负二项分布NB (r, P)-描述统计
负二项分布(研究生)

负二项分布均数和方差
k 1
2 k 1
2
福建医科大学流行病与统计教研室(胡志坚)
5
若令P=μ/k,q=1+P 则
P0 qk
X=0
PX k X 1p PX 1 X≥1
也可变为
Xq
kp
2 2
k
7张
福建医科大学流行病与统计教研室(胡志坚)
6
负二项分布的参数估计
负二项分布有两个参数即μ和k。
检验条件: (1) f0/N=30/60=0.5>1/3
(2) X 1.033 10
均数
X 0.17 f0 0.32 0.217 0.20 条件
N
福建医科大学流行病与统计教研室(胡志坚)
13
零频数法
先尝试K1=0.90
k1
lg1
X k1
0.90lg1
1.033Leabharlann 0.900.299下一张
22
步骤:
计算两组的均数和方差
X1
X
N
7 10
0.70...................X. 2
X
N
4 0.40 10
S12
X2
X
N 1
2/N
0.90...S2 2
X2
X 2/N
0.49
N 1
计算Kc KC
计算转按值
X1 S12 X1 X 2 S22 X 2 S12 X1 2 S22 X 2 2
X f X 62 1.033
S 2
N
60
fX2
fX 2 / N
N 1
186 622 / 60 2.067 60 1
负二项分布(研究生)

2 2
k
2
1
k
福建医科大学流行病与统计教研室(胡志坚)
7
矩法
K的估计:
2 2
k
kˆ
2
kˆ
2
X
2 X
S2 X
计算
5张
福建医科大学流行病与统计教研室(胡志坚)
8
例---矩法
在研究某种毒物的致死作用时,对60 只小白鼠进行了显性致死试验,得到资 料见表.若服从负二项分布,试估计参 数μ和K.
lg
N f0
lg
60 30
0.301
K2取1.1
k2
lg1
X k2
1.1lg1
1.033 1.1
0.316
lg
N f0
lg
60 30
0.301
计算K
kˆ 1.1 0.90 1.1 0.301 0.316 0.924
0.299 0.316
福建医科大学流行病与统计教研室(胡志坚)
14
最大似然法
2.34
Yi=ln(Xi+0.5Kc)
对转换值进行t检验: t=0.827 ν=20-2=18
P>0.05 不拒绝H0,尚不能认为两组胚胎死亡
数有差别
上一张
福建医科大学流行病与统计教研室(胡志坚)
23
End of slides for Lectures
Autumn, 2004
福建医科大学流行病与统计教研室(胡志坚)
X
负二项分布均数和方差
k 1
2 k 1
2
福建医科大学流行病与统计教研室(胡志坚)
负二项分布的分布函数

负二项分布的分布函数
负二项分布是一种离散概率分布,常用于描述重复独立的伯努利试验中,第r个成功事件出现时所需要进行的试验次数X的概率分布。
其概率质量函数为:
P(X=k) = (k-1)C(r-1) * p^r * (1-p)^(k-r)
其中p为单次试验成功的概率,k为成功事件出现时所需要进行的试验次数,C为组合数。
负二项分布的分布函数可以表示为:
F(X=k) = 1 - B(k-r+1, r, 1-p)
其中B为不完全贝塔函数。
在实际应用中,负二项分布可用于预测需要进行多少次试验才能达到一定的成功次数,例如预测需要进行多少次购买才能获得一定数量的优惠券等。
- 1 -。
茆诗松《概率论与数理统计教程》(第2版)笔记和课后习题(含考研真题)详解-第4~5章【圣才出品】

