五年级100道奥数题
五年级数学下册奥数题100题(含答案)之鸡兔同笼与数字数位问题

五年级数学下册奥数题100题(含答案)之鸡兔同笼与数字数位问题五年级奥数题二、鸡兔同笼问题1、鸡与兔共100只,鸡的腿数比兔的腿数少28条,问鸡与兔各有几只?三、数字数位问题1、把1至2005这2005个自然数依次写下来得到一个多位数123456789.....2005,这个多位数除以9余数是多少?2、A和B是小于100的两个非零的不同自然数。
求A+B分之A-B的最小值。
3、已知A.B.C都是非0自然数,A/2 + B/4 + C/16的近似值市6.4,那么它的准确值是多少?4、一个三位数的各位数字之和是17.其中十位数字比个位数字大1.如果把这个三位数的百位数字与个位数字对调,得到一个新的三位数,则新的三位数比原三位数大198,求原数.5、一个两位数,在它的前面写上3,所组成的三位数比原两位数的7倍多24,求原来的两位数.6、把一个两位数的个位数字与十位数字交换后得到一个新数,它与原数相加,和恰好是某自然数的平方,这个和是多少?7、一个六位数的末位数字是2,如果把2移到首位,原数就是新数的3倍,求原数.8、有一个四位数,个位数字与百位数字的和是12,十位数字与千位数字的和是9,如果个位数字与百位数字互换,千位数字与十位数字互换,新数就比原数增加2376,求原数.9、有一个两位数,如果用它去除以个位数字,商为9余数为6,如果用这个两位数除以个位数字与十位数字之和,则商为5余数为3,求这个两位数.10、如果现在是上午的10点21分,那么在经过28799...99(一共有20个9)分钟之后的时间将是几点几分?参考答案二.鸡兔同笼问题1、解:4*100=400,400-0=400 假设都是兔子,一共有400只兔子的脚,那么鸡的脚为0只,鸡的脚比兔子的脚少400只。
400-28=372 实际鸡的脚数比兔子的脚数只少28只,相差372只,这是为什么?4+2=6 这是因为只要将一只兔子换成一只鸡,兔子的总脚数就会减少4只(从400只变为396只),鸡的总脚数就会增加2只(从0只到2只),它们的相差数就会少4+2=6只(也就是原来的相差数是400-0=400,现在的相差数为396-2=394,相差数少了400-394=6)372÷6=62 表示鸡的只数,也就是说因为假设中的100只兔子中有62只改为了鸡,所以脚的相差数从400改为28,一共改了372只100-62=38表示兔的只数三.数字数位问题1、解:首先研究能被9整除的数的特点:如果各个数位上的数字之和能被9整除,那么这个数也能被9整除;如果各个位数字之和不能被9整除,那么得的余数就是这个数除以9得的余数。
五年级奥数题集锦

五年级奥数题集锦6、搬运100只玻璃瓶,规定搬一只得搬运费3分,但打碎一只不但不得搬运费,而且要赔5分,运完后共得运费2.60元,搬运中打碎了几只?2.60元=260分解:设搬运中打碎了X只。
3×(100-X)-5X=260300-3X-5X=2608X=40X=5答:搬运中打碎了5只。
7、参加校学生运动会团体操表演的运动员排成一个正方形队列,如果要使这个正方形队列减少一行和一列,则要减少33人,参加团体操表演的运动员有多少人?解:设团体操原来每行X人。
2X-1=332X=34X=1717×17=289(人)答:参加团体操表演的运动员有289人。
8、京华小学五年级的学生采集标本,采集昆虫标本的有25人,采集植物标本的有19人,两种标本都采集的有8人,全班学生共有40人,没有采集标本的有多少人?解:设没有采集标本的有X人。
25+19-8+X=4036+X=40X=4答:没有采集标本的有4人。
9、一个四位数,最高位上是7,如果把这个数字调动到最后一位,其余的数字依次迁移,则这个数要减少864,求这四位数。
解:设四位数的末三位为X。
7000+X=10X+7+8649X=6129X=6817000+681=7681答:这四位数是7681。
10、一辆汽车从甲地出发到300千米外的乙地去,在一开始的120千米内平均速度为每小时40千米,要想使这辆汽车从甲地到乙地的平均速度为每小时50千米,剩下的路程应以什么速度行驶?300÷50=6(小时)120÷40=3(小时)解:设剩下的路程每小时行X千米。
