三角函数系列第四节诱导公式测试题(含答案)

合集下载

三角函数的诱导公式练习题含答案

三角函数的诱导公式练习题含答案

三角函数的诱导公式练习题(1)1. tan225∘的值为()A.1B.√22C.−√22D.−12. 已知3sin(θ+π2)+sin(θ+π)=0,θ∈(−π,0),则sinθ=( )A.−3√1010B.−√1010C.3√1010D.√10103. 若sin(π3−α)=−13,则cos(α+π6)=( )A.−13B.13C.−2√23D.2√234. 已知sin(α+π4)=35,则cos(π4−α)=( )A.4 5B.−45C.−35D.355. 已知α是第二象限角,若sin(π2−α)=−13,则sinα=()A.−2√23B.−13C.13D.2√236. 已知函数f(x)={1x,x0,log2x−3,x0,则f(−12)⋅f(16)=()A.3B.1C.−1D.−27. (5分)已知x∈R,则下列等式恒成立的是( )A.sin(−x)=sin xB.sin(3π2−x)=cos xC.cos(π2+x)=−sin x D.cos(x−π)=−cos x8. sin 14π3−cos (−25π4)=________.9. 已知sin α=45,则cos (α+π2)=________. 10. cos 85∘+sin 25∘cos 30∘cos 25∘等于________11. 已知cos θ=−35,则sin (θ+π2)=________.12. 已知cos (π−α)=35,α∈(0,π),则tan α=________.13. 已知f (α)=sin (α−π2)cos (3π2+α)tan (π−α)tan (−α−π)sin (−α−π),其中α≠12kπ(k ∈Z ).(1)化简f (α);(2)若f (π2+β)=−√33,且角β为第四象限角,求sin (2β+π6)的值.14. 已知α为第二象限角,且sin α+cos α=−713,分别求tan α,sin 2α−2sin αcos α的值.15. 如图,四边形ABCD 中,△ABC 是等腰直角三角形,其中AC ⊥BC ,AB =√6,又CD//AB ,cos ∠ABD =√63.(1)求BD 的长;(2)求△ACD的面积.参考答案与试题解析三角函数的诱导公式练习题(1)一、选择题(本题共计 6 小题,每题 5 分,共计30分)1.【答案】A【考点】运用诱导公式化简求值【解析】原式中的角度变形后,利用诱导公式及特殊角的三角函数值计算即可得到结果.【解答】解:原式=tan(180∘+45∘)=tan45∘=1,故选A.2.【答案】A【考点】同角三角函数间的基本关系诱导公式【解析】利用诱导公式,同角三角函数基本关系式即可求解.【解答】解:∵sin(θ+π2)=sinθcosπ2+cosθsinπ2=cosθ,sin(θ+π)=sinθcosπ+cosθsinπ=−sinθ,∴ 3cosθ−sinθ=0,∴cosθ=13sinθ,由于sin2θ+cos2θ=1,而θ∈(−π,0),∴sinθ<0,∴109sin2θ=1.∴sinθ=−3√1010.故选A.3.【答案】A【考点】运用诱导公式化简求值【解析】观察所求角和已知角可得cos(α+π6)=cos[π2−(π3−α)],再利用诱导公式即可求解.【解答】解:∵ (α+π6)+(π3−a)=π2,∴ cos (α+π6)=cos [π2−(π3−α)]=sin (π3−α)=−13.故选A .4.【答案】 D【考点】运用诱导公式化简求值 【解析】由题意利用利用诱导公式化简三角函数式的值,可得结果. 【解答】解:∵ sin (α+π4)=35, ∴ cos (π4−α)=sin [π2−(π4−α)] =sin (π4+α)=35. 故选D . 5. 【答案】 D【考点】同角三角函数间的基本关系 运用诱导公式化简求值【解析】直接利用诱导公式以及同角三角函数基本关系式转化求解即可. 【解答】α是第二象限角,若sin (π2−α)=−13 可得cos α=−13,所以sin α=√1−cos 2α=2√23. 6.【答案】 D【考点】 求函数的值 分段函数的应用 函数的求值 【解析】推导出f(−12)=1−12=−2,f(16)=log 216−3=4−3=1,由此能求出f(−12)⋅f(16)的值. 【解答】∵ 函数f(x)={1x,x0,log 2x −3,x0,∴ f(−12)=1−12=−2,f(16)=log 216−3=4−3=1, ∴ f(−12)⋅f(16)=(−2)×1=−2.二、 多选题 (本题共计 1 小题 ,共计5分 ) 7.【答案】 C,D【考点】运用诱导公式化简求值 【解析】 此题暂无解析 【解答】解:A ,sin (−x )=−sin x ,故 A 不成立; B ,sin (3π2−x)=−cos x ,故B 不成立; C ,cos (π2+x)=−sin x ,故C 成立;D ,cos (x −π)=−cos x ,故D 成立. 故选CD .三、 填空题 (本题共计 5 小题 ,每题 5 分 ,共计25分 ) 8.【答案】√3−√22【考点】运用诱导公式化简求值 【解析】本题考查利用诱导公式求值. 【解答】 解:sin14π3−cos (−25π4)=sin (4π+2π3)−cos (−6π−π4) =sin 2π3−cos π4=√3−√22. 故答案为:√3−√22.−4 5【考点】运用诱导公式化简求值【解析】原式利用诱导公式化简,将sinα的值代入计算即可求出值.【解答】解:∵sinα=45,∴cos(π2+α)=−sinα=−45.故答案为:−45.10.【答案】12【考点】三角函数的恒等变换及化简求值【解析】把cos85∘化为cos(60∘+25∘),由两角和的余弦公式化简即可.【解答】cos85∘+sin25∘cos30∘cos25∘=cos(60∘+25∘)+sin25∘cos30∘cos25∘=12cos25∘−√32sin25∘+√32sin25∘cos25∘=12.11.【答案】−3 5【考点】三角函数的恒等变换及化简求值【解析】由已知利用诱导公式即可化简求值得解.【解答】∵cosθ=−35,∴sin(θ+π2)=cosθ=−35.−43【考点】同角三角函数间的基本关系 运用诱导公式化简求值【解析】由诱导公式可得cos a 的值,及α的范围,利用同角三角函数间的基本关系求出tan α的值即可. 【解答】解: ∵ cos (π−α)=−cos α=35,α∈(0,π), ∴ cos α=−35<0,则α∈(π2,π),则sin α=√1−cos 2α=45, ∴ tan α=sin αcos α=45−35=−43.故答案为:−43.四、 解答题 (本题共计 3 小题 ,每题 5 分 ,共计15分 ) 13.【答案】 解:(1) f(α)=sin (a−π2)cos (3π2+α)tan (π−α)tan (−α−π)sin (−α−π)=(−cos α)⋅sin α⋅(−tan α)(−tan α)⋅sin α=−cos α.(2)由f (π2+β)=−cos (π2+β)=−√33,得sin β=−√33, 又角β为第四象限角,所以cos β−√63, sin 2β=−2√23,cos 2β=13,所以sin (2β+π6)=sin 2βcos π8+cos 2βsin π6 =(−2√23)⋅√32+13⋅12=1−2√66. 【考点】运用诱导公式化简求值同角三角函数间的基本关系 【解析】 此题暂无解析 【解答】 解:(1) f(α)=sin (a−π2)cos (3π2+α)tan (π−α)tan (−α−π)sin (−α−π)=(−cos α)⋅sin α⋅(−tan α)(−tan α)⋅sin α=−cos α.(2)由f (π2+β)=−cos (π2+β)=−√33,得sin β=−√33, 又角β为第四象限角,所以cos β−√63, sin 2β=−2√23,cos 2β=13,所以sin (2β+π6)=sin 2βcos π8+cos 2βsin π6=(−2√23)⋅√32+13⋅12=1−2√66. 14. 【答案】解:因为sin α+cos α=−713,所以(sin α+cos α)2=sin 2α+2sin αcos α+cos 2α=49169, 整理得2sin αcos α=−120169,则(sin α−cos α)2=1−2sin αcos α=289169. 因为α为第二象限角,所以sin α−cos α=1713,解得sin α=513,cos α=−1213. 所以tan =sin αcos α=−512, sin 2α−2sin αcos α=25169−(−120169)=145169. 【考点】同角三角函数间的基本关系 三角函数的恒等变换及化简求值 【解析】 【解答】解:因为sin α+cos α=−713,所以(sin α+cos α)2=sin 2α+2sin αcos α+cos 2α=49169, 整理得2sin αcos α=−120169,则(sin α−cos α)2=1−2sin αcos α=289169.因为α为第二象限角,所以sin α−cos α=1713, 解得sin α=513,cos α=−1213. 所以tan =sin αcos α=−512,sin 2α−2sin αcos α=25169−(−120169)=145169.15.【答案】解:(1)因为CD // AB ,AC ⊥BC ,△ABC 是等腰直角三角形, 所以∠ABC =∠CA =∠ACD =12×(180∘−90∘)=45∘, 所以∠BCD =90∘+45∘=135∘.所以sin ∠BDC =sin ∠ABD =√1−(√63)2=√33, 在△ABC 中,BC =AC =√3, 在△BCD 中,由正弦定理得, BD =BC⋅sin ∠BCD sin ∠BDC=√3×√22√33=3√22.(2)在△BCD 中,由正弦定理可得, CD =BC ⋅sin (45∘−∠ABD)sin ∠BDC=√3×√22×(√63−√33)√33=2√3−√62. 所以S △ACD =12AC ⋅CD ⋅sin ∠ACD =12×√3×2√3−√62×√22=3(√2−1)4. 【考点】正弦定理同角三角函数间的基本关系【解析】(1)由题意可求∠BCD =135∘,在△BCD 中,由正弦定理可得BD 的值.(2)在△BCD 中,由正弦定理可得CD 的值,根据三角形的面积公式即可求解. 【解答】解:(1)因为CD // AB ,AC ⊥BC ,△ABC 是等腰直角三角形, 所以∠ABC =∠CA =∠ACD =12×(180∘−90∘)=45∘, 所以∠BCD =90∘+45∘=135∘.所以sin ∠BDC =sin ∠ABD =(√63)=√33, 在△ABC 中,BC =AC =√3, 在△BCD 中,由正弦定理得, BD =BC⋅sin ∠BCD sin ∠BDC=√3×√22√33=3√22.(2)在△BCD 中,由正弦定理可得,CD=BC⋅sin(45∘−∠ABD)sin∠BDC=√3×√22×(√63−√33)√33=2√3−√62.所以S△ACD=12AC⋅CD⋅sin∠ACD=12×√3×2√3−√62×√22=3(√2−1)4.试卷第11页,总11页。

