尺规作图专题归纳练习-中考数学考点训练

合集下载

2023年中考数学---《尺规作图》知识总结与专项练习题(含答案解析)

2023年中考数学---《尺规作图》知识总结与专项练习题(含答案解析)

2023年中考数学---《尺规作图》知识总结与专项练习题(含答案解析)知识总结1.尺规作图是指用没有刻度的直尺和圆规作图.只使用圆规和直尺,并且只准许使用有限次,来解决不同的平面几何作图题.2.基本要求它使用的直尺和圆规带有想像性质,跟现实中的并非完全相同.①直尺必须没有刻度,无限长,且只能使用直尺的固定一侧.只可以用它来将两个点连在一起,不可以在上画刻度.②圆规可以开至无限宽,但上面亦不能有刻度.它只可以拉开成你之前构造过的长度3.基本作图有:(1)作一条线段等于已知线段.(2)作一个角等于已知角.(3)作已知线段的垂直平分线.具体步骤:①以线段两个端点为圆心,大于线段长度的一半为半径画圆弧,两圆弧在线段的两侧别分交于M、N。

如图①②连接MN,过MN的直线即为线段的垂直平分线。

如图②(4)作已知角的角平分线.具体步骤:①以角的顶点O为圆心,一定长度为半径画圆弧,圆弧与角的两边分别交于两点M、N。

如图①。

②分别以点M与点N为圆心,大于MN长度的一半为半径画圆弧,两圆弧交于点P。

如图②。

③连接OP,OP即为角的平分线。

(5)过一点作已知直线的垂线.4.复杂作图:复杂作图是在五种基本作图的基础上进行作图,一般是结合了几何图形的性质和基本作图方法.解决此类题目的关键是熟悉基本几何图形的性质,结合几何图形的基本性质把复杂作图拆解成基本作图,逐步操作。

