比热容的测定

合集下载

空气比热容的测定

空气比热容的测定

空气比热容比测定实验在热学中比热容比是一个基本物理量。

过去,由于实验测量手段的原因使得对它的测量误差较大。

现在通过先进的传感器技术使得测量便得简单而准确。

本实验通过压力传感器和温度传感器来测量空气的比热容比。

一、实验目的1. 用绝热膨胀法测定空气的比热容比。

2. 观测热力学过程中状态变化及基本物理规律。

3. 学习气体压力传感器和电流型集成温度传感器的原理及使用方法。

二、实验仪器机箱(含数字电压表二只)、贮气瓶、传感器两只(电流型集成温度传感器AD590和扩散硅压力传感器各一只)图1空气比热容比测定实验装置图1.进气活塞C 1 2.放气活塞C 2 3.AD590传感器 4.气体压力传感器 5.704胶粘剂三、实验原理对1 mol 理想气体的定压比热容p C 和定容比热容v C 之关系由下式表式:R C C v p =- (1)(1)式中,R 为气体普适常数。

气体的比热容比γ值:压强调零温度电源52vp C C =γ (2)气体的比热容比γ现称为气体的绝热系数,它是一个重要的物理量,γ值经常出现在热力学方程中。

测量γ值的仪器如图1所示,以到达状态II 后贮气瓶内剩余的空气作为研究对象,进行如下实验过程:(其中P 0为环境大气压强,T 0为室温,V 2表示贮气瓶体积) 1) 先打开放气阀C 2,贮气瓶与大气相通,再关闭C 2,瓶内充满与周围空气等温等压的气体。

2) 打开充气阀C 1,用充气球向瓶内打气,充入一定量的气体,然后关闭充气阀C 1。

此时瓶内空气被压缩,压强增大,温度升高。

等待内部气体温度稳定,此时的气体处于状态I (P 1,V 1,T 1)。

因瓶内气体压强增大,T 1不完全等于T 0。

(注:V 1小于V 2,此时瓶中还有研究对象以外气体)3) 迅速打开放气阀C 2,使瓶内气体与大气相通,当瓶内压强降至P 0时,立刻关闭放气阀C 2,由于放气过程较快,气体来不及与外界进行热交换,可以近似认为是一个绝热膨胀过程。

比热容的测定方法

比热容的测定方法

比热容的测定方法
1. 混合法呀,就像你调鸡尾酒一样。

把不同温度的东西放一块儿,然后通过测量温度变化来算出比热容呢!比如说把热水和冷水混在一起,你想想看这多有意思呀!
2. 量热计法,这就像是给物体做个专门的体检。

把东西放进去,仔细测量各种数据,最后找到它的比热容,哇,是不是感觉很专业呢!
3. 冷却法呀,你可以联想一下给发烧的人降温的过程。

我们让热的物体慢慢冷却,通过观察冷却的情况来确定比热容,这很神奇吧!
4. 绝热法,这不就像是给物体包上一层温暖的毛毯嘛!看看它在绝热的情况下温度怎么变化,然后就能算出比热容啦,是不是很妙?
5. 电加热法,就好像给物体通上电流来取暖一样。