120+(6-3)X=300120+3X=3003X=180X=60答:剩下的路程每小时行60千米。
11、某班有40名学生,其中有15人参加数学小组,18人参加航模小组,有10人两个小组都参加。
那么有多少人两个小组都不参加?答案:因为10人2组都参加,所以只参加数学的5人,只参加航模的8人,加上那10人就是23人,40-23=17,2个小组都不参加的17人12、某班45个学生参加期末考试,成绩公布后,数学得满分的有10人,数学及语文成绩均得满分的有3人,这两科都没有得满分的有29人。
小学五年级奥数题100道及答案(完整版)

小学五年级奥数题100道及答案(完整版)1. 一个数除以5 余3,除以6 余4,除以7 余5,这个数最小是()A. 208B. 203C. 200D. 198答案:A解析:这个数加上 2 就能被5、6、7 整除,5、6、7 的最小公倍数是210,所以这个数是210 - 2 = 208。
2. 有一个自然数,被10 除余7,被7 除余4,被4 除余1。
这个自然数最小是()A. 137B. 107C. 131D. 101答案:C解析:这个数加上 3 就能被10、7、4 整除,10、7、4 的最小公倍数是140,所以这个数是140 - 3 = 137。
3. 一筐苹果,2 个一拿,3 个一拿,4 个一拿,5 个一拿都正好拿完而没有余数,这筐苹果最少应有()A. 120 个B. 90 个C. 60 个D. 30 个答案:C解析:苹果数量是2、3、4、5 的公倍数,最小公倍数是60。
4. 把66 分解质因数是()A. 66 = 1×2×3×11B. 66 = 6×11C. 66 = 2×3×11D. 2×3×11 = 66答案:C解析:分解质因数是把一个合数写成几个质数相乘的形式。
5. 两个质数的积一定是()A. 质数B. 奇数C. 偶数D. 合数答案:D解析:两个质数相乘的积,除了1 和它本身以外还有这两个质数作为因数,所以是合数。
6. 一个合数至少有()个因数。
A. 1B. 2C. 3D. 4答案:C解析:合数是指除了能被1 和本身整除外,还能被其他数(0 除外)整除的自然数。
所以一个合数至少有3 个因数。
7. 10 以内既是奇数又是合数的数是()A. 7B. 8C. 9D. 5答案:C解析:9 不能被2 整除是奇数,同时除了1 和9 本身还有3 这个因数,所以是合数。
8. 下面算式中,结果最大的是()A. 300÷8÷6×5B. 300÷(8÷6)×5C. 300÷(8÷6×5)D. 300÷8÷(6×5)答案:C解析:分别计算出每个选项的结果进行比较。
小学五年级奥数100题及答案

分析与解根据要求,第一排有10 个座位,可以坐5 个学生;第二排有11 个座位,可以坐6 个学生;第三排有12 个座位也可以坐6 个学生;第四排可以坐7个,第五排可以坐7 个;第六、七排都可以坐8 个;第八、九排都可以坐9个;??第20 排可以坐15 个。
这样一共可以坐学生:是错误的,因而“A得第二名”则是正确的。
在推导过程中没有出现矛盾,说明假设成立。
总之,推导的结论为:A 得第二名,B 得第四名,C 得第一名,D 得第三名。
这题还可以用列表的方式来解答。
这种方法比较直观,学生更容易接受。
这里提供的只是一种列表方式,把三位观众的原始估计显示在表内,再根据题中条件进行推理、判断,最后推出正确结果。
通过上表可以看出:五(1)班原有图书117 本,五(2)班原有图书63本,五(3)原有图书36 本。
为了保证解答正确,可根据题意,从最后求出的各班原有图书数量出发,按题目中三次分配办法进行计算,看看每班的图书是否最终都是72 本。
这样通过顺、逆两方面推导,可确保解题正确。
分析与解为了多做一些花,就需要尽量用3 张纸做1 朵花。
我们采用列表的方法找出用4 张纸做1 朵花的规律。
从上表不难看出,用4 张纸做花的朵数的规律是:1、2、0、1、2、0、1、2、0、……40÷3=13……1(1+2)×13+1=40(朵)分析与解当一个最简分数的分母只含2 和5 质因数时,这个分数就能化成有限小数。
所以,当分母是16、32、64、25、10、20、40、80、50 时,这样的分数都能化成有限小数。
