ②有两个不等实根,且一根为正,一根为0.否则,若方程②有两相等实根,则方程①至多有4个解,若方程②有两个不等正实根,则方程①有8个解.
∵f(x)=0满足方程,则c=0,
又∵另一个f(x)>0,
∴b=-f(x)<0.
故b<0且c=0,选C.
答案:C
温馨提示
充分与必要条件的寻找,要重视它们的定义
三、充要条件的证明
【例3】证明:关于x的方程ax2+bx+c=0有一根为-1的充要条件是a-b+c=0.
证明:①充分性
∵a-b+c=0
∴a·(-1)2+b·(-1)+c=0
∴x=-1是方程ax2+bx+c=0的一个根
∴a-b+c=0是关于x的方程ax2+bx+c=0有一个根为-1的充分条件.
②必要性
∵x=-1是方程ax2+bx+c=0的根
∴a·(-1)2+b·(-1)+c=0即a-b+c=0
∴a-b+c=0是关于x的方程ax2+bx+c=0有一个根为-1的必要条件.
综合①②关于x的方程ax2+bx+c=0有一个根为-1的充要条件是a-b+c=0.
温馨提示
p是q的充要条件,充分性是指p q,必要性是指q p.而p的充要条件是q,充分性则是指q p,必要性则是指p q.
各个击破
类题演练1
在△ABC中,命题p:,命题q:△ABC是等边三角形,那么命题p
是命题q的( )
A.充分不必要条件
B.必要不充分条件
C.充分必要条件
D.既不充分又不必要条件
解析:由已知和正弦定理,得


解得k=1.
∴sin A=sin B=sin C, ∴A=B=C.
∴p q,p是q的充分条件,
若△ABC为等边三角形,
则a=b=c,A=B=C,

∴q p,q是q的必要条件.
∴p为q的充分必要条件.
∴答案:C
变式提升1
命题甲:“a,b,c成等差数列”是命题乙=2的( )
A.必要不充分条件
B.充分不必要条件
C.充要条件
D.既不充分也不必要条件
解析:若a=b=c=0,则a,b,c也成等差数列,但推不出=2
反过来由=2a+c=2b,即a,b,c成等差数列,故选A.
类题演练2
对任意实数a,b,c,给出下列命题:
①“a=b”是“ac=bc”的充要条件
②“a+5是无理数”是“a是无理数”的充要条件
③“a>b”是“a2>b2”的充分条件
④“a<5”是“a<3”的必要条件
其中真命题的个数是( )
A.1
B.2
C.3
D.4 解析:①中,当c=0时,ac=bc/a=b.
故“a=b”是“ac=bc”的充分不必要条件,故①错误.
③中,“a>b”是“a2>b2”的既不充分也不必要条件,故③错误.
②④正确.
答案:B
变式提升2
已知条件p:x+y≠-2,条件q:x,y不都是-1,则p是q的( )条件. A.充分不必要 B.必要不充分
C.充要
D.既不充分也不必要
解析:p:x+y≠-2,q:x≠-1或y≠-1.
p:x+y=-2,q:x=-1且y=-1.
∵q p,但p/q.
∴p是q的充分且不必要条件,选A.
类题演练3
证明一元二次方程ax2+bx+c=0有一正根和一负根的充要条件是ac<0
证明:充分性:若ac<0,则b2-4ac>0且<0
∴方程ax2+bx+c=0有两个相异实根,且两根异号,即方程有一正根和一负根
必要性:若一元二次方程ax2+bx+c=0有一正根和一负根
则Δ=b2-4ac>0,x1·x2=<0
∴ac<0.
变式提升3
已知p:|1-|≤2,q:x2-2x+1-m2≤0(m>0),且p是q的必要而不充分条件,求
实数m的取值范围.
解析:由x2-2x+1-m2≤0得
1-m≤x≤1+m,
∴q:A={x|x>1+m或x<1-m,m>0},
由|1-|≤2得-2≤x≤10,
∴p:B={x|x>10或x<-2}.
∵p是q的必要而不充分条件,
∴A B解得m≥9.。

相关文档
最新文档