通过电的作用和温度的变化来搞清楚比热容,是不是很独特呀!
6. 我们还可以用热线法,想象一下有根热线在探测物体呢。

靠它来获取信息从而得到比热容,多好玩呀!
7. 辐射法,这如同太阳光照在物体上一样。

研究这种辐射带来的影响来测定比热容,很新奇吧!
8. 声波法呢,就像是用声音去和物体交流。

通过声波的传播和反应来找出比热容,哇塞,这也太独特了吧!
9. 还有相变法,就好比水变成冰的过程。

关注这个过程里的各种变化来确定比热容,太有意思啦!
我觉得这些测定比热容的方法都各有各的奇妙之处,都值得我们去深入了解和探索呀!。

空气比热容比的测定

空气比热容比的测定

实验二 空气比热容比和液体粘滞系数的测定(一) 空气比热容比的测定【实验简介】空气的比热容比 又称气体的绝热指数, 是系统在热力学过程中的重要参量。

测定 值在研究气体系统的内能, 气体分子的热运动以及分子内部的运动等方面都有很重要的作用。

如气体系统作绝热压缩时内能增加, 温度升高;反之绝热膨胀时, 内能减少, 温度降低。

在生产和生活实践中广泛应用的制冷设备正是利用系统的绝热膨胀来获得低温的。

除此以外, 测定比热容比还可以研究声音在气体中的传播。

由上可见, 测定气体的比热容比是一个重要的实验。

本实验采用绝热膨胀法测定空气的 值。

【实验目的】1.用绝热膨胀法测定空气的比热容比。

2.观察热力学过程中系统的状态变化及基本物理规律。

3.学习使用空气比热容比测定仪和福廷式气压计。

【实验仪器】空气比热容比测定仪(FD —NCD 型, 包括主机, 10升集气瓶连橡皮塞和活塞, 打气球, 硅压力传感器及同轴电缆, AD590温度传感器及电缆)、低压直流电源(VD1710—3A )、电阻箱(或 定值标准电阻)、福廷式气压计(共用)。

【实验原理】1.理想气体的绝热过程有 , 叫做理想气体的比热容比或绝热指数。

和 分别是理想气体的定压摩尔热容和定体摩尔热容, 二者之间的关系为 ( 为普适气体恒量) 2.如图所示, 关闭集气瓶上的活塞 , 打开 , 用打气球缓慢而稳定地将空气打入集气瓶内, 瓶内空气的压强逐渐增大, 温度逐渐升高。

当压强增大到一定值时, 关闭 , 停止打气。

待集气瓶内的温度降至室温 状态稳定时, 这时瓶内气体处处密度均匀, 压力均匀, 温度均匀。

此时取瓶内体积为 的一部分气体作为我们的研究对象, 系统处于状态1 , 这部分气体在接下来的膨胀中体积可以恰好充满整个瓶的容积 。

突然打开活塞 进行放气, 放掉多余的气体, 使系统迅速的膨胀, 达到状态2 , 随即又迅速关闭 。

是环境大气压。

由于放气过程迅速, 可视为绝热过程, 故有1102PV PV γγ= (1)3.关闭 后, 瓶内气体的温度会由 缓慢回升至室温 , 与此同时, 压强也会逐渐增大。

热学实验2 气体比热容比的测定

热学实验2 气体比热容比的测定

实验二 气体比热容比C P /C V 的测定比热容是物性的重要参量,在研究物质结构、确定相变,鉴定物质纯度等方面起着重要的作用。

如热机的效率、声波在气体中的传播特性都与气体的比热容比有关,气体比热容比是指气体的定压比热容与定容比热容的比值。

本实验将介绍一种较新颖的测量气体比热容比的方法。

【实验目的】1.了解气体比热容比的测量原理;2.学习用振动法测定空气的定压比热容与定容比热容之比。

【实验仪器】1.DH4602气体比热容比测定仪2.螺旋测微计3.物理天平4.气泵【实验原理】气体的定压比热容CP 与定容比热容C V 之比V P C /C =γ。

在描述理想气体的绝热过程中是一个很重要的参数,测定的方法有好多种。

本实验采用振动法来测量,即通过测定物体在特定容器中的振动周期来计算γ值。

实验基本装置如图1所示,振动物体小球的直径比玻璃管直径仅小0.01~0.02mm 。

它能在此精密的玻璃管中上下移动,在瓶子的壁上有一小口C ,通过气泵上的一根细管相接,可以把气体注入到烧瓶中。

小钢球A 的质量为m ,半径为r (直径为d ),当瓶子内压力P 满足下面条件时小钢球A 处于力平衡状态。

这时20r mg P P π+=,式中P 0为大气压力。

为了补偿由于空气阻尼引起振动小刚球A 振幅的衰减,通过气体注入口C 不间断通入一个小气压的气流,在精密玻璃管B 的中央开设有一个小孔。

当振动小刚球A 处于小孔下方的半个振动周期时,通入气体使容器的内压力增大,引起小刚球A 向上移动,而当小刚球A 处于小孔上方的半个振动周期时,容器内的膨胀气体将通过小孔流出,使小刚球下沉。

以后重复上述过程,只要适当控制注入气体的流量,小刚球A 能在玻璃管B 小孔的上下作简谐振动,振动周期可利用光电计时装置来测得。

若小刚球偏离平衡位置一个较小距离x ,则容器内的压力变化dP 、体积变化x r dV 2π=,由牛顿第二运动定律小刚球的运动方程为:)(222r S S d P dtx d m π== (1) 因小刚球振动过程相当快,故可以将其看作是绝热过程,绝热方程)(为常数C C PV =γ(2) 由(2)式求导得: Vx r P dP 2γπ-= (3) 将(3)式代入(1)式得小钢球做简谐振动方程04222=+x mV P r dtx d γπ 则角频率为:TmV P r πγπω242== (4) 由(4)式得: 424264Pr 4Pd T mV T mV ==γ (5) 式中各量均可方便测得,因而可算出γ值。

