轧机机座厚度和板形控制
轧钢机的弹性变形、轧件厚度及板形控制

1、基本功能和类型 一般称之为板厚自动控制(AGC)系统(Automatic Gauge Control),它包括: 测厚部份 检测轧件的实际厚度 厚度比较及调节系统 与设定值比较得出厚差δh,经计算后得出压下调节量δS。 辊缝调节 根据实际测出的压下量变化△S与计算得出的δS 值进行比较,输出电流信号,使液压侗服阀动作,完成辊缝的调节。 轧件变形区部份 这是厚度控制的对象,也是闭环控制系统中的一环。 根据轧件的测厚方法,厚度AGC系统可分为三种类型: 1)直接测厚的反馈式AGC。由测厚仪直接测得轧机出口的轧件厚度h,与设定值比较后得出偏差δh ,将此反馈给系统变换为辊缝调节量δS ,使压下装置移动相应的值以消除厚差δh 。
α=1,K=∞ 全补偿 α>0 ∞>K>C 硬特性(部份补偿) α=0,K=C 恒原始辊缝控制 不补偿 α>-∞,C>K>0,软特性(反方向部份补偿) α= - ∞ ,K=0,△P =0 恒压力控制(反方向全补偿)
以上控制方式的关系曲线见图示。同时也可以用P-H图表示。
一般在成品机架上为保持出口板厚不变,采用硬特性。而在平整机上,采用恒压力控制保持压力波动为零,使其出口板形良好,同时消除轧辊偏心对板厚的影响。
在压力反馈回路中,给出不同的辊缝调节系数Cp ,就能实现各种控制特性的厚度控制。如果将位置反馈回路断开,只是将轧制力P与给定的轧制力P0相比较,使系统保持P= P0,这就实现了恒压力控制。
从以上分析可知,提高机座的刚度系数C可以减小工作机座的弹性变形从而提高板厚精度。但是刚度的提高是有限的,完全依靠机座刚度系数C的提高来达到板厚精度是不可能实现的。必须通过轧机的板厚自动控制系统,可对板厚变化进行补偿实现高精度轧制。
其物理意义为单位板厚变化所对应的轧制力变化。当厚度变化为零时,这时当量刚度K为∞。以下用弹跳方程来分析实现这一过程的原理。
轧制理论与工艺 第三篇 板带材高精度轧制和板形控制

(a)板坯厚度变化时:压下的调整
量△S0与料厚的变化量并不相等
由三角形DEE/和三角形EE/F 可推出下式:
S
=
0
M K
h 0
图14—1 (a)板坯厚度变化时
主要用于前馈即预控AGC,即 在入口处预测料厚的波动,据 以调整压下,消除其影响。
轧制理论与工艺
RAL
(b)变形抗力变化时:压下的调整量△S0与轧出板厚变化量△h也不相等
建议的,1蒙相当于相对长度差为10-4。泼森定义板形为横向
上单位距离上的相对长度差,以mon/cm表示,即:
s
104
L L
B) 加拿大铝公司是取横向上最长与最短纵条之间的相对长度差
作为板形单位,称为 I 单位,1个I单位相当于相对长度差为
10-5。所以板形表示为:
st
105
L L
式中:L—最短纵条的长度,mm。
因素:轧辊的弹性变形、不均匀热膨胀和不均匀磨损
轧辊的不均匀热膨胀
轧辊受热和冷却沿辊身分布不均,一般辊身中部温度
高于边部,传动侧低于操作侧,径向辊面高于辊心。
这使得热膨胀精确计算困难,一般采用简化公式:
Rt yt KT(TZ TB )R KTTR
式中 TZ、TB——辊身中部和边部温度; R ——轧辊半径; ——轧辊材料的线膨胀系数; KT——考虑轧辊中心与表面温度不均分布的系数,一般=0.9。
S/0
P/K
h
S0
(P-P0)/K
h
h
S0
P
P0 K