5.设计作图:应用与设计作图主要把简单作图放入实际问题中.首先要理解题意,弄清问题中对所作图形的要求,结合对应几何图形的性质和基本作图的方法作图。

专项练习题1.尺规作图(保留作图痕迹,不要求写出作法):如图,已知线段m,n.求作△ABC,使∠A=90°,AB=m,BC=n.【分析】先在直线l上取点A,过A点作AD⊥l,再在直线l上截取AB=m,然后以B点为圆心,n为半径画弧交AD于C,则△ABC满足条件.【解答】解:如图,△ABC为所作.2.如图,在△ABC中,AB=AC,BD是△ABC的角平分线.(1)作∠ACB的角平分线,交AB于点E(尺规作图,不写作法,保留作图痕迹);(2)求证:AD=AE.【分析】(1)按照角平分线的作图步骤作图即可.(2)证明△ACE≌△ABD,即可得出AD=AE.【解答】(1)解:如图所示.(2)证明:∵AB=AC,∴∠ABC=∠ACB,∵BD是∠ABC的角平分线,CE是∠ABC的角平分线,∴∠ABD=∠ACE,∵AB=AC,∠A=∠A,∴△ACE≌△ABD(ASA),∴AD=AE.3.如图,已知线段AC和线段a.(1)用直尺和圆规按下列要求作图.(请保留作图痕迹,并标明相应的字母,不写作法)①作线段AC的垂直平分线l,交线段AC于点O;②以线段AC为对角线,作矩形ABCD,使得AB=a,并且点B在线段AC的上方.(2)当AC=4,a=2时,求(1)中所作矩形ABCD的面积.【分析】(1)①按照线段垂直平分线的作图步骤作图即可.②以点O为圆心,OA的长为半径画弧,再以点A为圆心,线段a的长为半径画弧,两弧在线段AC上方交于点B,同理,以点O为圆心,OC的长为半径画弧,再以点C为圆心,线段a的长为半径画弧,两弧在线段AC下方交于点D,连接AD,CD,AB,BC,即可得矩形ABCD.(2)利用勾股定理求出BC,再利用矩形的面积公式求解即可.【解答】解:(1)①如图,直线l即为所求.②如图,矩形ABCD即为所求.(2)∵四边形ABCD为矩形,∴∠ABC=90°,∵a=2,∴AB=CD=2,∴BC=AD===,∴矩形ABCD的面积为AB•BC=2×=.4.如图,四边形ABCD中,AB∥DC,AB=BC,AD⊥DC于点D.(1)用尺规作∠ABC的角平分线,交CD于点E;(不写作法,保留作图痕迹)(2)连接AE.求证:四边形ABCE是菱形.【分析】(1)根据角平分线的作图步骤作图即可.(2)由角平分线的定义和平行四边形的判定定理,可得四边形ABCE为平行四边形,再结合AB=BC,可证得四边形ABCE为菱形.【解答】(1)解:如图所示.(2)证明:∵BE是∠ABC的角平分线,∴∠ABE=∠CBE,∵AB∥CD,∴∠ABE=∠BEC,∴∠CBE=∠BEC,∴BC=EC,∵AB=BC,∴AB=EC,∴四边形ABCE为平行四边形,∵AB=BC,∴四边形ABCE为菱形.5.如图,在4×4的方格纸中,点A,B在格点上.请按要求画出格点线段(线段的端点在格点上),并写出结论.(1)在图1中画一条线段垂直AB.(2)在图2中画一条线段平分AB.【分析】(1)利用数形结合的思想作出图形即可;(2)利用矩形的对角线互相平分解决问题即可.【解答】解:(1)如图1中,线段EF即为所求(答案不唯一);(2)如图2中,线段EF即为所求(答案不唯一).6.“水城河畔,樱花绽放,凉都宫中,书画成风”的风景,引来市民和游客争相“打卡”留念.已知水城河与南环路之间的某路段平行宽度为200米,为避免交通拥堵,请在水城河与南环路之间设计一条停车带,使得每个停车位到水城河与到凉都宫点F的距离相等.(1)利用尺规作出凉都宫到水城河的距离(保留作图痕迹,不写作法);(2)在图中格点处标出三个符合条件的停车位P1,P2,P3;(3)建立平面直角坐标系,设M(0,2),N(2,0),停车位P(x,y),请写出y与x之间的关系式,在图中画出停车带,并判断点P(4,﹣4)是否在停车带上.