(1)|φ (t)|≤φ (0)=1.
——————
——————
(2)φ (-t)=φ (t),其中φ (t)表示 φ (t)的共轭.
(3)若 y=aX+b,其中 a,b 是常数,则 φ Y(t)=eibtφ X(at).
(4)独立随机变量和的特征函数为每个随机变量的特征函数的积.即设 X 与 Y 相互独
5 / 167
圣才电子书 十万种考研考证电子书、题库视频学习平台
P
Xn a
P
Yn b
则有 ①
P
X n Yn a b
②
1 / 167
圣才电子书
十万种考研考证电子书、题库视频学习平台
P
X n Yn a b
③
P
Xn Yn a b(b 0)
2.按分布收敛、弱收敛
(1)按分布收敛
设随机变量 X,X1,X2,…的分布函数分别为 F(X),F1(X),F2(X),….若对 F(x)
p(x) x e n/21 x/2 ,x 0 Γ (n / 2)2n/2
exp
it
2t 2
2
(1 it )1
(1 it )
(1 2it )n / 2
贝塔分布
Be(a,b)
p(x) Γ (a b) xa1 (1 x)b1,0 x 1 Γ (a)Γ (b)
Γ (a b)
(it)k Γ (a k)
P
Xn x
或者说,绝对偏差|Xn-x|小于任一给定量的可能性将随着 n 增大而愈来愈接近于 1, 即等价于 P(|Xn-x|<ε)→1(n→∞).
特别当 x 为退化分布时,即 P(X-c)=1,则称序列{Xn}依概率收敛于 C. (2)依概率收敛于常数的四则运算性质如下: 设{Xn},{Yn}是两个随机变量序列,a,b 是两个常数.如果
13个期望计算公式

13个期望计算公式期望是概率论中的一个重要概念,它描述了一个随机变量的平均值。
在现实生活中,我们经常需要计算某种随机变量的期望,以便更好地理解和预测各种现象。
本文将介绍13个常见的期望计算公式,帮助读者更好地理解和运用期望的概念。
1. 离散型随机变量的期望计算公式。
对于离散型随机变量X,其期望可以通过以下公式计算:E(X) = Σx P(X=x)。
其中,x表示随机变量X可能取的值,P(X=x)表示X取值为x的概率。
2. 连续型随机变量的期望计算公式。
对于连续型随机变量X,其期望可以通过以下公式计算:E(X) = ∫x f(x) dx。
其中,f(x)表示X的概率密度函数。
3. 二项分布的期望计算公式。
对于二项分布B(n,p),其期望可以通过以下公式计算:E(X) = n p。
其中,n表示试验的次数,p表示每次试验成功的概率。
4. 泊松分布的期望计算公式。
对于泊松分布P(λ),其期望可以通过以下公式计算:E(X) = λ。
其中,λ表示单位时间(或单位面积)内事件发生的平均次数。
5. 几何分布的期望计算公式。
对于几何分布G(p),其期望可以通过以下公式计算:E(X) = 1/p。
其中,p表示每次试验成功的概率。
6. 均匀分布的期望计算公式。
对于均匀分布U(a,b),其期望可以通过以下公式计算:E(X) = (a+b)/2。
其中,a和b分别表示随机变量X的取值范围的下限和上限。
7. 指数分布的期望计算公式。
对于指数分布Exp(λ),其期望可以通过以下公式计算:E(X) = 1/λ。
其中,λ表示事件发生的速率。
8. 正态分布的期望计算公式。
对于正态分布N(μ,σ²),其期望可以通过以下公式计算:E(X) = μ。
其中,μ表示分布的均值。
9. 超几何分布的期望计算公式。
对于超几何分布H(N,M,n),其期望可以通过以下公式计算:E(X) = n (M/N)。
其中,N表示总体容量,M表示总体中具有成功属性的个体数量,n表示抽取的样本容量。
贝叶斯统计老师划的课后习题精选.