S0—考虑预压变形后的空载辊缝。
轧制理论与工艺
RAL
14.1.1 板带厚度变化的原因和特点
影响板带厚度的主要因素:
热轧带钢生产中的板形控制

热轧带钢生产中的板形控制是指通过有效的生产工艺和控制措施,使得热轧带钢的板形达到设计要求,保证其质量和使用性能。
板形是指热轧带钢在轧制过程中产生的纵横向偏差,包括厚度不均匀、横向偏斜、波浪形状等。
合理的板形控制不仅能提高产品的表面质量、平坦度和尺寸精度,还能减少废品率和提高生产效率。
本文将从板形控制的重要性、主要影响因素和改善措施等方面进行分析和探讨。
一、板形控制的重要性热轧带钢的板形控制对产品质量和性能至关重要,具有以下重要性:1. 保证产品的平整度和尺寸精度。
合理的板形控制可以减少热轧带钢在轧制过程中产生的纵横向偏差,从而提高产品的平整度和尺寸精度,确保产品符合设计要求。
2. 改善产品的表面质量。
板形不均匀会导致带钢表面产生波浪、皱纹等缺陷,降低产品的表面质量。
通过有效的板形控制,可以减少这些缺陷的发生,提高产品的表面光洁度和平坦度。
3. 减少废品率和提高生产效率。
不合格的板形会导致产品剪切不良、卷取不良等问题,增加废品率。
通过优化板形控制,可以减少废品率,提高产品的一次成型合格率,提高生产效率。
二、主要影响因素热轧带钢的板形受到多个因素的影响,主要包括以下几个方面:1. 轧制工艺参数。
轧制工艺参数对板形的影响是最直接和关键的。
包括轧制温度、轧制速度、带材的展宽比、轧辊的形状等。
合理的调整和控制这些参数,可以有效地改善板形。
2. 带钢的翘曲性能。
带钢的翘曲性能取决于材料的力学性能和内应力状态。
当带钢的翘曲性能较差时,易出现板形不佳的现象。
3. 轧机设备的状态。
轧机设备的磨损程度、轧辊的偏差和挠度等都会对板形产生影响。
定期检查和维护轧机设备,保持其正常状态,对于控制板形至关重要。
4. 轧机辊系布置。
轧机辊系布置的合理性会对板形产生直接影响。
轧机辊系的过柱、过程和反曲等布置方式,可以通过对带材的实际形变过程进行控制,达到改善板形的效果。
三、改善措施为了控制热轧带钢的板形,可以采取以下措施:1. 合理调整和控制轧制工艺参数。
热轧带钢生产中的板形控制

热轧带钢生产中的板形控制是保证产品质量的关键环节之一。
板形控制主要包括轧制工艺参数的调整和辊系结构的优化两方面。
本文将从这两个方面进行详细的介绍。
一、轧制工艺参数的调整1. 温度控制:热轧带钢的温度对板形控制有着重要影响。
过高的温度会导致带钢热膨胀,从而产生较大的板凸度;过低的温度则会导致带钢冷却过快,使得带钢变形不均匀。
因此,必须对热轧带钢的温度进行精确控制,确保其在适宜的温度范围内进行轧制。
在实际生产中,可以通过控制热轧带钢的加热温度、热轧温度和冷却方式等来实现温度控制。
可以采用先控制热轧带钢的加热温度,确保钢坯达到适宜的温度范围,然后通过控制热轧带钢的入口温度和轧制温度来进一步调整温度进行控制。
同时,还可以优化冷却方式,如采用水冷、风冷等方法进行冷却,以达到更好的板形控制效果。
2. 速度控制:热轧带钢的速度对板形控制同样具有重要影响。
速度过快会导致拉伸应力过大,从而使板形产生波状或弓形变形;速度过慢则会导致带钢在轧制过程中受到过多的应力作用,导致板形不稳定。
因此,在热轧带钢的生产过程中,需要对轧制速度进行合理的控制。
可以通过调整轧机的传动装置、辊道的排列方式、模块的配比等来实现速度控制。