山东大学气体定压比热容的测定实验

山东大学气体定压比热容的测定实验

实验一 气体定压比热容的测定一、 实验目的1. 掌握气体定压比热测定装置的基本原理。

2. 熟悉本实验中的温度、压力、热量(加热功率)、湿空气流量的测量方法。

3. 掌握由基本数据计算出定压比热值和求得定压比热公式的方法。

4. 分析本实验产生误差的原因及减小误差的可能途径。

二、实验原理根据定压比热的定义:c p =δqdT (1) δq =c p ·dT (2) Q =q m ∫c p ·dt t2t 1(3)气体定压比热容的积分平均值:c p |t 1t2=Qqm (t 2−t 1)=Qq m △t(4)式中,Q ——气体在定压流动过程中由温度t 1被加热到t 2时所吸收的热量,W ; q m ——气体的质量流量, kg/s ;△t ——气体定压流动受热的温升,℃。

因此,准确的测出气体的定压温升△t ,质量流量q m 和加热量Q ,就可以求得气体由温度t 1被加热到t 2时的平均定压比热容c p |t 1t2(J /(kg ·℃)。

在温度变化范围不太大的条件下,气体的定压比热容可以表示为温度的线性函数,即c p =a +bt (5)温度t 1至t 2之间的平均比热容,在数值上等于平均温度t m =t 1+t 22下气体的真实比热容,即c p |t 1t2=a +bt m (6) 改变t 1和t 2,就可以测出不同平均温度下的比热容,从而求得比热容与温度的关系。

三、实验装置实验装置由风机、湿式气体流量计、比热仪主体、电功率调节器和温度测量系统等组成(如图1所示)。

图1 实验装置示意图1.电箱2.离心式鼓风机3.湿式气体流量计4.比热仪主体5.干球温度6.进口温度7.出口温度8.外热式电烙铁芯9.铜闸阀10.湿球温度11.U型压力计图2 比热仪主体实验时,被测空气(也可以是其它气体)由风机经流量计送入比热仪主体,经加热、均流、旋流、混流后流出。

在此过程中,分别测定:空气在流量计出口处的湿球温度t w(℃)和干球温度t0(℃);气体经比热仪主体的进出口温度t1、t2(℃、℃);电加热器的输入电压U(V)和输入电流I(A);气体的体积流量q v(m3/s)以及实验时相应的大气压p b(Pa)和流量计出口处的表压p e(Pa)。

比热容的测量

比热容的测量

比热容的测量物质比热容的测量是物理学的基本测量之一,属于量热学的范围。

量热学的基本概念和方法在许多领域中有广泛应用,特别是在新能源的开发和新材料的研制中,量热学的方法都是必不可少的。

由于散热因素多而且不易控制和测量,量热实验的精度往往较低。

为了做量热实验,常常需要分析产生各种误差的因素,考虑减少误差的方法,提高实验能力。

1. 实验目的(1) 学习测量液体比热容的原理和方法;(2) 了解量热实验中产生误差的因素及减少误差的措施。

2. 实验原理当一个孤立的热学系统最初处于平衡态时,它有一初温T1;当外界给予该系统一定热量后,它又达到新的平衡时,有一末温T2。

如果该系统中没有发生化学变化或相的转变,那么该系统获得的热量为=(m1c1 + m2c2 + …)(T2-T1) (1)式中m1,m2,…为组成系统的各种物质的质量,c l,c2,…为相应物质的比热容。

比热容的含义是单位质量的物质温度升高1K所吸收的热量,单位为焦耳/千克⋅开或焦耳/克⋅开。

20℃纯水的比热容为4.182 J/g⋅K,其他物质的比热容大都小于纯水。

例如变压器油20℃时的比热容为1.892 J /g⋅K,金属的比热容在0.13—1.3J/g⋅K之间。

物质的质量m与其比热容c的乘积称为热容。

用大写字母C 表示,单位为焦耳/开,即J/K。

进行物质比热容的测量时,必须用到量热器、温度计、搅拌器等等。

它们是由多种不同材料制成的。

为了简便而又不影响结果,可将量热系统里除待测物质以外的其他所有器具的热容量统统折合成水所相当的热容W,称为它们的“水当量”。

本实验是测定液体的比热容。

方法可有多种,如混合法(将已知热容和温度的固体与待测液体混合的方法),比较法(将待测液体与已知比热容的纯水在同样实验条件下比较的方法)等。

本实验中采用直接测量比热容的方法,即由电热丝给待测液体供热,直接测出比热容,既可以避免混合法中由于固体投入液体的过程中产生的散热误差,又可减少比较法中不易满足实验条件而带来的麻烦。