【分析】(1)利用过直线外一点作垂线的方法作图即可;(2)根据停车位到水城河与到凉都宫点F的距离相等,可得点P1,P2,P3;(3)根据停车位P(x,y)到点F(0,﹣1)和直线y=1的距离相等,得1﹣y=,从而解决问题.【解答】解:(1)如图,线段F A的长即为所求;(2)如图,点P1,P2,P3即为所求;(3)∵停车位P(x,y)到点F(0,﹣1)和直线y=1的距离相等,∴1﹣y=,化简得y=﹣,当x=4时,y=﹣4,∴点P(4,﹣4)在停车带上.7.图①、图②、图③均是5×5的正方形网格,每个小正方形的边长均为1,其顶点称为格点,△ABC的顶点均在格点上.只用无刻度的直尺,在给定的网格中,按下列要求作图,保留作图痕迹.(1)网格中△ABC的形状是;(2)在图①中确定一点D,连结DB、DC,使△DBC与△ABC全等;(3)在图②中△ABC的边BC上确定一点E,连结AE,使△ABE∽△CBA;(4)在图③中△ABC的边AB上确定一点P,在边BC上确定一点Q,连结PQ,使△PBQ∽△ABC,且相似比为1:2.【分析】(1)利用勾股定理的逆定理证明即可;(2)根据全等三角形的判定,作出图形即可;(3)根据相似三角形的判定作出图形即可;(4)作出AB,BC的中点P,Q即可.【解答】解:(1)∵AC==,AB==2,BC=5,∴AC2+AB2=BC2,∴∠BAC=90°,∴△ABC是直角三角形;故答案为:直角三角形;(2)如图①中,点D,点D′,点D″即为所求;(3)如图②中,点E即为所求;(4)如图③,点P,点Q即为所求.8.如图,⊙O是△ABC的外接圆,∠ABC=45°.(1)请用尺规作出⊙O的切线AD(保留作图痕迹,不写作法);(2)在(1)的条件下,若AB与切线AD所夹的锐角为75°,⊙O的半径为2,求BC的长.【分析】(1)过点A作AD⊥AO即可;(2)连接OB,OC.证明∠ACB=75°,利用三角形内角和定理求出∠CAB,推出∠BOC=120°,求出CH可得结论.【解答】解:(1)如图,切线AD 即为所求;(2)过点O 作OH ⊥BC 于H ,连接OB ,OC .∵AD 是切线,∴OA ⊥AD ,∴∠OAD =90°,∵∠DAB =75°,∴∠OAB =15°,∵OA =OB ,∴∠OAB =∠OBA =15°,∴∠BOA =150°,∴∠BCA =∠AOB =75°,∵∠ABC =45°,∴∠BAC =180°﹣45°﹣75°=60°,∴∠BOC =2∠BAC =120°,∵OB =OC =2,∴∠BCO =∠CBO =30°,∵OH ⊥BC ,∴CH =BH =OC •cos30°=,∴BC =2. 9.如图,在△ABC 中,AD 是△ABC 的角平分线,分别以点A ,D 为圆心,大于21AD 的长为半径作弧,两弧交于点M ,N ,作直线MN ,分别交AB ,AD ,AC 于点E ,O ,F ,连接DE ,DF .(1)由作图可知,直线MN 是线段AD 的 .(2)求证:四边形AEDF是菱形.【分析】(1)根据作法得到MN是线段AD的垂直平分线;(2)根据垂直平分线的性质则AF=DF,AE=DE,进而得出DF∥AB,同理DE∥AF,于是可判断四边形AEDF是平行四边形,加上F A=FD,则可判断四边形AEDF为菱形.【解答】(1)解:根据作法可知:MN是线段AD的垂直平分线;故答案为:垂直平分线;(2)证明:∵MN是AD的垂直平分线,∴AF=DF,AE=DE,∴∠F AD=∠FDA,∵AD平分∠BAC,∴∠BAD=∠CAD,∴∠FDA=∠BAD,∴DF∥AB,同理DE∥AF,∴四边形AEDF是平行四边形,∵F A=FD,∴四边形AEDF为菱形.10.如图,已知Rt△ABC中,∠ACB=90°,AB=8,BC=5.(1)作BC的垂直平分线,分别交AB、BC于点D、H;(要求:尺规作图,不写作法,保留作图痕迹)(2)在(1)的条件下,连接CD,求△BCD的周长.