同时,还可以通过控制轧机的压下量、变形度等工艺参数来进一步调整速度进行控制。
3. 张力控制:热轧带钢的张力对板形控制同样具有重要影响。
张力过大会导致带钢产生不均匀的塑性变形,从而使板形产生波状或弓形变形;张力过小则会导致带钢发生塑性回弹,导致板形不稳定。
因此,在热轧带钢的生产过程中,需要对张力进行精确的控制。
可以通过调整轧机的辊道间隙、调整轧机的压下量、调整轧机的传动装置等来实现张力控制。
同时,还可以采用张力控制系统进行实时的张力监测和调整,以确保带钢在轧制过程中保持适宜的张力。
二、辊系结构的优化1. 辊系选择:辊系的选择对板形控制具有重要影响。
辊系的结构参数、辊型和辊材质等都会对板形产生影响。
合适的辊系选择可以实现板形的稳定控制,提高产品的表面质量和机械性能。
冷连轧机板形与板厚控制系统的建模与仿真

被广泛 地 用来控 制 板形 精 度 。由于冷连 轧机 本身诸
多 因素 的限制 , 轧机 的在线 实验往 往很难 进行 , 并要 耗费 大量 的时 间和财 力 。因此 , 于 虚拟样 机技术 , 基 以轧 机辊缝 为控 制 目标 建 立机 电液一 体化 的虚拟轧 机 , 对其 进行 仿真分 析 , 并 对提高 板厚精 度 和板形精
K e wo d y r s:c l c ntnu s m il A DA M S; o d o i ou l; A NSYS;v r u l r t y e;g u c n r s t m ; it a p o ot p a ge o t ol ys e
s p o r y t m ha e c ntols s e
0 引 言
板带材 是汽 车 、 船舶 、 建筑及 机 电等工 业 的重要
原材 料 。在 工业 发达 国家 , 钢材 的板 带 比、 轧板带 冷 比分 别达 6 和 4 以上口 。板 厚 精 度 和 板形 精 0/ 9 6 0 ]
度是板 带材 的 2大 质 量指 标 , 厚控 制 和板 形控 制 板 是板带 轧 制领域 里 的 2大关 键技 术 。在板 带 轧机设
度具有 重要 意义 。
文章编 号 :0 1 2 7 2 0 ) 0—0 6 0 1 0 —2 5 (0 7 1 0 2— 3
Ab t a t A it a o o y e i it by usn s r c : v r u lpr t t p s bu l i g
普通中厚板轧机板形控制技术探讨

1 板 形 的概 念
1 1 板 形 的定 义 .
板 形 就是 板材 的形 状 , 体 指 板 带 材 横 截 面 的 具
几 何形 状 和在 自然 状 态下 的表 观 平 坦 度 . 生 板 形 产
C h 一 ( h W= 0 ÷ h + )
二
() 1
不 良, 主要 原 因是 板带 材 内部存 在残 余 应力 . 当残 余 应 力 不足 以 引起板 带 翘 曲 , 为潜在 板 形. 当潜 在 称 可
Ke r y wo ds:m e i dum lt oln i pa e rli g m l l;p oie;c o r fl r wn;p o l o r l r f e c nto i
板 形 控 制 是 板 带 压 力 加 工 的核 心控 制 技 术 之
一
.
指 板带 材 的翘 曲度 , 实质 是 板 带 材 内部 残 余 应 力 其 的大小及 其 分布 .