液体比热容的测定

液体比热容的测定

液体比热容‎的测定一、实验目的:1) 冷却法测定‎液体的比热‎容,并了解比较‎法的优点和‎条件;2) 最小二乘法‎求经验公式‎中直线的斜‎率;3) 用实验的方‎法考察热学‎系统的冷却‎速率同系统‎与环境间温‎度差的关系‎。

二、实验原理:由牛顿冷却‎定律知,一个表面温‎度为的物体‎θ,在温度为的‎0θ环境中自然‎冷却(θ>0θ),在单位时间‎里物体散失‎的热量与温‎t q δδ度差(θ>0θ)有下列关系‎:t q δδ= k (θ>0θ) 当物体温度‎的变化是准‎静态过程时‎,上式可改写‎为:t q δδ = sC k (θ>0θ ) (1) (1)式中为物体‎tq δδ的冷却速率‎,s C 为物质的热‎容,k 为物体的散‎热常数,与物体的表‎面性质、表面积、物体周围介‎质的性质和‎状态以及物‎体表面温度‎等许多因素‎有关,θ和分别为物‎0θ体的温度和‎环境的温度‎,k 为负数,θ-0θ的数值应该‎很小,大约在1 0一1 5℃之间。

如果在实验‎中使环境温‎度保持恒定‎0θ(即的变化比‎0θ物体温度的‎θ变化小很多‎),则可以认为‎0θ是常量,对式(1)进行数学处‎理,可以得到下‎述公式:㏑(θ-0θ) = sC k t + b (2) 式中b 为(积分)常数。

可以将式(2)看成为两个‎变量的线性‎方程的形式‎: 自变量为t ‎,应变量为l ‎n(θ-0θ),直线斜率为‎sC k ,本实验利用‎式(2)进行测量,实验方法是‎:通过比较两‎次冷却过程‎,其中一次含‎有待测液体‎,另一次含有‎已知热容的‎标准液体样‎品,并使这两次‎冷却过程的‎实验条件完‎全相同,从而测量式‎(2)中未知液体‎的比热容。

在上述实验‎过程中,使实验系统‎进行自然冷‎却,测出系统冷‎却过程中温‎度随时间的‎变化关系,并从中测定‎未知热学参‎量的方法,叫做冷却法‎;对两个实验‎系统在相同‎的实验条件‎下进行对比‎,从而确定未‎知物理量,叫做比较法‎。

液体比热容的测定

液体比热容的测定

液体比热容的测定比热容是单位质量的物质温度升高1℃时需吸收的热量,它的测量是物理学的基本测量之一,属于量热学的范畴。

量热学在许多领域都有广泛应用,特别是在新能源的开发和新材料的研制中,量热学的方法是不可缺少的.比热容的测量方法很多,有混合法、冷却法、比较法(用待测比热容与已知比热容比较得到待测比热容的方法)等。

本实验用的是电热法测比热容,它是比较法的一种.各种方法,各具特点,但就实验而言,由于散热因素很难控制,不管哪种方法实验的准确度都比较低。

尽管如此,由于它比复杂的理论计算简单、方便,实验还具有实用价值.当然,在实验中进行误差分析,找出减小误差的方法是必要的.每种物质处于不同温度时具有不同数值的比热容,一般地讲,某种物质的比热容数值多指在一定温度范围内的平均值.一. 实验目的用电热法测定液体的比热容二. 实验仪器HZY7-YJ-HY-II液体比热容测定仪、天平三.技术指标1.实验项目:电热法液体比热容的测定2.温度测量范围:-50-125℃,精度±0.1℃, 三位半数显3.计时范围:0-100分,精度:±0.1S4.电流测量范围:0-1.999A;三位半数显5.电压测量范围:0-19.99V;三位半数显6.电压输出:9-16V四.实验原理1.基本原理孤立的热学系统在温度从T1升到了T2时的热量Q与系统内各物质的质量m1,m2…和比热容c1,c2…以及温度变化T1-T2有如下关系:Q﹦(m1c1+m2c2+…)(T2-T1)(1)式中,m1c1,m2c2…是各物质的热容量.在进行物质比热容的测量中,除了被测物质和可能用到的水外,还会有其他诸如量热器、搅拌器、温度传感器等物质参加热交换。