20.在下面的数表中,上、下两行都是等差数列。
上、下对应的两个数字中,大数减小数的差最小是几?21.如图,正方形ABCD的边长是12,BE=2CE,DF=EF,三角形BEF的面积是()。
22.如图,已知正方形ABCD的边长是4,E、P、F分别是AD、CE、BP 的中点,△DBF的面积是()。
解答:如图,连接PD和BE。
小学五年级数学奥数题100道及答案(完整版)

小学五年级数学奥数题100道及答案(完整版)题目1:计算:1 + 2 + 3 + 4 + 5 + …+ 99 + 100答案:5050解析:这是一个等差数列求和,公式为(首项+ 末项)×项数÷ 2 ,即(1 + 100)×100 ÷2 = 5050题目2:有三个连续自然数,它们的乘积是60,求这三个数。
答案:3、4、5解析:将60 分解质因数60 = 2×2×3×5 = 3×4×5题目3:一个数除以5 余3,除以6 余4,除以7 余5,这个数最小是多少?答案:208解析:这个数加上 2 就能被5、6、7 整除,5、6、7 的最小公倍数是210,所以这个数是210 - 2 = 208题目4:甲、乙两车同时从A、B 两地相向而行,在距A 地60 千米处第一次相遇。
各自到达对方出发地后立即返回,途中又在距A 地40 千米处相遇。
A、B 两地相距多少千米?答案:110 千米解析:第一次相遇时,两车共行了一个全程,甲行了60 千米。
第二次相遇时,两车共行了三个全程,甲行了60×3 = 180 千米。
此时甲距离 A 地40 千米,所以两个全程是180 + 40 = 220 千米,全程为110 千米。
题目5:鸡兔同笼,共有头48 个,脚132 只,鸡和兔各有多少只?答案:鸡30 只,兔18 只解析:假设全是鸡,有脚48×2 = 96 只,少了132 - 96 = 36 只脚。
每把一只鸡换成一只兔,脚多4 - 2 = 2 只,所以兔有36÷2 = 18 只,鸡有48 - 18 = 30 只。
题目6:小明从一楼到三楼用了18 秒,照这样计算,他从一楼到六楼需要多少秒?答案:45 秒解析:一楼到三楼走了 2 层楼梯,每层用时18÷2 = 9 秒。
一楼到六楼走5 层楼梯,用时5×9 = 45 秒。
五年级下册数学奥数题(含答案) 小学五年级奥数题大全及答案(更新版)-通用版

五年级奥数题问题+答案1、一块草地,可供24匹马吃6天;20匹马吃10天。
多少马12天吃尽?2、一块草地,可供5只羊吃40天;6只羊吃30天。
如果4只羊吃30天后又增加2只羊一起吃,那么这块草地还可以再吃多少天?3、每小时有3000人到书店买书。
如果设一个售书口,每分钟可以让50人买完离开;如果设2个售书口,1小时后就没有人排队了。
那么如果设4个口,多长时间后就没有人排队了?4、一口井,用3部抽水机40分钟可以抽干;6部抽水机16分钟可以抽干。
那么5部同样的抽水机,多少分钟可以抽干?5、一个水池,池内除原有的水外,每天都流入同样多的水。
如果用池中的水每天浇50亩地,10天用完;如果每天浇45亩地,20天用完。
那么,用这些水浇多少亩地,正好可用25天?6、一个大水坑,每分钟从四周流掉一定数量的水。
如果用5台水泵,6小时抽干;用10台,4小时抽干。
现在要2小时抽干,要多少水泵?7、仓库装满水泥时,可用30天。
现在仓库是空的,用大车运水泥,除每天供工地使用外,要装5天才可装满;用小车,除每天供工地使用外,要装10天才可装满。
如果大车小车一起用,除每天供工地使用外,要装几天才可装满?8、甲、乙、丙、丁四人加工同样的零件,甲先加工了一段时间,然后乙、丙、丁三人一起参加加工,6小时后乙和甲加工的一样多;9小时后丙和甲加工的一样多,12小时后丁和甲加工的一样多。
又知乙每小时加工27个零件,丙每小时加工23个零件。
那么,丁每小时加工零件多少个?答案1、假设草地单位为“1”,所以24*6=144 20*10=200 (200-144)/4=14 因此每天草地长草14个单位“1” 200-14*10=60,因此草地原有草60个单位"1"。