【分析】(1)利用基本作图,作BC的垂直平分线即可;(2)根据线段垂直平分线的性质得到DC=DB,则利用等角的余角相等得到∠A=∠DCA,则DC=DA,然后利用等线段代换得到△BCD的周长=AB+BC.【解答】解:(1)如图,DH为所作;(2)∵DH垂直平分BC,∴DC=DB,∴∠B=∠DCB,∵∠B+∠A=90°,∠DCB+∠DCA=90°,∴∠A=∠DCA,∴DC=DA,∴△BCD的周长=DC+DB+BC=DA+DB+BC=AB+BC=8+5=13.11.已知:△ABC.(1)尺规作图:用直尺和圆规作出△ABC内切圆的圆心O.(只保留作图痕迹,不写作法和证明)(2)如果△ABC的周长为14cm,内切圆的半径为1.3cm,求△ABC的面积.【分析】(1)作∠ABC,∠ACB的角平分线交于点O,点O即为所求;(2)△ABC的面积=(a+b+c)•r计算即可.【解答】解:(1)如图,点O即为所求;(2)由题意,△ABC的面积=×14×1.3=9.1(cm2).12.已知四边形ABCD为矩形,点E是边AD的中点,请仅用无刻度的直尺完成下列作图,不写作法,保留作图痕迹.(1)在图1中作出矩形ABCD的对称轴m,使m∥AB;(2)在图2中作出矩形ABCD的对称轴n,使n∥AD.【分析】(1)如图1中,连接AC,BD交于点O,作直线OE即可;(2)如图2中,同法作出点O,连接BE交AC于点T,连接DT,延长TD交AB于点R,作直线OR即可.【解答】解:(1)如图1中,直线m即为所求;(2)如图2中,直线n即为所求;13.如图,在10×10的正方形网格中,小正方形的顶点称为格点,顶点均在格点上的图形称为格点图形,图中△ABC为格点三角形.请按要求作图,不需证明.(1)在图1中,作出与△ABC全等的所有格点三角形,要求所作格点三角形与△ABC有一条公共边,且不与△ABC重叠;(2)在图2中,作出以BC为对角线的所有格点菱形.【分析】(1)根据全等三角形的判定画出图形即可;(2)根据菱形的定义画出图形即可.【解答】解:(1)如图1中,△ABD1,△ABD2,△ACD3,△ACD4,△CBD5即为所求;(2)如图2中,菱形ABDC,菱形BECF即为所求.14.【问题提出】如何用圆规和无刻度的直尺作一条直线或圆弧平分已知扇形的面积?【初步尝试】如图1,已知扇形OAB,请你用圆规和无刻度的直尺过圆心O作一条直线,使扇形的面积被这条直线平分;【问题联想】如图2,已知线段MN,请你用圆规和无刻度的直尺作一个以MN为斜边的等腰直角三角形MNP;【问题再解】如图3,已知扇形OAB,请你用圆规和无刻度的直尺作一条以点O为圆心的圆弧,使扇形的面积被这条圆弧平分.(友情提醒:以上作图均不写作法,但需保留作图痕迹)【分析】【初步尝试】如图1,作∠AOB的角平分线OP即可;【问题联想】如图2,作线段MN的垂直平分线RT,垂足为R,在射线RT上截取RP=RM,连接MP,NP,三角形MNP即为所求;【问题再解】方法一:构造等腰直角三角形OBE,作BC⊥OE,以O为圆心,OC为半径画弧交OB于点D,交OA于点F,弧DF即为所求.方法二:作OB的中垂线交OB于点C,然后以C为圆心,CB长为半径画弧交OB中垂线于点D,再以O为圆心,OD长为半径画弧分别交OA、OB于点E、F.则弧EF即为所求.【解答】解:【初步尝试】如图1,直线OP即为所求;【问题联想】如图2,三角形MNP即为所求;【问题再解】如图3中,即为所求.15.如图,在6×6的方格纸中,点A,B,C均在格点上,试按要求画出相应格点图形.(1)如图1,作一条线段,使它是AB向右平移一格后的图形;(2)如图2,作一个轴对称图形,使AB和AC是它的两条边;(3)如图3,作一个与△ABC相似的三角形,相似比不等于1.【分析】(1)把点B、A向右作平移1个单位得到CD;(2)作A点关于BC的对称点D即可;(3)延长CB到D使CD=2CB,延长CA到E点使CE=2CA,则△EDC满足条件.【解答】解:(1)如图1,CD为所作;(2)如图2,(3)如图3,△EDC为所作.。