三角函数诱导公式练习题含答案

三角函数诱导公式练习题含答案

三角函数诱导公式练习题含答案三角函数定义及诱导公式练习题1.将120o化为弧度为()A.B.C.D.2.代数式的值为()A.B.C.D.3.()A.B.C.D.4.已知角α的终边经过点(3a,-4a)(a<0),则inα+coα等于()A.B.C.D.-5.已知扇形的面积为2cm2,扇形圆心角θ的弧度数是4,则扇形的周长为()(A)2cm(B)4cm(C)6cm(D)8cm6.若有一扇形的周长为60cm,那么扇形的最大面积为()A.500cm2B.60cm2C.225cm2D.30cm27.已知,则的值为()A.B.-C.D.-8.已知,且,则()A、B、C、D、9.若角的终边过点,则_______.10.已知点P(tanα,coα)在第二象限,则角α的终边在第________象限.11.若角θ同时满足inθ<0且tanθ<0,则角θ的终边一定落在第________象限.12.已知,则的值为.13.已知,,则_____________.14.已知,则_________.15.已知tan=3,则.16.(14分)已知tanα=,求证:(1)=-;(2)in2α+inαcoα=.17.已知(1)求的值;(2)求的值;(3)若是第三象限角,求的值.18.已知in(α-3π)=2co(α-4π),求的值.参考答案1.B【解析】试题分析:,故.考点:弧度制与角度的相互转化.2.A.【解析】试题分析:由诱导公式以可得,in120°co210°=in60°某(-co30°)=-某=,选A.考点:诱导公式的应用.3.C【解析】试题分析:本题主要考查三角诱导公式及特殊角的三角函数值.由,选C.考点:诱导公式.4.A【解析】试题分析:,,.故选A.考点:三角函数的定义5.C【解析】设扇形的半径为R,则R2θ=2,∴R2=1R=1,∴扇形的周长为2R+θ·R=2+4=6(cm).6.C【解析】设扇形的圆心角为,弧长为cm,由题意知,∴∴当时,扇形的面积最大;这个最大值为.应选C.7.A【解析】试题分析:,=====.考点:诱导公式.8.【解析】试题分析:.又因为,所以为三象限的角,.选B.考点:三角函数的基本计算.9.【解析】试题分析:点即,该点到原点的距离为,依题意,根据任意角的三角函数的定义可知.考点:任意角的三角函数.10.四【解析】由题意,得tanα<0且coα>0,所以角α的终边在第四象限.11.四【解析】由inθ<0,可知θ的终边可能位于第三或第四象限,也可能与y轴的非正半轴重合.由tanθ<0,可知θ的终边可能位于第二象限或第四象限,可知θ的终边只能位于第四象限.12.-3【解析】13.【解析】试题分析:因为α是锐角所以in(π-α)=inα=考点:同角三角函数关系,诱导公式.14.【解析】试题分析:,又,则原式=.考点:三角函数的诱导公式.15.45【解析】试题分析:已知条件为正切值,所求分式为弦的齐次式,所以运用弦化切,即将分子分母同除以得.考点:弦化切16.证明:(1)=-.(2)in2α+inαcoα=.【解析】(1)原式可以分子分母同除以co某,达到弦化切的目的.然后将tan某=2代入求值即可.(2)把”1”用替换后,然后分母也除以一个”1”,再分子分母同除以,达到弦化切的目的.证明:由已知tanα=.(1)===-.(2)in2α+inαcoα====.17.(1);(2);(3).【解析】试题分析:(1)因为已知分子分母为齐次式,所以可以直接同除以转化为只含的式子即可求得;(2)用诱导公式将已知化简即可求得;(3)有,得,再利用同角关系,又因为是第三象限角,所以;试题解析:⑴2分.3分⑵9分.10分⑶解法1:由,得,又,故,即,12分因为是第三象限角,,所以.14分解法2:,12分因为是第三象限角,,所以.14分考点:1.诱导公式;2.同角三角函数的基本关系.18.【解析】∵in(α-3π)=2co(α-4π),∴-in(3π-α)=2co(4π-α),∴inα=-2coα,且coα≠0.∴原式=三角函数的诱导公式1一、选择题1.如果|co某|=co (某+π),则某的取值集合是()A.-+2kπ≤某≤+2kπB.-+2kπ≤某≤+2kπC.+2kπ≤某≤+2kπD.(2k+1)π≤某≤2(k+1)π(以上k∈Z)2.in(-)的值是()A.B.-C.D.-3.下列三角函数:①in(nπ+);②co(2nπ+);③in(2nπ+);④co[(2n+1)π-];⑤in[(2n+1)π-](n∈Z).其中函数值与in的值相同的是()A.①②B.①③④C.②③⑤D.①③⑤4.若co(π+α)=-,且α∈(-,0),则tan(+α)的值为()A.-B.C.-D.5.设A、B、C是三角形的三个内角,下列关系恒成立的是()A.co(A+B)=coCB.in (A+B)=inCC.tan(A+B)=tanCD.in=in6.函数f(某)=co(某∈Z)的值域为()A.{-1,-,0,,1}B.{-1,-,,1}C.{-1,-,0,,1}D.{-1,-,,1}二、填空题7.若α是第三象限角,则=_________.8.in21°+in22°+in23°+…+in289°=_________.三、解答题9.求值:in(-660°)co420°-tan330°cot(-690°).10.证明:.11.已知coα=,co(α+β)=1,求证:co(2α+β)=.12.化简:.13、求证:=tanθ.14.求证:(1)in(-α)=-c oα;(2)co(+α)=inα.参考答案1一、选择题1.C2.A3.C4.B5.B6.B二、填空题7.-inα-coα8.三、解答题9.+1.10.证明:左边==-,右边=,左边=右边,∴原等式成立.11.证明:∵co(α+β)=1,∴α+β=2kπ.∴co(2α+β)=co(α+α+β)=co(α+2kπ)=coα=.12.解:=====-1.13.证明:左边==tanθ=右边,∴原等式成立.14证明:(1)in(-α)=in[π+(-α)]=-in(-α)=-coα.(2)co(+α)=co[π+(+α)]=-co(+α)=inα.三角函数的诱导公式2一、选择题:1.已知in(+α)=,则in(-α)值为()A.B.—C.D.—2.co(+α)=—,6.co(-某)=,某∈(-,),则某的值为.7.tanα=m,则.8.|inα|=in(-+α),则α的取值范围是.三、解答题:9..10.已知:in(某+)=,求in(+co2(-某)的值.11.求下列三角函数值:(1)in;(2)co;(3)tan(-);12.求下列三角函数值:(1)in·co·tan;(2)in[(2n+1)π-].13.设f(θ)=,求f()的值.参考答案21.C2.A3.C4.C5.A6.±7.8.[(2k-1),2k]9.原式===inα10.11.解:(1)in=in(2π+)=in=.(2)co=co(4π+)=co=.(3)tan(-)=co(-4π+)=co=.(4)in(-765°)=in[360°某(-2)-45°]=in(-45°)=-in45°=-.注:利用公式(1)、公式(2)可以将任意角的三角函数转化为终边在第一象限和第二象限的角的三角函数,从而求值.12.解:(1)in·co·tan=in(π+)·co(4π+)·tan(π+)=(-in)·co·tan=(-)··1=-.(2)in [(2n+1)π-]=in(π-)=in=.13.解:f(θ)=======coθ-1,∴f()=co-1=-1=-.三角函数公式1.同角三角函数基本关系式in2α+co2α=1=tanαtanαcotα=12.诱导公式(奇变偶不变,符号看象限)(一)in(π-α)=inαin(π+α)=-inαco(π-α)=-coαco(π+α)=-coαtan(π-α)=-tanαtan(π+α)=tanαin(2π-α)=-inαin(2π+α)=inαco(2π-α)=coαco(2π+α)=coαtan(2π-α)=-tanαtan(2π+α)=tanα(二)in(-α)=coαin(+α)=coαco(-α)=inαco(+α)=-inαtan(-α)=cotαtan(+α)=-cotαin(-α)=-coαin(+α)=-coαco(-α)=-inαco(+α)=inαtan(-α)=cotαtan(+α)=-cotαin(-α)=-inαco(-α)=coαtan(-α)=-tanα3.两角和与差的三角函数co(α+β)=coαcoβ-inαinβco(α-β)=coαcoβ+inαinβin(α+β)=inαcoβ+coαinβin(α-β)=inαcoβ-coαinβtan(α+β)=tan(α-β)=4.二倍角公式in2α=2inαcoαco2α=co2α-in2α=2co2α-1=1-2in2αtan2α=5.公式的变形(1)升幂公式:1+co2α=2co2α1—co2α=2in2α(2)降幂公式:co2α=in2α=(3)正切公式变形:tanα+tanβ=tan(α+β)(1-tanαtanβ)tanα-tanβ=tan(α-β)(1+tanαtanβ)(4)万能公式(用tanα表示其他三角函数值)in2α=co2α=tan2α=6.插入辅助角公式ain某+bco某=in(某+φ)(tanφ=)特殊地:in某±co某=in(某±)7.熟悉形式的变形(如何变形)1±in某±co某1±in某1±co某tan某+cot某若A、B是锐角,A+B=,则(1+tanA)(1+tanB)=28.在三角形中的结论若:A+B+C=π,=则有tanA+tanB+tanC=tanAtanBtanCtantan+tantan+tantan=1很赞的文章!介绍的很全面,对我很有帮助。