60/12+14=19 19马12天吃尽2、同理,40*5=200 30*6=180 (200-180)/(40-30)=2[每天草地长草] 200-2*40=120[原有草] 120-(4-2)*30=60 60/(6-2)=15(天)3、30分钟{每分钟有100人来,3000/(200-100)}4、20分钟{3*40-6*16=24 24/24=1 120-40*1=80 80/4=20}5、44亩地{45*20-50*10=400 400/10=40 500-40*10=100100/25+40=44}8、21个 {9*23-6*27=45 45/3=15 162-15*6=72 72/12+15=21}五年级奥数题有关行程问题的答案一环行跑道周长为240米,甲乙同向,丙与他们背向,都从同地点出发,每秒钟甲跑8米,乙跑5米,丙跑7米,出发后三人第一次相遇时,丙跑了多少圈?解:由题得知:甲比乙快8-5=3米/秒,也就是240/3=80秒后,甲会比乙多跑1圈且追上乙第一次相遇;要使甲、乙、丙同时相遇,则三者所用的时间必须是80秒的位数。
五年级奥数题100题(附答案)
五年级奥数题100题(附答案)五年级奥数题100题(附答案)1.765×213÷27+765×327÷27解:原式=765÷27×(213+327)= 765÷27×540=765×20=153002.(9999+9997+...+9001)-(1+3+ (999)解:原式=(9999-999)+(9997-997)+(9995-995)+……+(9001-1)=9000+9000+…….+9000(500个9000)=45000003.19981999×19991998-19981998×19991999解:(19981998+1)×19991998-19981998×19991999=19981998×19991998-19981998×19991999+19991998=19991998-19981998=100004.(873×477-198)÷(476×874+199)解:873×477-198=476×874+199因此原式=15.2000×1999-1999×1998+1998×1997-1997×1996+…+2×1解:原式=1999×(2000-1998)+1997×(1998-1996)+…+3×(4-2)+2×1=(1999+1997+…+3+1)×2=2000000。
6.297+293+289+…+209解:(209+297)*23/2=58197.计算:解:原式=(3/2)*(4/3)*(5/4)*…*(100/99)*(1/2)*(2/3)*(3/4)*…*(98/99)=50*(1/99)=50/998.解:原式=(1*2*3)/(2*3*4)=1/422.一列快车和一列慢车相向而行,快车的车长是280米,慢车的车长是385米。
小学五年级数学奥数题100道附完整答案
小学五年级数学奥数题100道附完整答案题目1:一个数除以4 余3,除以5 余4,除以6 余5,这个数最小是多少?答案:这个数加上1 就能被4、5、6 整除,4、5、6 的最小公倍数是60,所以这个数最小是59。
题目2:有三根铁丝,长度分别是120 厘米、180 厘米和300 厘米。
现在要把它们截成相等的小段,每根都不能有剩余,每小段最长多少厘米?一共可以截成多少段?答案:每小段的长度是120、180、300 的最大公因数,即60 厘米。
一共可以截成:(120 + 180 + 300) ÷60 = 10 段。
题目3:一间教室长8 米,宽6 米,高4 米。
要粉刷教室的天花板和四周墙壁,除去门窗和黑板面积25.4 平方米,粉刷的面积是多少平方米?答案:天花板面积:8×6 = 48 平方米,四周墙壁面积:2×(8×4 + 6×4) = 112 平方米,总面积:48 + 112 = 160 平方米,粉刷面积:160 - 25.4 = 134.6 平方米。
题目4:一个长方体玻璃缸,从里面量长40 厘米,宽25 厘米,缸内水深12 厘米。
把一块石头浸入水中后,水面升到16 厘米,求石块的体积。
答案:升高的水的体积就是石块的体积,40×25×(16 - 12) = 4000 立方厘米。
题目5:甲、乙两数的最大公因数是12,最小公倍数是180,甲数是36,乙数是多少?答案:180×12÷36 = 60,乙数是60。