关 键 词 : 通 中厚 板 轧 机 ; 形 ; 凸 度 ; 形 控 制 普 板 板 板
中 图分 类 号 : G 33 7 T 3 . 文 献标 识 码 : A
A ic so o h o l o r lo e um a e r l ng m i d s us in n t e pr f e c nto fm di i plt o l l i l
Ab t a t h o msa d fr ain me h n s o r f e d f cs o c ri g i d u p a e s e ,a d te f co sa e t g s r c :T e fr n o m t c a im fp oi ee t c u r n me i m lt t l n h a tr f ci o l n e n t e d f cs a e eu i a e n t ea t l .T e d s u so l s a e e mo tc mmo r f e c n rlme s rs i h r d c h e e t r lc d t d i ri e h ic si n i u t t st s o h c l r h n p o i o to l a u e n t e p o u - t n o d u p a e n u o w r u e fp a t a n c n mia d f ain tci s Oa o i c e s h l t i fme i m lt sa d p t r a d a n mb ro r ci la d e o o c l o f c mo i c t a t ,S st r a et e p ae i o c n p oi o to a a i t n r d c il . r f e c nr lc p b l y a d p o u tye d l i
轧制厚度及板型控制

轧制厚度及板型控制导读:就爱阅读网友为您分享以下“轧制厚度及板型控制”资讯,希望对您有所帮助,感谢您对的支持! 厚度自动控制和板形控制项目1 板带材轧制中的厚度控制项目2 横向厚差与板形控制技术项目1板带材轧制中的厚度控制一、厚度自动控制的工艺基础 1.p-h图的建立(1)轧制时的弹性曲线轧出的带材厚度等于理论空载辊缝加弹跳值。
轧出厚度:h=S0 +P/K―――轧机的弹跳方程S0 ――空载辊缝P――轧制压力K――轧机的刚度系数根据弹跳方程绘制成的曲线(近似一条直线)――轧机弹性变形曲线,用A 表示。
A(2)轧件的塑性曲线根据轧制压力与压下量的关系绘制出的曲线――轧件塑性变形曲线,用B表示。
B(3)弹塑性曲线的建立将轧机弹性变形曲线与轧件塑性变形曲线绘制在一个坐标系中,称为弹塑性曲线,简称P-h图。
注意A线与B线交点的纵坐标为轧制力A线与B线交点的横坐标为板带实际轧出厚度2. p-h图的运用由p-h图看出:无论A线、B线发生变化,实际厚度都要发生变化。
保证实际厚度不变就要进行调整。
例如:B线发生变化(变为B‘),为保持厚度不变,A线移值A',是交点的坐标不变。
C线――等厚轧制线作用:板带厚度控制的工艺基础板带厚度控制的实质:不管轧制条件如何变化,总要使A 线和B 线交到C线上。
p-h图二、板带厚度变化的原因和特点影响板带厚度变化的因素:1、轧件温度、成分和组织性能不均匀的影响温度↑→变形抗力↓→轧制压力↓→轧机弹跳↓→板厚度变薄↓变形抗力对轧出厚度的影响2、来料厚度不均匀的影响来料厚度↓→压下量↓→轧制压力↓→轧机弹跳↓→板厚度变薄↓来料厚度对轧出厚度的影响3、张力变化的影响张力↑→变形抗力↓→轧制压力↓→轧机弹跳↓→板厚度变薄↓张力对轧出厚度的影响4、轧制速度变化的影响通过影响摩擦系数和变形抗力来改变轧制压力。
摩擦系数↓→变形抗力↓→轧制压力↓→轧机弹跳↓→板厚度变薄↓摩擦系数对轧出厚度的影响5、原始辊缝的影响原始辊缝减小,板厚度变薄。
第9章-轧钢厚度自动控制