为了方便,通常把这些物质的热容量用水的热容量来表示。

如果用mx 和cx分别表示某物质的质量和比热容,c表示水的比热容,就应当有mxcx﹦c1ω.式中ω是用水的热容量表示该物质的热容量后“相当”的质量,我们把它称为“水当量”.2.实验公式如图1所示,在量热器中装入质量为m1,比热容为c1的待测液体(如水),当通过电流I时,根据焦耳﹣楞次定律,量热器中电阻产生的热量为Q=IUt (2)式中,I为电流强度,U为电压,t为通电时间.如果量热器中液体(包括量热器及其附件)的初始温度为T1,在吸收了加热器释放的热量Q后,终了的温度为T2.m2为量热器内筒的质量,c2为铝量热器内筒的比热容,搅拌器和温度传感器等用水当量ω表示,水的比热容为c,则有IUt=(c1m1+c2m2+c1ω)(T2-T1)图1C1=〔IUt/(T2-T1)-c2m2〕/(m1+ω) (3)铝在25℃时的比热容C2为0.216 cal·g-1·℃-1(0.904J·g-1·℃-1), 水在25℃时的比热容c1为0.9970cal·g-1·℃-1(4.173 J·g-1·℃-1).本量热器的水当量ω﹦2.16 g 3.散热修正实验修正的方法是接通电源后每隔1分钟记一次升温过程的温度,测8到10分钟切断电源,然后再每隔1分钟记录一次降温过程中的温度,测5到8分钟,并注意在实验的整个过程中要不停地用搅拌器搅拌。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

比热容的测定
如前所述DSC测量的是试样吸热或放热速率,纵坐标为dH/dt。

在比热容测定中直接测定纵坐标的位移。

因为热容C p=dH/dT,与吸热或放热速率之间的关系可注下式表示:
式中dH/dt=β是升温速率.
根据物理化学原理,在不作非体积功的等压过程中,在没有物态变化和化学组成变化时,等压热客为
而比热容为
变换(1.44)和(1.45)式,得到结果和(1.41)式一样.即
由(1.41)式可见,dH/dt为热焓变化速率。

正是DSC曲线中的纵坐标。

dH/dt为升温速率β,m为试洋质量,C是比热容[单位为J/(g·K)].因此,用DSC测定比热容是非常方便
的.测定方法有直接法和间接法(比例法)两种。

直接的方法就是在DSC曲线上,直接读取纵坐标dH/dt数值和升温速率β,一同代人(1.41)或(1.42)式,求山比热容C.但是这种方法往往引起很大的误差,这些误差主要是由于仪器造成的,包括以下几方面:第一,在测定的温度范围内,dH/dt不是绝对线性的;第二,仪器校正常数在整个测定区不是一个恒定值;第三,在整个测定范场内,基线不可能完全平直.为了减少这些误差,一般采用间接法测定比热率.
间接法是用试样和一标准物质在其他条件相同下进行扫描,然后量出二者的纵坐标进行计算.标准物要求在所测温度范围内没有化学的和物理的变化,并且比热容已知.常用的标准物是蓝宝石(要求不高时也可用α—A12O3).具体作法是在DSC仪器上,先用两个空样品皿,以一定的升温速度作一条基线,然后放入标进物蓝宝石样品在用同样条件作一条DSC 曲线,再用同样条件,作未知试样的DSC曲线,如图1.33所示.根据(1.41)式,在某一温度下,试样的热始变化率为
蓝宝石热焓变化率为
两式相除得
所以,试样的比热容C为
式中C为试样的比热容[J/(mg·K)],C’为标准物(蓝宝石)的比热容[J/(mg·K)],
m为试样重量(mg),m’为标准物(蓝宝石)重量(mg),y为试样在纵坐标上的角高.y’为标准物(蓝宝石)在纵坐标上的偏离.
从图1.33上量取y’,y的长度,代入(1.47)式,就可计算出试样的比热容.
图1.34示出聚碳酸酯树脂的比热容测定。

当试样发生破璃化转变时,热容变化明显,用这种方法测定比热容不但可以求出破璃化转变前后热容的数值,而且也可以测出玻璃化转变的温度值.
由DSC技术测得物质比热容数值后,还可用下列方程的图解积分法,计算物质的热力学参数:
目的Perkin—E1mer公司出售的DSC-2C,DSC-7都有测定比热容的软件.。

相关文档
最新文档