三角函数诱导公式练习题-带答案

三角函数诱导公式练习题-带答案

三角函数的诱导公式(1)一、选择题1.如果|cos x |=cos (x +π),则x 的取值集合是( )A .-2π+2k π≤x ≤2π+2k π B .-2π+2k π≤x ≤2π3+2k π C . 2π+2k π≤x ≤2π3+2k π D .(2k +1)π≤x ≤2(k +1)π(以上k ∈Z ) 2.sin (-6π19)的值是( ) A . 21 B .-21 C .23 D .-23 3.下列三角函数:①sin (n π+3π4);②cos (2n π+6π);③sin (2n π+3π);④cos [(2n +1)π-6π]; ⑤sin [(2n +1)π-3π](n ∈Z ). 其中函数值与sin3π的值相同的是( ) A .①② B .①③④ C .②③⑤ D .①③⑤4.若cos (π+α)=-510,且α∈(-2π,0),则tan (2π3+α)的值为( ) A .-36 B .36 C .-26 D .26 5.设A 、B 、C 是三角形的三个内角,下列关系恒成立的是( )A .cos (A +B )=cosC B .sin (A +B )=sin C C .tan (A +B )=tan CD .sin2A B +=sin 2C 6.函数f (x )=cos3πx (x ∈Z )的值域为( ) A .{-1,-21,0,21,1} B .{-1,-21,21,1} C .{-1,-23,0,23,1} D .{-1,-23,23,1} 二、填空题7.若α.8.sin 21°+sin 22°+sin 23°+…+sin 289°=_________.三、解答题9.求值:sin (-660°)cos420°-tan330°cot (-690°).11..12、求证:tan(2π)sin(2π)cos(6π)cos(π)sin(5π)q q qq q-----+=tanθ.三角函数的诱导公式(2)一、选择题:1.已知sin(4π+α)=23,则sin(43π-α)值为( ) A. 21 B. —21 C. 23 D. —23 2.cos(π+α)= —21,23π<α<π2,sin(π2-α) 值为( ) A. 23 B. 21 C. 23± D. —23 3.化简:)2cos()2sin(21-•-+ππ得( )A.sin2+cos2B.cos2-sin2C.sin2-cos2D.± (cos2-sin2)4.已知α和β的终边关于x 轴对称,则下列各式中正确的是( )A.sinα=sinβB. sin(α-π2) =sinβC.cosα=cosβD. cos(π2-α) =-cosβ5.设tanθ=-2, 2π-<θ<0,那么sin 2θ+cos(θ-π2)的值等于( ), A. 51(4+5) B. 51(4-5) C. 51(4±5) D. 51(5-4) 二、填空题:6.cos(π-x)= 23,x ∈(-π,π),则x 的值为 . 7.tanα=m ,则=+-+++)cos(-sin()cos(3sin(απα)απ)απ . 8.|sinα|=sin (-π+α),则α的取值范围是 .三、解答题:9.)cos(·3sin()cos()n(s 2sin(απα)παπα)π----+-απi .10.已知:sin (x+6π)=41,求sin ()67x +π+cos 2(65π-x )的值.11. 求下列三角函数值:(1)sin3π7;(2)cos 4π17;(3)tan (-6π23);12. 求下列三角函数值:(1)sin 3π4·cos 6π25·tan 4π5; (2)sin [(2n +1)π-3π2].13.设f (θ)=)cos()π(2cos 23)2πsin()π2(sin cos 2223θθθθθ-+++-++-+,求f (3π)的值.。

高三数学诱导公式试题答案及解析

高三数学诱导公式试题答案及解析

高三数学诱导公式试题答案及解析1.已知函数,,则的最大值为()A.B.C.1D.【答案】B【解析】∵,所以当时,函数的最大值为.【考点】诱导公式、配方法、三角函数的最值.2.已知函数,,则的最大值为()A.B.C.1D.【答案】B【解析】∵,所以当时,函数的最大值为.【考点】诱导公式、配方法、三角函数的最值.3.已知,且,则()A.B.C.D.【答案】【解析】.又因为,所以为三象限的角,.选B.【考点】三角函数的基本计算.4. tan300º=_______.【答案】【解析】.【考点】三角函数及其诱导公式.5.已知,,则= .【答案】【解析】由,得从而所以解决三角函数给值求值问题,关键从角的关系上进行分析.【考点】三角函数给值求值.6.已知,,则 .【答案】【解析】,又,则【考点】三角函数运算.7.已知,则的值是( )A.B.C.D.【答案】C【解析】由,可得即.即..由诱导公式可得.故选C.【考点】1.角的和差公式.2.三角函数的化一公式.3.三角函数的诱导公式.8.在中,角A、B、C的对边分别为a、b、c,且角A、B、C成等差教列.(I)若,求边c的值;(II)设,求的最大值.【答案】(Ⅰ).(Ⅱ).【解析】(Ⅰ)由角成等差数列,及,首先得到.进一步应用余弦定理即得所求.(Ⅱ)根据,可化简得到根据,即可得到时,有最大值.试题解析:(Ⅰ)因为角成等差数列,所以,因为,所以. 2分因为,,,所以.所以或(舍去). 6分(Ⅱ)因为,所以9分因为,所以,所以当,即时,有最大值. 12分【考点】等差数列,和差倍半的三角函数,,三角函数的性质,余弦定理的应用.9.已知为等差数列,若,则的值为________.【答案】.【解析】由于数列为等差数列,所以,所以,故.【考点】1.