材料与冶金学院李振亮课程名称:《材料成型控制工程基础》(第9章,共11章)编写时间:2010 年9月1日内 蒙 古 科 技 大 学 教 案连铸坯 液芯压下顶弯、 拉矫液压摆式切头均热炉高压水除磷 立辊轧边 F1- F6精轧内蒙古科技大学教案内蒙古科技大学教案图9-14 测厚仪型反馈式厚度自动控制系统 图9-15 δh 与δS 的关系曲线h 实—实测厚度;h 给—给定厚度 “压下有效系数”的概念? 由前式可知,当轧机的空载辊缝S0改变δS 时,所引起的轧件出口厚度变化量δS ,δh 与δS 之间的比值C=δh/δS 称为“压下有效系数”,表示压下螺丝位置改变量能造成多大的轧件出口厚度变化量。
h K Mh K M K S mm δδδ)1(+=+= 内 蒙 古 科 技 大 学 教 案GM-AGC工作原理图前馈式厚度自控系统原理”和“厚度计”测厚的反馈式AGC,都无法避免信号传递的滞后,因而限制了控制精度内蒙古科技大学教案图9-21 前馈AGC 控制示意图 图9-22 δh 、δS 、δH 之间的关系曲线H K M H M M mδδ=+) (9-10) 内 蒙 古 科 技 大 学 教 案内蒙古科技大学教案图9-25 入口和出口断面形状内蒙古科技大学教案内蒙古科技大学教案内蒙古科技大学教案图9-31 四辊钢板轧机的受力和变形[40]内蒙古科技大学教案图9-33 带钢良好板形线簇[40]众所周知,轧制压力波动对带钢板形的影响不是太敏感的,带钢愈厚,影响愈为迟钝。
其原因是带钢是一个整体,只要带钢宽度上各点的不均匀纵向延伸产生的内应力不超过一定限度,带钢就不会失去它维持自身平直的稳定状态,带钢愈薄,维持自身平直的能力愈差。
所以保证轧制带钢板形良好的条件,图上表现出来的不是一条直线,而是一个区间,这个区域随板厚增大而变得愈宽,见图图9-34 带钢板形良好区间[40]与区间上限AE的交点E是不产生边部浪形的临界点;塑性线是不产生中部浪形的临界点。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
由于机座弹性变形f与轧制力有关,如果在 轧制过程中的轧制力有波动,则在一定原始辊 缝下,机座的弹性变形及轧辊有载辊缝也有相 应的波动。这就使轧件沿长度方向的厚度发生 变化,产生了纵向厚度偏差。因此,在现代板 带轧机上,设置了厚度自动控制装置,使轧机 能在轧制过程中调整辊缝,控制轧件的纵向厚 度偏差。至于有载辊缝沿宽度方向的不均匀变 化,将使轧件产生横向偏差,并导致板形的变 化,一般是通过合理的辊型设计,设置辊型调 整和板形控制装置等措施来控制的。
在用轧制法测定机座弹性变形时,应注意不要使轧 辊发热,以免因轧辊热膨胀而影响轧辊辊缝的数值。 轧制法测定的条件,与实际生产条件最为相近,能测 得较精确的数值。如果采用不同宽度的轧件进行轧制, 则可得出轧件宽度对机座弹性变形的影响曲线。
2)轧辊压靠法 轧制法不可能在生产中多次经 常地进行,大轧机用轧制法也较困难,故出现了 第二种方法——轧辊压靠法。用轧辊压靠法测定 时,轧辊中没有轧件。轧辊一面空转,一面调整 压下螺丝,使上下工作辊直接接触压靠。轧辊接 触压靠后,压下螺丝仍继续下降,使轧机工作机 座产生弹性变形。显然,由轧辊压靠开始点至轧 制力为P时的压下螺丝行程,即为在此轧制力P作 用下的机座弹性变形。根据所测数据,可绘制如 图6-3(P175页)中的弹跳曲线ok’l’。由于轧辊压 靠开始点不易测量,往往可先假定某一压力值P。 作为压靠开始点。
e 、轧机弹跳值对产品质量很大影响,它是决定 轧出钢板厚度有波动量的主要因素之一。造成板 厚波动的主要因素是一道轧制过程中(s0一定), 当轧制压力由于某种原因而发生变化时(例如张 力发生变化,轧件温度和机械性能不均匀等), 辊缝的弹性增大量也随着变化。由于轧材出辊缝 后弹性恢复很小,所以轧机辊缝弹性增大量的变 化就是轧出钢板板厚的变化。 3、轧钢机座的刚度 定义:轧机抵抗弹性变形的能力。