专题22尺规作图(原卷版)-2023年中考数学一轮复习高频考点精讲精练(全国通用)

专题22尺规作图(原卷版)-2023年中考数学一轮复习高频考点精讲精练(全国通用)

专题22 尺规作图一、基础作图【高频考点精讲】1、作一条线段等于已知线段(已经线段a)。

(1)步骤①作射线OP;②以点O为圆心,a为半径作弧,交OP于点A,则OA即为所求线段。

(2)作图原理:圆上的点到圆心的距离等于半径。

(3)适用情形①已知三边作三角形;②作圆的内接正六边形。

2、作一个角等于已知角(已知∠α)。

(1)步骤①以点O为圆心,适当长为半径作弧,分别交∠α的两边于点P、Q;②作射线O′A;③以点O′为圆心,OP长为半径作弧,交O′A于点M;④以点M为圆心,PQ长为半径作弧,交步骤3中的弧于点N;⑤过点N作射线O′B,则∠AO′B即为所求角。

(2)作图原理①三边相等的两个三角形全等;②全等三角形的对应角相等。

(3)适用情形①过直线外一点作直线与已知直线平行;②过三角形一边上一点作直线将其分成两个相似三角形。

3、作已知角的角平分线(已知∠AOB)。

(1)步骤①以点O为圆心,适当长为半径作弧,分别交OA,OB于点N、M;②分别以点M、N为圆心,以大于1/2MN长为半径作弧,两弧在∠AOB的内部相交于点P;③作射线OP,则OP即为所求角的平分线。

(2)作图原理①三边相等的两个三角形全等;②全等三角形的对应角相等;③两点确定一条直线。

(3)适用情形①作一点使得该点到角两边的距离相等;②作三角形的内切圆。

4、作已知线段的垂直平分线(已知线段AB)。

(1)步骤①分别以点A、B为圆心,以大于1/2AB长为半径,在AB两侧作弧,分别交于点M、N;②过点M、N作直线,直线MN即为所求垂直平分线。

(2)作图原理①到线段两端点距离相等的点在这条线段的垂直平分线上;②两点确定一条直线。

(3)适用情形①过三角形的一个顶点作直线平分三角形的面积;②过不在同一直线上的三点作圆/作三角形的外接圆;③作到已知两点距离相等的点。

5、过一点作已知直线的垂线(已知点P和直线l)。

【点P在直线l上】(1)步骤①以点P为圆心,适当长为半径作弧,交直线l于A、B两点;②分别以点A、B为圆心,以大于1/2AB长为半径向直线两侧作弧,两弧分别交于点M、N;③过点M、N作直线,直线MN即为所求垂线。