等差数列的性质;2.诱导公式10.如果,那么 .【答案】【解析】因为,即,.【考点】诱导公式.11.已知向量,,函数.将函数的图象上各点的纵坐标保持不变,横坐标先缩短到原来的,把所得到的图象再向左平移个单位,得到函数的图象.(1)求函数的单调递增区间;(2)若,求的值.【答案】(1)函数的单调递增区间为;(2).【解析】(1)先利用平面向量数量积的运算求出函数的解析式,结合辅助角公式将函数的解析式化简为,在,的前提下,解不等式得到函数的单调递增区间;(2)先利用得到的值,然后利用函数图象变换求出函数的解析式,并利用二倍角公式求出的值.试题解析:(1),,解得:,所以的单调递增区间为;(2),由(1)得,,,将函数的图象上各点的纵坐标保持不变,横坐标先缩短到原来的,得:,再向左平移个单位,,得.【考点】1.平面向量的数量积;2.三角函数的单调区间;3.三角函数图象变换;4.二倍角公式12.在△ABC中,角A、B、C所对的边分别为a、b、c,q=(,1),p=(,)且.(1)求的值;(2)求三角函数式的取值范围?【答案】(1);(2).【解析】(1)由向量平行的坐标表示可知,,利用正弦定理将此式转化为,再结合以及可解得,,根据特殊角的三角函数值可知,,从而解得;(2)先由二倍角公式、同角三角函数的基本关系、差角公式将函数式化简得到函数式,由,先求出,从而由三角函数的图像与性质得到,即是所求.试题解析:(1)∵,∴,根据正弦定理得,,又,∴,∵,∴,又∵,∴,∴. 6分(2)由已知得,,∵,∴,∴,∴,∴三角函数式的取值范围是:. 12分【考点】1.向量平行的坐标表示;2.特殊角的三角函数值;3.正弦定理;4.三角函数的图像与性质;5.二倍角公式13.若,,,则的值为【答案】【解析】因为,所以,故,,故.【考点】两角和与差的三角函数恒等变化.14.在中,,.(Ⅰ)求的值;(Ⅱ)若,求的面积.【答案】(Ⅰ). (Ⅱ).【解析】(Ⅰ)利用三角函数诱导公式及两角和差的三角函数.(Ⅱ)根据正弦定理先求的长,利用三角形面积公式求解.本题不难,思路比较明确,要注意认真计算.试题解析:(Ⅰ)在中,因为,所以. (3分)所以. (6分)(Ⅱ)根据正弦定理得:,所以. (9分). 12(分)【考点】三角函数诱导公式、两角和差的三角函数、正弦定理的应用.15.已知,则的值为_____________.【答案】【解析】,故答案为.【考点】三角函数诱导公式、二倍角公式.16.在中,角所对的边分别为,且,当取最大值时,角的值为 .【答案】【解析】利用正弦定理化简已知的等式得,整理得,两边除以得,,,∵是三角形内角,且同号,∴都是锐角,即,当且仅当,即时取等号,故.【考点】两角和与差的正切函数,正弦定理,基本不等式.17.如图所示,扇形AOB,圆心角AOB的大小等于,半径为2,在半径OA上有一动点C,过点C作平行于OB的直线交弧AB于点P.(1)若C是半径OA的中点,求线段PC的长;(2)设,求面积的最大值及此时的值.【答案】(1);(2)时,取得最大值为.【解析】本题考查解三角形中正弦定理、余弦定理的应用,三角形面积公式以及运用三角公式进行恒等变形,考查学生的分析能力和计算能力.第一问,在中,,,由余弦定理求边长;第二问,在中,利用正弦定理,得到,,三角形面积公式,将上面2个边长代入,利用二倍角公式、降幂公式、两角和与差的正弦公式化简表达式,再求三角函数的最值.试题解析:(1)在中,,,由,得,解得.(2)∵,∴,在中,由正弦定理得,即,∴,又,.记的面积为,则∴时,取得最大值为.【考点】1.余弦定理;2.正弦定理;3.二倍角公式;4.降幂公式;5.两角和与差的正弦公式.18.= ()A.4B.2C.D.【解析】.【考点】1.二倍角正弦公式;2.差角的正弦公式19.已知平面直角坐标系上的三点,,,为坐标原点,向量与向量共线.(1)求的值;(2)求的值.【答案】(1);(2).【解析】(1)法一是利用两平面向量共线的基本定理得到坐标之间的关系,进而利用弦化切的方法求出的值;法二是利用平面向量共线的基本定理结合坐标运算得到向量与的坐标之间的关系,然后利用除法求出的值;(2)利用(1)中以及同角三角函数中的商数关系和平方关系并结合角的范围列方程组求出和的值,进而求出和的值,最终再利用两角差的正弦公式求出的值.试题解析:法1:由题意得:,, 2分∵,∴,∴. 5分法2:由题意得:,, 2分∵,∴,∴,∴. 5分(2)∵,,∴, 6分由,解得,, 8分∴; 9分; 10分∴. 12分【考点】1.平面向量的坐标运算;2.同角三角函数的基本关系;3.二倍角;4.两角差的正弦公式20.若,则= .【答案】【解析】令则,所以【考点】三角函数的诱导公式及倍角公式.21.已知,则的值为( )A.B.C.D.【解析】因为,,所以,两边平方得,,由诱导公式,,故选A.【考点】三角函数诱导公式、倍角公式.22.若,则= .【答案】【解析】由,得,再由二倍角公式得.【考点】三角函数的诱导公式、二倍角公式.23.若,则=()A.B.C.D.【答案】A.【解析】,选A.【考点】三角函数的倍角公式、诱导公式.24.若,则的值为()A.B.C.D.【答案】B【解析】,选B.【考点】三角函数诱导公式.25.已知,则()A.B.C.D.【答案】B【解析】利用诱导公式、二倍角公式计算..【考点】诱导公式、二倍角公式26.已知,那么( )A.B.C.D.【解析】,选C.【考点】三角函数诱导公式27.已知,则的值为()A.B.C.D.【答案】A【解析】=28.已知,则等于()A.B.C.D.【答案】B【解析】本题考查诱导公式和二倍角余弦公式.故选B29. (2010年苏州调研)已知tanx=sin(x+),则sinx=______________.【答案】【解析】略30.已知,则a= 。