1.1设θ是一批产品的不合格率,已知它不是0.1就是0.2,且其先验分布为π(0.1)=0.7 π(0.2)=0.3.假如从这批产品中随机抽取8个进行检查,发现有两个不合格品。
求θ的后验分布。
解:令120.1,0.2θθ==设A 为从产品中随机取出8个,有2个不合格,则22618()0.10.90.1488P A C θ== 22628()0.20.80.2936P A C θ== 从而有1111122()()()0.4582()()()()P A A P A P A θπθπθθπθθπθ==+2221122()()()0.5418()()()()P A A P A P A θπθπθθπθθπθ==+1.2 设一卷磁带上的缺陷数服从泊松分布P (λ),其中λ可取1和1.5中的一个,又设λ的先验分布为π(1)=0.4 π(1.5)=0.6.假如检查一卷磁带发现了3个缺陷,求λ的后验分布。
解:令121, 1.5λλ==设X 为一卷磁带上的缺陷数,则()X P λ:∴3(3)3!e P X λλλ-==1122(3)(3)()(3)()0.0998P X P X P X λπλλπλ∴===+== 从而有111222(3)()(3)0.2457(3)(3)()(3)0.7543(3)P X X P X P X X P X λπλπλλπλπλ==========1.3 设θ是一批产品的不合格率,从中抽取8个产品进行检验,发现3个不合格品,假如先验分布为 (1)θ~u(0,1) (2)θ~π(θ)={10 )1(2else0<<-θθ解:设A 为从产品中随机取出8个,有3个不合格,则3358()(1)P A C θθθ=-(1) 由题意知 ()1,01πθθ=<< 从而有 351()()()504(1),01()()P A A P A d θπθπθθθθθπθθ==-<<⎰(2)361()()()47040(1),01()()P A A P A d θπθπθθθθθπθθ==-<<⎰1.10 从正态总体N (0,4)中随机抽取容量为100的样本,又设θ的先验分布为正态分布。
负二项分布与二项分布

负二项分布
满足以下条件的称为负二项分布
1. 实验包含一系列独立的实验;
2. 每个实验都有成功、失败两种结果
3. 成功的概率是恒定的
4. 实验持续到r次成功,r为正整数。
当r是整数时,负二项分布又称帕斯卡分布,它表示,已知一个事件在伯努利试验中每次的出现概率是p,在一连串伯努利试验中,一件事件刚好在第r + k次试验出现第r次的概率。
二项分布
如果:
1.在每次试验中只有两种可能的结果,而且是互相对立的;
2.每次实验是独立的,与其它各次试验结果无关;
3.结果事件发生的概率在整个系列试验中保持不变,则这一系列试验称为伯努力试验。
在这试验中,事件发生的次数为一随机事件,它服从二次分布。
R语言的各种统计分布函数

R语言的各种统计分布函数来源于我的R语言读书笔记:/1656.html首先推荐一个博客:下面是正文1.二项分布Binomial distribution:binom二项分布指的是N重伯努利实验,记为X ~ b(n,p),E(x)=np,Var(x)=np(1-p)pbinom(q,size,prob),q是特定取值,比如pbinom(8,20,0.2)指第8次伯努利实验的累计概率。
size指总的实验次数,prob指每次实验成功发生的概率dbinom(x,size,prob), x同上面的q同含义。
dfunction()对于离散分布来说结果是特定值的概率,对连续变量来说是密度(Density)rbinom(n, size, prob),产生n个b(size,prob)的二项分布随机数qbinom(p, size, prob),quantile function 分位数函数。
分位数:若概率0<><1,随机变量x或它的概率分布的分位数za。
是指满足条件p(x>Za)=α的实数。
如t分布的分位数表,自由度f=20和α=0.05时的分位数为1.7247。
--这个定义指的是上侧α分位数α分位数:实数α满足0 <><1>1>< xα}="">双侧α分位数是使P{Xλ2}=1-F(λ2)=0.5α的数λ2。
qbinom是上侧分位数,如qbinom(0.95,100,0.2)=27,指27之后P(x>=27)>=0.95。
即对于b(100,0.2)为了达到0.95的概率至少需要27次重复实验。
2.负二项分布negative binomial distribution (帕斯卡分布)nbinom掷骰子,掷到一即视为成功。
则每次掷骰的成功率是1/6。
要掷出三次一,所需的掷骰次数属于集合 { 3, 4, 5, 6, ... } 。