以图 6-1a(P174 页 ) 所示的二辊板带轧机为例,轧件进入 轧辊前,轧辊的原始辊缝设为 s0当轧制轧件时,在轧制力P 作用下,机座在轧辊辊身中部处产生的弹性变形为f。如果 轧辊原始辊型为圆柱形,则轧后的轧件断面将呈腰鼓形(图 6-1b) (P174页),轧后的轧件厚度也大于原始辊缝S。,即 h = s0 + f 6-1
式中 h —— 轧后的轧件厚度 ( 轧后的轧件中部处的厚 度); s0 —— 轧辊原始辊缝; f —— 机座弹性变形 ( 机座在轧辊辊身中部处的弹性变 形)。 由此可见,机座弹性变形,与轧后的轧件厚度 h与轧辊 原始辊缝s0的调整密切相关。要想得到厚度为h的轧件,轧 辊原始辊缝s0应调整到比轧件厚度h小一个机座弹性变形量 f的数值。
步骤: (1)先移动轧辊,使上、下工作辊直接接触 ,此 时测压仪读数指向零,即处于零位状态; (2)在保持轧辊回转的情况下,开始调节压下螺 丝,使两轧辊逐渐压靠; (3)每增加一定的压靠量时,记录下相应的压下 调节量和轧制力; (4)绘制轧机的弹性曲线,以纵坐标为轧制力, 以横坐标为压下调节量的关系曲线。
2.机座弹性变形曲线(弹跳方程)与机座刚度 为了控制成品轧件的精度,并为轧机调整和 工艺规程的安排创造有利条件,必须对机座弹 性变形在数值上加以确定。机座弹性变形量主 要是通过实测法来确定的,一般采用以下两种 测定方法。
1)轧制法 在冷轧机上,轧件的厚度可以精确 测量,一般采用轧制法。即在一定的原始辊缝 s0下,轧制不同厚度的轧件,测出轧制力P和轧 后的轧件厚度h 。显然,轧后的轧件厚度h与原 始辊缝s0之间的差值,即为在此轧制力P作用下 的机座弹性变形量f。将测得的数值绘制成机座 弹性变形曲线,如图6-2(P175页)中的曲线gkl 所示,此曲线称为弹跳曲线。弹跳曲线可以用 轧制力P和轧后的轧件厚度h表示。也可以用轧 制力P和机座弹性变形f表示。
1 工作机座刚度
§1.1 基本概念 1、原始辊缝s0 定义:轧机空载时的轧辊间隙。 2、弹跳值f (1)定义:在轧钢时轧机的辊缝增大量。
a 、弹跳值是从总的方面来反映轧钢机座受力后轧 机变形的大小,它是与轧制力的大小成正比的。 b 、在相同的轧制力的作用下,如果轧机弹跳值愈 小说明该轧钢机座的刚度愈好。 c 、轧机弹跳值的存在并不妨碍轧机轧出一定厚度 的轧件,因为对于该轧机可以采用预先调整原始 辊缝的办法,使弹跳后的辊缝值恰好与轧件厚度 相同。 d 、轧机的弹跳值大小将限制轧出钢板的最小厚度。
轧机机座厚度和板形控制
内容
1 工作机座刚度 2 厚度控制的基本原理 3 板形控制的基本原理
ห้องสมุดไป่ตู้
轧钢机在轧钢时产生的巨大轧制力,通过轧辊、轧 辊轴承、压下螺丝、最后传递至机架,由机架来承受。 轧钢机上的所有这些零部件都是受力部分,它们在轧 制力作用下都要产生弹性变形。因此,轧机受力时轧 辊之间的实际间隙要比空载时大。
机座的弹性变形可以分为两大部分。一部 分是轧辊的弯曲变形fw ,另一部分是除轧辊弯 曲变形以外的各受力零件的弹性变形fy 。轧辊 弯曲变形fw使轧辊轴线挠曲,除了使受载荷轧 制力作用下的轧辊辊缝(此辊缝称为有载辊缝) 要比轧辊原始辊缝增大外,这一有载辊缝在宽 度方向也产生了不均匀变化。另一部分弹性变 形fy是由轧辊轴承座、垫板、压下螺丝等零件 产生的压缩变形、轧辊的弹性压扁、机架的拉 伸变形等造成的。这些变形使轧辊辊缝均匀增 加。
步骤: ( 1 )在保持轧辊辊缝一定的情况下,用不同厚 度的板坯送入轧机轧制,读出轧制每块钢板时 的轧制力,并分别测定各块钢板的轧制后的板 厚; ( 2 )由测量所得的各块钢板的板厚和原始辊缝 值的差值,来确定轧机在各对应轧制力的情况 下的弹跳值; (3)绘制轧机弹性曲线,以纵坐标为轧制力, 横坐标为弹跳值的关系曲线。
§1.2机座刚度及其意义 1.机座弹性变形对轧件厚度的影响 在轧制时,由于轧制力的作用,轧钢机工作 机座产生一定的弹性变形。在某些轧钢机上, 工作机座总的弹性变形量可达 2 ~ 6mm 。这对于 成品轧机,特别是宽度较大而厚度较薄的板带 轧机,机座的弹性变形对轧机调整和轧件尺寸 精度有很大的影响。