诱导公式练习题答案

诱导公式练习题答案

诱导公式练习题答案诱导公式是三角函数中常用的公式,主要用于将正弦、余弦等三角函数的角转换为锐角,从而简化计算。

以下是一些诱导公式的练习题及其答案。

# 练习题1:求 \(\sin(90^\circ - x)\) 的值。

答案:根据诱导公式,我们知道 \(\sin(90^\circ - x) = \cos(x)\)。

# 练习题2:计算 \(\cos(180^\circ - x)\)。

答案:根据诱导公式,\(\cos(180^\circ - x) = -\cos(x)\)。

# 练习题3:给出 \(\tan(270^\circ - x)\) 的表达式。

答案:\(\tan(270^\circ - x) = -\cot(x)\)。

# 练习题4:求 \(\sin(360^\circ - x)\) 的值。

答案:\(\sin(360^\circ - x) = -\sin(x)\)。

# 练习题5:计算 \(\cos(90^\circ + x)\)。

答案:\(\cos(90^\circ + x) = -\sin(x)\)。

# 练习题6:给出 \(\tan(180^\circ + x)\) 的表达式。

答案:\(\tan(180^\circ + x) = \tan(x)\)。

# 练习题7:求 \(\sin(270^\circ + x)\) 的值。

答案:\(\sin(270^\circ + x) = -\cos(x)\)。

# 练习题8:计算 \(\cos(360^\circ + x)\)。

答案:\(\cos(360^\circ + x) = \cos(x)\)。

这些练习题涵盖了诱导公式的基本应用,通过这些练习,学生可以更好地理解和掌握诱导公式,提高解决三角函数问题的能力。

高一三角函数公式及诱导公式习题(附答案)

高一三角函数公式及诱导公式习题(附答案)

2
2
D. { - 1,- 3 , 3 , 1}
2
2
7.若 α是第三象限角,则 1 2 sin( π ) cos( π ) =_________.
8. sin21°+sin22°+sin23° +… +si2n89°=_________ . 三、解答题 9.求值: sin(- 660°) cos420 °-tan330 °cot (- 690°).
B. sin( A+B) =sinC
C. tan( A+B) =tanC
D. sin A
B
C
=sin
2
2
6.函数 f( x) =cosπx ( x∈ Z)的值域为( )
3
A. { -1,- 1 , 0, 1 , 1}
2
2
B. { - 1,- 1 , 1 ,1}
22
C. { -1,- 二、填空题
3 , 0, 3 ,1}
tanα +tanβ tan( α +β )= 1- tanα tanβ
tanα - tanβ tan( α- β )= 1+ tanα tanβ
4. 二倍角公式
sin2α =2sinα cosα
2
2
2
2
cos2α =cosα- sin α = 2 cosα - 1= 1- 2 sin α
2tan α
cos
3
2
= 2 cos
1 cos
cos 3
2
2 2 cos
cos
3
2 cos
=
2
2
2 (cos
cos )
2
2 cos