题目6:有一筐苹果,无论是平均分给8 个人,还是平均分给18 个人,结果都剩下3 个,这筐苹果至少有多少个?答案:8 和18 的最小公倍数是72,72 + 3 = 75 个,这筐苹果至少有75 个。
题目7:一个长方体的棱长总和是80 厘米,长10 厘米,宽7 厘米,高是多少厘米?答案:高:80÷4 - 10 - 7 = 3 厘米。
小学五年级精选奥数题及解析
小学五年级精选奥数题及解析1、算薪水有两个人在一家工地做工,由于一个是学徒,一个是技工,所以他们的薪水是不一样的。
技工的薪水比学徒的薪水多20美元,但两人的薪水之差是21美元。
你觉得他俩的薪水各是多少?2、100面彩旗某街道从东往西按照五面红旗、三面黄旗、四面绿旗、两面粉旗的规律排列,共悬挂1995面彩旗,你能算出从西往东数第100面彩旗是什么颜色的吗?3、时钟表盘时钟的表盘上按标准的方式标着1, 2, 3,…,11, 12这12个数,在其上任意做n 个120°的扇形,每一个都恰好覆盖4个数,每两个覆盖的数不全相同. 如果从这任做的n个扇形中总能恰好取出3个覆盖整个钟面的全部12个数,求n的最小值.4、两头猪有4头猪,这4头猪的重量都是整千克数,把这4头猪两两合称体重,共称5次,分别是99、113、125、130、144,其中有两头猪没有一起称过。
那么,这两头猪中重量较重那头有多重?5、三张卡片有三张卡片,它们上面各写着数字2, 3, 4,从中抽出一张、二张、三张, 按任意次序排列出来,可以得到不同的一位数、二位数、三位数,请你将其中的质数都写出来.6、数学竞赛要求的三个自然数分别是32、35和38。
9、答案与解析:此题需要求抽屉的数量,反用抽屉原理和最”坏”情况的结合,最坏的情况是只有10个同学来自同一个学校,而其他学校都只有9名同学参加,那么(1123-10)4-9=123......6 ,因此最多有:123+1=124个学校(处理余数很关键,如果有125个学校那么不能保证至少有10名同学来自同一个学校)10、答案与解析:120:2=60, 90:2=45,每两棵树之间的距离是它们的最大公约数。
(120, 60, 90, 45)=15, 一共要:(120+90)x24-15=28(棵)。
11、答案与解析:方法一:因为每班的平均成绩都是整数,且两班的总成绩相等,所以总成绩既是42的倍数,又是48的倍数,所以为[42, 48]=336的倍数.因为乙班的平均成绩高于80分,所以总成绩应高于48x80=3840分.乂因为是按百分制评卷,所以甲班的平均成绩不会超过100分,那么总成绩应不高于42x100=4200分.在3840〜4200之间且是336的倍数的数只有4032.所以两个班的总分均为4032 分.那么甲班的平均分为40324-42=96分,乙班的平均分为4032+48=84分.所以甲班的平均分比乙班的平均分高96-84=12分.方法二:甲班平均分x42=乙班平均分x48,即甲班平均分x7二乙班平均分x8, 因为7、8互质,所以甲班的平均分为某数的8倍,乙班的平均分为某数的7倍,乂因为两个班的平均分均超过80分,不高于100分,所以这个数只能为12.所以甲班的平均分比乙班的平均分高12x(8-7)=12分.12、答案与解析:小于20的质数有2, 3, 5, 7, 11, 13, 17, 19,其中5+19=7+17=11+13.每个木块掷在地上后向上的数可能是六个数中的任何一个,三个数的和最小是5+5+5=15,最大是19+19+19=57,经试验,三个数的和可以是从15到57的所有奇数,所有可能的不同值共有22个。
2024年五年级上册常考的88道奥数题
20、某数除以87,商5余5,这个数除以5的商是多少?
21、有三根钢管,分别长200,240和360厘米。现在要把这三根钢管截成尽可能长而且又相等的小段,一共能截成多少段?
22、两根铁丝分别长65米和91米,用一根木尺分别去丈量它们,都恰好量完而无剩余。这根木尺最多有多长?
11、两个整数相除,商是4,余数是8。已知被除数比除数大59,求被除数。
12、一个整数除以15余2,被除数、商和余数的和是100,求被除数和商。
13、减数、被减数与差三者之和除以被减数,商是多少?
14、甲、乙两数之和加上甲数是220,加上乙数是170,甲、乙两数之和是多少?