中考数学总复习考点知识专题练习27尺规作图

中考数学总复习考点知识专题练习27尺规作图

中考数学总复习考点知识专题练习27尺规作图1.(2021贵阳)如图1,已知线段AB=6,利用尺规作AB的垂直平分线,步骤如下:①分别以点A,B为圆心,以b的长为半径作弧,两弧相交于点C和D;②作直线CD.直线CD就是线段AB的垂直平分线,则b的长可能是()A.1 B.2 C.3 D.4图1图2图3图42.(2021杭州)如图2,已知线段AB,按如下步骤作图:①作射线AC,使AC⊥AB;②作∠BAC的平分线AD;③以点A为圆心,AB长为半径作弧,交AD于点E;④过点E 作EP⊥AB于点P,则AP∶AB=()A.1∶5B.1∶2 C.1∶3D.1∶ 23.如图3,在Rt△ABC中,∠A=90°,按以下步骤作图:①以点B为圆心,适当长为半径画弧,分别交BA,BC于点M,N;②以点C为圆心,BM长为半径画弧,交CB 于点D;③以点D为圆心,MN长为半径画弧,与⌒DE相交于点E;④过点E画射线CE 交AB于点F.若AF=2,AC=23,则BF的长为__________.4.如图4,在△ABC中,按以下步骤作图:①以点B为圆心,任意长为半径作弧,分别交AB,BC于点D,E;②分别以点D,E为圆心,大于12DE的长为半径作弧,两弧交于点F;③作射线BF交AC于点G.如果AB=8,BC=12,△ABG的面积为18,那么△CBG的面积为__________.5.如图5,在△ABC中,∠ACB=90°,∠A=30°,BC=4,以点C为圆心,CB长为半径作弧,交AB于点D;再分别以点B和点D为圆心,大于12BD的长为半径作弧,两弧相交于点E,作射线CE交AB于点F,则AF的长为__________.图56.(2021赤峰)如图6,在Rt△ABC中,∠ACB=90°,点D是斜边AB上一点,且AC=AD.(1)作∠BAC的平分线,交BC于点E;(要求尺规作图,不写作法,保留作图痕迹)(2)在(1)的条件下,连接DE,求证:DE⊥AB.图6B7.(2021长春)在△ABC中,∠BAC=90°,AB≠AC.用无刻度的直尺和圆规在BC边上找一点D,使△ACD为等腰三角形.下列作法不正确的是()8.(2021百色)如图7,在⊙O中,尺规作图的部分作法如下:(1)分别以弦AB的端点A,B为圆心,适当等长为半径画弧,使两弧相交于点M;(2)作直线OM交AB于点N.若OB=10,AB=16,则tan B等于()A.35B.34C.45D.43图7图89.(2021通辽)如图8,在Rt△ABC中,∠ACB=90°,根据尺规作图的痕迹,判断以下结论错误的是()A.∠BDE=∠BAC B.∠BAD=∠BC.DE=DC D.AE=AC10.如图9,在菱形ABCD中,分别以点C,D为圆心,大于12CD的长为半径作弧,两弧在CD的两侧分别相交于点M,N,作直线MN交CD于点F,交对角线AC于点E,连接BE,DE.(1)求证:BE=CE;(2)若∠ABC=72°,求∠ABE的度数.图9C11.如图10,已知▱AOCD 的顶点O (0,0),点C 在x 轴的正半轴上,按以下步骤作图:①以点O 为圆心,适当长为半径画弧,分别交OA 于点M ,交OC 于点N ;②分别以点M ,N 为圆心,大于12MN 的长为半径画弧,两弧在∠AOC 内相交于点E ;③画射线OE ,交AD 于点F (2,3),则点A 的坐标为()A .⎝ ⎛⎭⎪⎫-54,3B .(3-13,3)C .⎝ ⎛⎭⎪⎫-45,3 D .(2-13,3)图1012.()已知△ABC 和△CDE 都为正三角形,点B ,C ,D 在同一直线上,请仅用无刻度的直尺完成下列作图,不写作法,保留作图痕迹.(1)如图11①,当BC =CD 时,作△ABC 的中线BF ; (2)如图11②,当BC ≠CD 时,作△ABC 的中线BG .图11答案中考数学总复习考点知识专题练习 27 尺规作图1.D2.D3.44.275.66.(1)解:如答图1,AE 即为所求.答图1(2)证明:∵AE 平分∠BAC ,∴∠CAE =∠DAE .在△ACE 和△ADE 中,⎩⎨⎧AC =AD ,∠CAE =∠DAE ,AE =AE ,∴△ACE ≌△ADE (SAS). ∴∠ADE =∠C =90°.∴DE ⊥AB . 7.A8.B9.B10.(1)证明:∵四边形ABCD 是菱形,∴CB =CD ,∠ECB =∠ECD .在△ECB 和△ECD 中,⎩⎨⎧CE =CE ,∠ECB =∠ECD ,CB =CD ,∴△ECB ≌△ECD (SAS).∴BE =DE .由题意可知MN 垂直平分CD ,∴CE =DE .∴BE =CE . (2)解:∵四边形ABCD 是菱形,∴BC =BA .∴∠ECB =∠BAC =12(180°-∠ABC )=12×(180°-72°)=54°.由(1)得BE=CE,∴∠EBC=∠ECB=54°.∴∠ABE=∠ABC-∠EBC=72°-54°=18°.11.A12.解:(1)如答图2,线段BF即为所求.答图2答图3 (2)如答图3,线段BG即为所求.。