诱导公式练习题及参考答案

《诱导公式》练习一、选择题1、下列各式不正确的是 ( B )A . sin (α+180°)=-sin αB .cos (-α+β)=-cos (α-β)C . sin (-α-360°)=-sin αD .cos (-α-β)=cos (α+β) 2、若sin (π+α)+sin (-α)=-m ,则sin (3π+α)+2sin (2π-α)等于( ) A .-23 m B .-32 m C .23 m D .32 m3、⎪⎭⎫⎝⎛-π619sin 的值等于( ) A .21B . 21-C .23 D . 23-4、如果).cos(|cos |π+-=x x 则x 的取值范围是( C )A .)(]22,22[Z k k k ∈++-ππππB .)()223,22(Z k k k ∈++ππππC .)(]223,22[Z k k k ∈++ππππD .)()2,2(Z k k k ∈++-ππππ5.已知函数1tan sin )(++=x b x a x f ,满足.7)5(=f 则)5(-f 的值为 ( )A .5B .-5C .6D .-66、sin34π·cos 625π·tan 45π的值是A .-43B .43C .-43D .437.设,1234tan a =︒那么)206cos()206sin(︒-+︒-的值为 ( )A .211aa ++ B .-211aa ++ C .211aa +-D .211aa +-8.若)cos()2sin(απαπ-=+,则α的取值集合为( )A .}42|{Z k k ∈+=ππαα B .}42|{Z k k ∈-=ππααC .}|{Z k k ∈=πααD .}2|{Z k k ∈+=ππαα二、填空题1、求值:sin160°cos160°(tan340°+cot340°)= .2、若sin (125°-α)=1213,则sin (α+55°)= .3、cos π7 +cos 2π7 +cos 3π7 +cos 4π7 +cos 5π7 +cos 6π7 = .4、已知,1)sin(=+βα则=+++)32sin()2sin(βαβα .三、解答题1、已知 3)tan(=+απ, 求)2sin()cos(4)sin(3)cos(2a a a a -+-+--πππ的值.2、若cos α=23,α是第四象限角,求sin(2)sin(3)cos(3)cos()cos()cos(4)απαπαππαπααπ-+--------的值.3、设sin ,(0)()(1)1,(0)x x f x f x x π<⎧=⎨-+≥⎩和1cos ,()2()1(1)1,()2x x g x g x x π⎧<⎪⎪=⎨⎪-+≥⎪⎩求)43()65()31()41(f g f g +++的值.4.设)(x f 满足)2|(|cos sin 4)(sin 3)sin (π≤⋅=+-x xx x f x f ,(1) 求)(x f 的表达式;(2)求)(x f 的最大值.《诱导公式》参考答案一、选择题ABAC BABC二、填空题1、1.2、1312.3、0.4、0三、解答题1、7.2、25.3、22)41(=g ,512()1,()sin()1,633g f π=+=-+ 1)4sin()43(+-=πf , 故原式=3.4、解析:(1)由已知等式(sin )3(sin )4sin cos f x f x x x -+=⋅ ①得x x x f x f cos sin 4)sin (3)(sin -=-+ ② 由3⨯①-②,得8x x x f cos sin 16)(sin ⋅=,故212)(x x x f -=.(2)对01x ≤≤,将函数212)(x x x f -=的解析式变形,得()f x ===当2x =时,max 1.f =。

高中数学-三角函数诱导公式练习题与答案

三角函数定义及诱导公式练习题1.代数式 sin120 cos210 的值为( )A. 34B. 343 C.2D. 142.tan120 () A .33B.33C . 3D . 33.已知角 α 的终边经过点 (3a ,-4a)(a<0),则 sin α+cos α 等于( ) A. 1 5 B. 7 5C . 1 -D .- 57 5 4.已知扇形的面积为 2cm 2, 扇形圆心角 θ的弧度数是 4, 则扇形的周长为( ) (A)2cm(B)4cm (C)6cm(D)8cm5.已知3 cos()sin() 2 2 f ( ),则cos( ) tan() 25 f ( ) 的值为()3A .1 2B .-1 2C .32D . -326.已知 tan( )3 4 ,且3 ( , ) 2 2,则sin( ) 2( )A 、 4 5B 、 4 5C 、3 5D 、3 57.若角 的终边过点 (sin30 , cos30 ) ,则sin _______.8.已知(0, ) 2,cos 4 5,则sin( )_____________.9.已知 tan=3,则24sin3sin cos 24cossin cos.试卷第 1 页,总 2 页10.(14 分)已知tanα=,求证:(1) sin a cos asin a cos a=-;(2)sin2α+sinαcosα=.11.已知tan 2.(1)求3s insin 2coscos的值;cos()cos()sin(232)(2)求的值;sin(3)sin()cos()(3)若是第三象限角,求cos的值.12.已知sin( α-3π) =2cos( α-4π) ,求 5 2si(n-)+co(s -)的值. 32sin sin--(-) 2试卷第 2 页,总 2 页本卷由系统自动生成,请仔细校对后使用,答案仅供参考。

参考答案1.B【解析】o试题分析:180 ,故2o . 1203考点:弧度制与角度的相互转化. 2.A.【解析】试题分析:由诱导公式以可得,sin120 °cos210°=sin60 °×(-cos30 °)=-3 2×3 2 = 34, 选A.考点:诱导公式的应用.3.C【解析】试题分析:本题主要考查三角诱导公式及特殊角的三角函数值. 由tan120 tan(180 60 ) tan60 3,选C.考点:诱导公式.4.A【解析】试题分析:r 5 5 ,sin 考点:三角函数的定义yr45, c os35,1sin cos . 故选A.55.C22=1 R=1,∴扇【解析】设扇形的半径为R,则错误!未找到引用源。