15、两个自然数相除,商是4,余数是15,被除数、除数、商、余数之和是129。请写出这个带余数的除法算式。
68、如果现在是上午的10点21分,那么在经过28799...99(一共有20个9)分钟之后的时间将是几点几分?
69、狗跑5步的时间马跑3步,马跑4步的距离狗跑7步,现在狗已跑出30米,马开始追它。问:狗再跑多远,马可以追上它?
70、甲乙辆车同时从a、b两地相对开出,几小时后再距中点40千米处相遇?已知,甲车行完全程要8小时,乙车行完全程要10小时,求a、b两地相距多少千米?
23、将22块橡皮和33支铅笔平均分给参加打扫教室卫生的同学,结果橡皮多1块,铅笔少2支,参加打扫卫生的同学有多少名?
24、甲数比乙数大5,乙数比丙数也大5,三个数的乘积是6384,求这三个数。
25、某质数加6或减6得数?并将它们写出来。
26、一袋糖不足60块,如果把它平均分给几个孩子,则每人恰好分得6块;如果只分给这几个孩子中的'男孩,则每个男孩恰好分得10块。这几个孩子中有几个女孩?
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
五年级暑假数学思维训练100题班级_______ 姓名_________得分______1、765×213÷27+765×327÷27 2、(101+103+...+199)-(90+92+ (188)3、9×17+91÷17-5×17+45÷17 4、(9999+9997+...+9001)-(1+3+ (999);5、9039030÷430436、 (873×477-198)÷(476×874+199)7、12+16+112+120+130+1428、 99999×22222+33333×333349、11×2+12×3+13×4+…..+199×100.10、1000+999-998+997+996-995+…+106+105-104+103+102-10111、两个整数相除,商是4,余数是8。
已知被除数比除数大59,求被除数。
&12、一个整数除以15余2,被除数、商和余数的和是100,求被除数和商。
13、减数、被减数与差三者之和除以被减数,商是多少14、甲、乙两数之和加上甲数是220,加上乙数是170,甲、乙两数之和是多少—15、两个自然数相除,商是4,余数是15,被除数、除数、商、余数之和是129。
请写出这个带余数的除法算式。
16、一个两位数除以一个一位数,商仍是两位数,余数是8。
问:被除数、除数、商及余数之和是多少17、两个数的和是94,有人计算时将其中一个加数个位上的0漏掉了,结果算出的和是31。
求这两个数。
18、小明做两个整数的加法,他把万位上的8看成了3,百位上的7看成了9,个位上的5看成了6,算得的结果是49920。
问:正确的结果是多少19、在一个减法算式中,被减数是120,减数是差的3倍,减数是几)20、某数除以87,商5余5,这个数除以5的商是多少21、有三根钢管,分别长200,240和360厘米。
现在要把这三根钢管截成尽可能长而且又相等的小段,一共能截成多少段22、两根铁丝分别长65米和91米,用一根木尺分别去丈量它们,都恰好量完而无剩余。
这根木尺最多有多长23、将22块橡皮和33支铅笔平均分给参加打扫教室卫生的同学,结果橡皮多1块,铅笔少2支,参加打扫卫生的同学有多少名24、甲数比乙数大5,乙数比丙数也大5,三个数的乘积是6384,求这三个数。
~25、某质数加6或减6得到的数仍是质数,在50以内你能找出几个这样的质数并将它们写出来。
26、一袋糖不足60块,如果把它平均分给几个孩子,则每人恰好分得6块;如果只分给这几个孩子中的男孩,则每个男孩恰好分得10块。
这几个孩子中有几个女孩27、某公共汽车站有三条线路的公共汽车,分别每隔 5,6和8分钟发车一次。
三条线路在同一时间发车后,再过多少时间又同时发车[28、文化补习班的教材不够,暂时每两人用一本语文课本,每三人用一本数学课本,每四人用一本外语课本,全班共用了91本课本。