中考专题复习《尺规作图》巩固练习(真题)含答案

中考专题复习《尺规作图》巩固练习(真题)含答案

中考专题复习《尺规作图》巩固练习(真题)含答案一、单选题1、下列属于尺规作图的是()A、用刻度尺和圆规作△ABCB、用量角器画一个300的角C、用圆规画半径2cm的圆D、作一条线段等于已知线段2、下列画图语句中,正确的是()A、画射线OP=3cmB、连接A , B两点C、画出A , B两点的中点D、画出A , B两点的距离3、下列属于尺规作图的是()A、用刻度尺和圆规作△ABCB、用量角器画一个30°的角C、用圆规画半径2cm的圆D、作一条线段等于已知线段4、下列关于几何画图的语句正确的是()A、延长射线AB到点C ,使BC=2ABB、点P在线段AB上,点Q在直线AB的反向延长线上C、将射线OA绕点O旋转180°,终边OB与始边OA的夹角为一个平角D、已知线段a , b满足2a>b>0,在同一直线上作线段AB=2a , BC=b ,那么线段AC=2a-b5、尺规作图是指()A、用量角器和刻度尺作图B、用圆规和有刻度的直尺作图C、用圆规和无刻度的直尺作图D、用量角器和无刻度的直尺作图6、下列有关作图的叙述中,正确的是()A、延长直线ABB、延长射线OMC、延长线段AB到C ,使BC=ABD、画直线AB=3cm7、按下列条件画三角形,能唯一确定三角形形状和大小的是()A、三角形的一个内角为60°,一条边长为3cmB、三角形的两个内角为30°和70°C、三角形的两条边长分别为3cm和5cmD、三角形的三条边长分别为4cm、5cm和8cm8、下列属于尺规作图的是()A、用刻度尺和圆规作△ABCB、用量角器画一个300的角C、用圆规画半径2cm的圆D、作一条线段等于已知线段9、下列关于几何画图的语句正确的是()A、延长射线AB到点C ,使BC=2ABB、点P在线段AB上,点Q在直线AB的反向延长线上C、将射线OA绕点O旋转180°,终边OB与始边OA的夹角为一个平角D、已知线段a , b满足2a>b>0,在同一直线上作线段AB=2a , BC=b ,那么线段AC=2a-b10、尺规作图是指()A、用量角器和刻度尺作图B、用圆规和有刻度的直尺作图C、用圆规和无刻度的直尺作图D、用量角器和无刻度的直尺作图11、下列有关作图的叙述中,正确的是()A、延长直线ABB、延长射线OMC、延长线段AB到C ,使BC=ABD、画直线AB=3cm12、下列作图语句中,不准确的是()A、过点A、B作直线ABB、以O为圆心作弧C、在射线AM上截取AB=aD、延长线段AB到D ,使DB=AB二、填空题13、所谓尺规作图中的尺规是指:________.14、尺规作图“作一个角等于已知角“的依据是三角形全等的判定方法________15、用直尺和圆规作一个角等于已知角的示意图如图所示,则说明△DOC≌△D'O'C'的依据是________.16、如图,在△ABC中,∠C=90°,∠B=20°,以A为圆心,任意长为半径画弧分别交AB、AC于点M和N ,再分别以M、N为圆心,大于MN的长为半径画弧,两弧交于P ,连接AP并延长交BC于点D ,则∠ADB=________°.17、如图,在△ABC中,∠C=90°,∠B=30°,以A为圆心,任意长为半径画弧分别交AB、AC于点M和N ,再分别以M、N为圆心,大于MN的长为半径画弧,两弧交于点P ,连结AP并延长交BC于点D ,则下列说法①AD是∠BAC的平分线;②∠ADC=60°;③点D在AB的中垂线上;正确的个数是________个三、作图题18、已知:如图△ABC .