高中数学专题6.5三角函数的诱导公式(2个考点六大题型) 试卷及答案

专题6.5三角函数的诱导公式(2个考点六大题型)【题型1 诱导公式一】【题型2 诱导公式二、三、四】【题型3 诱导公式五、六】【题型4 诱导公式-恒等式的证明】【题型5 诱导公式-化简、求值】【题型6 正切函数的诱导公式】【题型1 诱导公式一】cos390=(D.-sin1080=)2820 1.(2023春·北京东城·高一北京市第一六六中学校考阶段练习)sin210=( )1210cos120tan 45+= 根据诱导公式,填适当的式子,使为第二象限角,且sin θcos165=(-24sin(α-是ABC的高一校考开学考试)已知ABC为锐角三角形,则下列不等关系中cos cosA>sin cosA>高一重庆市杨家坪中学校考阶段练习)(多选)已知cos2cos882sin47sin133+=;(cos5cos852sin50sin130+=. 根据以上恒等式,请你猜想出一个一般性的结论并证明. 秋·高一课时练习)求证:当2=或3时,tan(cos(2k 2π1203=πsin(2α-秋·高一课时练习))tan2022,sin2022位于(2)若()0,πθ∈,且()25fθ=-,求cos sinθθ-的值.专题6.5三角函数的诱导公式(2个考点六大题型)【题型1 诱导公式一】【题型2 诱导公式二、三、四】【题型3 诱导公式五、六】【题型4 诱导公式-恒等式的证明】【题型5 诱导公式-化简、求值】【题型6 正切函数的诱导公式】【题型1 诱导公式一】cos390=(D.-()3cos390cos36030cos302=+==.辽宁葫芦岛·高一统考期末)17sin4π的值为(sin1080=.()sin1080sin33600sin00=⨯+==;cos高一课时练习)已知12cot5θ=-,且θ为第二象限角,.)2820)()32820sin 836060sin 602=-⨯+==.ππtan 144⎫==⎪⎭. ππ2⎫()1sin210sin 18030sin 302=+=-=-.高一校联考阶段练习)在平面直角坐标系中,若角【详解】(sin πθ+的终边可能在第三或第四象限CD.2023春·吉林长春列结论正确的是(210cos120tan 45+= 【分析】利用诱导公式及特殊角的三角函数值化简求值. ()()11sin 18030cos 18060210cos120sin 30cos 60221tan 45tan 45tan 451--++-+--====-. 故答案为:-12023春·福建福州·高二校考期末)根据诱导公式,填适当的式子,使 cosα=-cos165=( 24- ()cos165cos 9075sin 75=+=-,则()75sin 3045sin30cos 45cos30sin 45=+=+1222=⨯+26cos165sin 754+︒=-︒=-. 故选:A .是ABC的高一校考开学考试)已知ABC 为锐角三角形,则下列不等关系中cos cos A >sin cos A >【分析】因为ABC 为锐角三角形,所以π【详解】因为ABC 为锐角三角形,,,3πcos A >,4πcos A <π因为ABC 为锐角三角形,,2B π+>∴,02A π<<sin(2A π>cos2cos882sin47sin133+=;(cos5cos852sin50sin130+=. 根据以上恒等式,请你猜想出一个一般性的结论并证明. ()()()cos 90cos 2sin 45sin 135αααα-+=+-,证明见详解.【分析】观察结构猜想等式,利用三角恒等变换证明即可)()()cos 90cos 245sin 135αααα-+=+- 证明:由诱导公式可得()()()cos 90sin ,sin 135sin 45αααα-=-=+,)()()()90cos sin cos cos 2sin cos 45cos sin 4545sin 135sin 45ααααααααααα-+++===++-+ 秋·高一课时练习)求证:当2k =或3时,tan(π)tan(π)cos(2π)sin[(21)π]k k k k αααα-+=-++【答案】证明见解析【详解】(tan 3π+C.2023·全国·高三专题练习)已知 【答案】B2π1203=πsin(2α-ABD2π1203=πtan 4=cos α,所以【详解】(cos πα-)πsin α-=-AB.2023秋·广东河源3π⎫⎛)π6θ⎛⎫-+ ⎪⎝⎭所以,5π6fθ⎛+⎝故答案为:(1)1.(2022秋·甘肃兰州·高一校考期末)在平面直角坐标系中,点()tan2022,sin2022P 位于第( )象限 A .一 B .二 C .三 D .四【答案】D【分析】运用诱导公式计算出P 点坐标的符号就可判断出P 点所在的象限.【详解】()tan 2022tan 5360222tan 2220︒︒︒︒=⨯+=> ,()sin 2022sin 5360222sin 2220︒︒︒︒=⨯+=< , ()tan 2022,sin 2022P ︒︒∴ 在第四象限;故选:D.2.(2022秋·江苏常州·高一常州高级中学校考期末)已知偶函数()f x 在(0,)+∞上单调递减,若tan114a =︒,tan172b =︒,tan 287c =︒,则下列不等关系中正确的是( ) A .()()()f c f b f a >> B .()()()f c f a f b >> C .()()()f b f c f a >> D .()()()f b f a f c >>【答案】D【分析】根据题意,由三角函数的诱导公式可得tan114tan 66a =︒=-︒,tan172tan8b =︒=-︒,tan 287tan107tan 73c =︒=︒=-︒,由正切函数的性质结合函数的奇偶性和单调性分析可得答案.,04π<-,而060<正确;23,cos π⎛⎫= ⎪3013π<<故选:ACD.4.(2023【答案】-【分析】利用诱导公式化简计算即可π25π5ππππcos tan sin πcos 32πtan π346346⎛⎫⎛⎫⎛⎫=+⨯+- ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭ πππ3232cos tan 3462234⎛⎫⎛⎫-=-⨯⨯-= ⎪ ⎪ ⎪⎝⎭⎝⎭; 故答案为:24. 2021秋·北京通州·高一校考阶段练习)已知cos α是方程2320x x --=三象限角,求3sin α⎛-+ ⎝,2sin cos α+3cos 2sin 2ππα⎫⎛+⎪ ⎭⎝⎫⎛+⎪ ⎭⎝全国·高一专题练习)已知)()f θ=-cos θθ=-sin 0θθ-<sin θθ-=。

三角函数诱导公式练习题集附答案解析

三角函数诱导公式练习题集附答案解析The Standardization Office was revised on the afternoon of December 13, 2020三角函数诱导公式练习题一、选择题(共21小题)1、已知函数f(x)=sin,g(x)=tan(π﹣x),则()A、f(x)与g(x)都是奇函数B、f(x)与g(x)都是偶函数C、f(x)是奇函数,g(x)是偶函数D、f(x)是偶函数,g(x)是奇函数2、点P(cos2009°,sin2009°)落在()A、第一象限B、第二象限C、第三象限D、第四象限3、已知,则=()A、 B、C、 D、4、若tan160°=a,则sin2000°等于()A、B、C、D、﹣5、已知cos(+α)=﹣,则sin(﹣α)=()A、﹣B、C、﹣D、6、函数的最小值等于()A、﹣3B、﹣2C、D、﹣17、本式的值是()A、1B、﹣1C、D、8、已知且α是第三象限的角,则cos(2π﹣α)的值是()A、B、C、D、9、已知f(cosx)=cos2x,则f(sin30°)的值等于()A、 B、﹣C、0 D、110、已知sin(a+)=,则cos(2a﹣)的值是()A、B、 C、﹣D、﹣11、若,,则的值为()A、B、C、D、12、已知,则的值是()A、B、C、D、13、已知cos(x﹣)=m,则cosx+cos(x﹣)=()A、2mB、±2mC、D、14、设a=sin(sin20080),b=sin(cos20080),c=cos(sin20080),d=cos(cos20080),则a,b,c,d的大小关系是()A、a<b<c<dB、b<a<d<cC、c<d<b<aD、d<c<a<b15、在△ABC中,①sin(A+B)+sinC;②cos(B+C)+cosA;③tan tan;④,其中恒为定值的是()A、②③B、①②C、②④D、③④16、已知tan28°=a,则sin2008°=()A、B、C、D、17、设,则值是()A、﹣1B、1C、D、18、已知f(x)=asin(πx+α)+bcos(πx+β)+4(a,b,α,β为非零实数),f(2007)=5,则f(2008)=()A、3B、5C、1D、不能确定19、给定函数①y=xcos(+x),②y=1+sin2(π+x),③y=cos(cos (+x))中,偶函数的个数是()A、3B、2C、1D、020、设角的值等于()A、B、﹣C、D、﹣21、在程序框图中,输入f0(x)=cosx,则输出的是f4(x)=﹣csx()A、﹣sinxB、sinxC、cosxD、﹣cosx二、填空题(共9小题)22、若(﹣4,3)是角终边上一点,则Z的值为.23、△ABC的三个内角为A、B、C,当A为°时,取得最大值,且这个最大值为.24、化简:=25、化简:= .26、已知,则f(1)+f(2)+f(3)+…+f(2009)= .27、已知tanθ=3,则(π﹣θ)= .28、sin(π+)sin(2π+)sin(3π+)…sin(2010π+)的值等于.29、f(x)=,则f(1°)+f(2°)+…+f(58°)+f(59°)= .30、若,且,则cos(2π﹣α)的值是.答案与评分标准一、选择题(共21小题)1、已知函数f(x)=sin,g(x)=tan(π﹣x),则()A、f(x)与g(x)都是奇函数B、f(x)与g(x)都是偶函数C、f(x)是奇函数,g(x)是偶函数D、f(x)是偶函数,g(x)是奇函数考点:函数奇偶性的判断;运用诱导公式化简求值。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