问:全班有多少人29、有一篮子鸡蛋,按每四个一堆分多一个,按每五个一堆分也多一个,按每六个一堆分还是多一个,这篮鸡蛋至少有多少个》30、有一种电子钟,每到正点响一次铃,每过九分钟亮一次灯。
如果中午12点整它既响铃又亮灯,那么下一次既响铃又亮灯是什么时间31、规定a*b=(b+a)×b,求(2*3)*5。
32、如果a△b表示(a-2)×b,那么3△4="33、有7个数,它们的平均数是18。
去掉一个数后,剩下6个数的平均数是19;再去掉一个数后,剩下的5个数的平均数是20。
求去掉的两个数的乘积。
34、某五个数的平均值为20,若把其中一个数改为40,则平均值变为25。
求这个数。
…35、有七个排成一列的数,它们的平均数是 30,前三个数的平均数是28,后五个数的平均数是33。
求第三个数。
36、小玲练习跳绳,她已经跳了若干次,准备最后再跳一次,如果最后这次跳48个,那么平均每次跳56个;如果最后这次跳68个,那么平均每次跳60个。
小玲已经跳了几次37、小明上学期语文得78分,地理得82分,历史得80分,物理得60分。
又知数学成绩比平均分多12分,外语成绩比平均分少4分。
小明上学期这六科的平均成绩是多少分38、五年级一班数学考试平均成绩是分,事后复查发现,计算成绩时将一位同学的98分误作89分计算了。
经重新计算后,五年级一班的平均成绩是分。
五年级一班有多少名学生…39、某厂一周生产的机器台数的统计表破损了(见下图),根据这张统计表,星期三、星期四的产量各是多少台40、A,B,C是三个互不相同的自然数,并且满足求A+B+C;41、某次数学竞赛共20道题,评分标准是:每做对一题得5分,每做错或不做一题扣1分。
小华参加了这次竞赛,得了64分。
问:小华做对几道题42、小明给班里买了甲、乙两种电影票共50张,甲票每张2元,乙票每张元,共花了元,问:买甲票花的钱是买乙票花的钱的几分之几43、蜘蛛有8条腿,蜻蜓有6条腿和2对翅膀,蝉有6条腿和1对翅膀。
现有这三种小虫16只,共有110条腿和14对翅膀。
问:每种小虫各几只|44、某人要到高层建筑的 10层去,他从1层走到 5层用了100秒,如果用同样的速度走到10层,则还需要多少秒45、甲、乙二人比赛爬楼梯,甲跑到4层时,乙恰好跑到3层,照这样计算,甲跑到16层时,飞跑到几层46、有一个报时钟,每敲响一下,声音可持续3秒。
如果敲响6下,那么从敲响第一下到最后一下持续声音结束,一共需要43秒。
现在敲响12下,从敲响第一下到最后一下持续声音结束,一共需要多长时间|47、甲、乙二人练习跑步,若甲让乙先跑10米,则甲跑5秒可追上乙;若乙比甲先跑2秒,则甲跑4秒能追上乙。
问:两人每秒各跑多少米48、甲、乙二人上午8时同时从东村骑车到西村去,甲每时比乙快6千米,中午12时甲到达西村后立即返回东村,在距西村15千米处遇到乙。
问:东、西两村相距多远49、甲、乙、丙三人每分分别行60米、50米和40米,甲从B地、乙和丙从A地同时出发相向而行,途中甲遇到乙后15分又遇到丙。
求A,B两地的距离。
$50、甲、乙二人分别从A ,B 两地同时出发,若两人同向而行,则甲26分赶上乙;若两人相向而行,则6分可相遇。
已知乙每分行50米,求A ,B 两地的距离。
51、小红从家到火车站赶乘火车,如果每时行4千米,那么火车开时她还离车站1千米;如果每时行5千米,那么她就早到车站12分。
小红家离火车站多少千米52、从家里骑摩托车到火车站赶乘火车。
若每时行30千米,则早到15分;若每时行20千米,则迟到5分。
如果打算提前5分到,那么摩托车的速度应是多少:53、甲、乙两人同时从两地出发相向而行,相遇后继续前进,当两人相距千米时,甲走了全程的32,乙走了全程的43,两地相距多少千米54、甲、乙两站相距不到500千米,A ,B 两列火车从甲、乙两站相对开出,A 车行至210千米处停车,B 车行至270千米处也停车,这时两车相距正好是甲、乙两站距离的91,甲、乙两站的距离是多少,55、客车和货车同时从甲、乙两地相向开出,客车行完全程需10时,货车行完全程需15时。