诱导公式
一、选择题
( ) A .30° B .-30° C .630° D .-630°
2.tan300°+0
0765
sin )
405cos( 的值是( ) A .1+3 B .1-3 C .-1-3 D .-1+3
3.计算cos330°的值为( ) A .﹣
B .﹣
C .
D .
4. cos510°的值为( )
A .
B . ﹣
C . ﹣
D .
5.设,则tan (π+x )等于( )
A . 0
B .
C . 1
D .
6.已知tan α=3,则=( )
A . ﹣
B . 0
C .
D .
7.已知sin (﹣α)=,α∈(﹣,0),则tan α等于( )
A .
B . ﹣
C . 2
D . ﹣2
8.若sin (+θ)=,则cos (π﹣θ)等于( )
A . ﹣
B .
C . ﹣
D .
9.已知,则sina=( )
A .
B .
C .
D .
10.已知sinα=,α是第二象限的角,则cos(π﹣α)=()
A.B.C.D.
11.sin()的值等于()
A.B.C.D.
12.tan(﹣1410°)的值为()
A.B.C.D.
13.若且,则sin(π﹣α)()
A.B.C.D.
14.已知sinα=,则cos(﹣α)等于()
A.B.﹣C.D.﹣
15.代数式•化简后的值为()A.cosαB.﹣cosαC.sinαD.﹣sinα
16.sin510°=()
A.B.﹣C.D.﹣
17.cos(﹣2040°)=()
A.B.C.D.
19.若函数f(θ)=,则f(﹣)
= .
20.已知sin(+α)=,那么cosα= .
21.sin960°的值为.
22.tan600°的值是.
23.已知sin(π﹣θ)+3cos(π+θ)=0,其中,则cosθ=.
24.已知,x∈(π,2π),则tanx=.
25.求值:=.
26.求值:sinπ=.
27.计算cos315°的值是.
28.已知α为第三象限角,且 sin(π﹣α)=﹣,f(α)
==.
29.sin+cos+tan(﹣)= .
30.已知tanα=2,则= .
31.若α的终边过点,(﹣1,2),则= .
32.已知方程sin(α﹣3π)=2cos(α﹣4π),求的值.
33.已知角a终边上一点P(﹣4,3),求的值.
34.(1)计算:lg22+lg2lg5+lg5;
(2)化简:.
35.已知函数f(x)=
(1)化简函数f(x)的解析式;
(2)求出函数f(x)的最大值及取得最大值时x的值.
36.已知f(α)=,
(1)化简f(α);
(2)若f(α)=,且<α<,求cosα﹣sinα的值;
(3)求满足f(α)≥的α的取值集合.
37.已知α为第二象限角,.(1)化简f(α);
(2)若,求f(α)的值.
38已知角a是第三象限角,且f(a)=
(Ⅰ)化简f(a)
(Ⅱ)若sin(2π﹣a)=,求f(a)的值.
39.化简:
•sin(α﹣2π)•cos(2π﹣α)+cos2(﹣α)﹣.
40.已知
(1)化简f(α)
(2)若α是第三象限角,且,求f(α)的值.
41.已知角α的终边与单位圆的交点P的坐标为(﹣,﹣),
(1)求sinα和cosα的值,
(2)求的值,
(3)判断的符号并说明理由.
42.(1)已知tanθ=2,求的值;
(2)已知﹣<x<,sinx+cosx=,求tanx的值.
43.已知角α顶点在原点,始边与x轴的正半轴重合,终边在函数y=﹣3x(x≤0)的图象上.(Ⅰ)求sinα、cosα和tanα的值;
(Ⅱ)求的值.
诱导公式试卷答案
1.B
2.B
3.D
4.C
5.B
6.C
7.D
8.A
9.B10.A11.D12.A13.B14.A15.D16.A17.B18.2
20.21.22.23.24.25.26.27.28.29.030.﹣31.﹣1
32.∴原式====﹣…(12分)
点评:本题考查三角函数的诱导公式及化简求值,熟练掌握诱导公式是化简的关键,属于中档题.33解答:∵角a终边上一点P(﹣4,3),
∴cosα=﹣,sinα=,tanα=﹣,∴原式==﹣tanα=.
34.解答:(1)lg22+lg2lg5+lg5=lg2(lg2+lg5)+lg5=lg2+lg5=1;
(2)原式==﹣1.
35解答:(1)f(x)==cosx;
(2)∵f(x)=cosx,∴f(x)max=1,此时,x=2kπ,k∈Z.
36..解答:解;(1)﹣(4分)(2),,
∵,∴sinα>cosα,∴﹣﹣﹣﹣(8分)
(3),∴,∴.
∴﹣﹣﹣﹣﹣(12分)
37.解答:(1)f(α)==﹣cosα;
(2)∵cos(α﹣)=cos(﹣α)=sinα=,α为第二象限角,
∴cosα=﹣=﹣,则f(α)=﹣cosα=.
38.(I)﹣cosa.(II).
解答:(Ⅰ)f(a)
===﹣=﹣cosa.
(Ⅱ)∵sin(2π﹣a)=﹣sina=,∴sina=﹣.
又角a是第三象限角,∴cosa=﹣=﹣,∴f(a)=﹣cosa=.
39.解答:原式=﹣•(﹣sinα)•cosα+cos2α+=sin2α+cos2α+=1+.
40.解答:(1)
==cos
α(2)∵,∴,
又∵α为第三象限角,∴,∴.
41.解答:(1)∵角α的终边与单位圆的交点P的坐标为(﹣,﹣),
∴sinα=﹣,cosα=﹣;
(2)∵sinα=﹣,cosα=﹣,∴tanα=,则原式===+;
(3)∵ta nα=,∴tan(α+)====﹣2﹣<0.
42.解答:(1)∵tanθ=2,∴原式===﹣1;
(2)∵sinx+cosx=,∴(sinx+cosx)2=,即2sinxcosx=﹣<0,
∵﹣<x<,∴sinx<0,cosx>0,∴(sinx﹣cosx)2=1﹣2sinxcosx=,
∴sinx﹣cosx=﹣,∴sinx=﹣,cosx=,∴tanx=﹣.
43.解答:(Ⅰ)∵角α顶点在原点,始边与x轴的正半轴重合,终边在函数y=﹣3x(x≤0)的图象上∴sinα==,cosα==﹣,tanα==﹣3;
(Ⅱ)原式==﹣tanα=3.。

相关文档
最新文档