两车在中途相遇后,客车又行了90千米,这时客车行完了全程的80%,求甲、乙两地的距离。
56、若干个同学去划船,他们租了一些船,若每船4人则多5人,若每船5人则船上有4个空位。
问:有多少个同学多少条船57、学校给参加夏令营的同学租了几辆大轿车,若每辆车乘28人则有13名同学上不了车,若每辆车乘32人则还有3个空座。
问:有多少名同学多少辆车$58、全班同学去划船,如果减少一条船,那么每条船正好坐9人;如果增加一条船,那么每条船正好坐6人。
问:全班有多少人59、李五拿一根绳子在一个圆柱上绕,绕了2圈时,绳子还余米,但要绕5圈还差米。
问:这根绳子多长树的周长是多少60、用一根绳子测井台到井水面的深度,把绳对折后垂到井水面,绳子超过井台9米;把绳子三折后垂到井水面,绳子超过井台2米。
求绳长和井深。
^61、甲车每时行 40千米,乙车每时行 60千米,甲车从 A地、乙车从B地同时出发相向而行,两车相遇后时,甲车到达B地,A,B两地相距多少千米62、A,B两村相距 2800米,小明从 A村步行出发 5分后,小军骑车从B村出发,又经过10分两人相遇。
已知小军骑车比小明步行每分多行130米,小明步行每分行多少米63、甲、乙同时从 A, B两地相向走来。
甲每时走 5千米,两人相遇后,乙再走10千米到A地,甲再走时到B地。
乙每时走多少千米》64、甲、乙两车同时从A,B两地相向而行,它们相遇时距A,B两地中心处8千米,已知甲车速度是乙车的倍,求A,B两地的距离。
65、有一列数,第一个数是100,第二个数是90,从第三个数开始,每个数都是它前面两个数的平均数.第三十个数的整数部分是多少。
66、今年小宁9岁,妈妈33岁,再过多少年小宁的岁数是妈妈岁数的一半67、父亲今年44岁,儿子今年16岁,当父亲的年龄是儿子的8倍时,父子的年龄和是多少岁68、父亲与两个儿子的年龄和为84岁,12年后父亲的年龄正好等于两个儿子的年龄和,父亲现年多少岁[69、学生问老师多少岁,老师说:“当我像你这么大时你刚1岁,当你像我这么大时我已经40岁了。
”你知道老师多少岁吗70、汽车以72千米/时的速度从甲地到乙地,到达后立即以48千米/时的速度返回甲地。
求该车的平均速度。
71、有一堆桃,第一个猴子拿走了这堆桃的一半加半个桃子,第二个猴子又拿走了剩下桃的一半加半个,第三个猴子拿走了最后剩下的桃的一半加半个,桃子正好被拿光。
问:这堆桃子原来有几个72、袋子里有若干个球,小明每次拿出其中的一半再放回一个球,一共这样做了五次,袋中还有3个球。
问:原来袋中有多少个球74、袋子里有若干个球,小明每次拿出其中的一半再放回一个球,一共这样做了五次,袋中还有3个球。
问:原来袋中有多少个球75、某游乐场在开门前有400人排队等待,开门后每分钟来的人数是固定的.一个入口每分钟可以进入10个游客.如果开放4个入口20分钟就没有人排队,现在开放6个入口,那么开门后多少分钟就没有人排队"76、甲、乙、丙三人进行百米赛跑,甲到终点时乙离终点5米,丙离终点10米,那么乙到终点时,丙离终点还有多少米77、铁路旁每隔50米有一棵树,晶晶在火车上从第一棵树数起,数到第55棵为止,恰好过了3分钟,火车每小时的速度是多少千米、78、 算式(762367762367 )×123123的得数的尾数是多少79、有10箱桔子,最少的一箱装了50个,如果每两箱中放的桔子都不一样多,那么这10只箱子一共至少装了多少个桔子80、一些2分和5分硬币,共值元,其中2分硬币个数是5分硬币个数的4倍.5分硬币有多少个》81、 12加上24,减20;再加上24,再减20;…如此下去,至少经过多少次运算才能得到5282、有1991粒纽扣,两个人轮流从中取几粒,但每人至少取1粒,最多取4粒,谁取到最后一粒,就算谁输.问:保证一定获胜的对策是什么)83、小明读《西游记》,第一天读83页,第二天读74页,第三天读71页,第四天读64页,第五天读的页数比五天中平均读的页数还多页.那么,小明第五天读了多少页84、如左下图,在长方形ABCD中,EFGH是正方形。