求作:①AC边上的高BD;②△ABC的角平分线CE .19、如图所示,已知△ABC:①过A画出中线AD;②画出角平分线CE;③作AC边上的高BF20、(2016•兰州)如图,已知⊙O,用尺规作⊙O的内接正四边形ABCD.(写出结论,不写作法,保留作图痕迹,并把作图痕迹用黑色签字笔描黑)四、解答题21、已知直线l和l上一点P ,用尺规作l的垂线,使它经过点P .你能明白小明的作法吗?你是怎样作的?22、如图,已知△ABC和直线m ,画出与△ABC关于直线m对称的图形(不要求写出画法,但应保留作图痕迹)答案解析部分一、单选题1、【答案】D【考点】作图—尺规作图的定义【解析】【解答】A.用刻度尺和圆规作△ABC ,而尺规作图中的直尺是没有长度的,错误;B.量角器不在尺规作图的工具里,错误;C.画半径2cm的圆,需要知道长度,而尺规作图中的直尺是没有长度的,错误;D.正确.选D.【分析】根据尺规作图的定义分别分析2、【答案】B【考点】作图—尺规作图的定义【解析】【解答】A.射线没有长度,错误;B.连接A , B两点是作出线段AB ,正确;C.画出A , B两点的线段,量出中点,错误;D.量出A , B两点的距离,错误选B.【分析】根据基本作图的方法,逐项分析,从而得出正确的结论3、【答案】D【考点】作图—尺规作图的定义【解析】【解答】A.用刻度尺和圆规作△ABC ,而尺规作图中的直尺是没有长度的,错误;B.量角器不在尺规作图的工具里,错误;C.画半径2cm的圆,需要知道长度,而尺规作图中的直尺是没有长度的,错误;D.正确选:D.【分析】根据尺规作图的定义分别分析4、【答案】C【考点】作图—尺规作图的定义【解析】【解答】A.延长射线AB到点C ,使BC=2AB ,说法错误,不能延长射线;B.点P在线段AB 上,点Q在直线AB的反向延长线上,说法错误,直线本身是向两方无限延长的,不能说延长直线;C.将射线OA绕点O旋转180°,终边OB与始边OA的夹角为一个平角,说法正确;D.已知线段a , b满足2a>b>0,在同一直线上作线段AB=2a , BC=b ,那么线段AC=2a-b ,说法错误,AC也可能为2a+b选:C.【分析】根据射线、直线、以及角的定义可判断出正确答案5、【答案】C【考点】作图—尺规作图的定义【解析】【解答】尺规作图所用的作图工具是指不带刻度的直尺和圆规选:C .【解析】【解答】A.直线本身是向两方无限延伸的,故不能延长直线AB ,故此选项错误;B.射线本身是向一方无限延伸的,不能延长射线OM ,可以反向延长,故此选项错误;C.延长线段AB到C ,使BC=AB ,说法正确,故此选项正确;D.直线本身是向两方无限延伸的,故此选项错误;选:C【分析】根据直线、射线和线段的特点分别进行分析7、【答案】D【考点】作图—尺规作图的定义【解析】【解答】A.三角形的一个内角为60°,一条边长为3cm ,既不能唯一确定三角形形状和也不能唯一确定大小,不符合题意;B.三角形的两个内角为30°和70°,能唯一确定三角形形状和但不能唯一确定大小,不符合题意;C.三角形的两条边长分别为3cm和5cm ,既不能唯一确定三角形形状和也不能唯一确定大小,不符合题意;D.三角形的三条边长分别为4cm、5cm和8cm ,能唯一确定三角形形状和大小,符合题意选:D.【分析】根据基本作图的方法,及唯一确定三角形形状和大小的条件可知8、【答案】D【考点】作图—尺规作图的定义【解析】【解答】A.用刻度尺和圆规作△ABC ,而尺规作图中的直尺是没有长度的,错误;B.量角器不在尺规作图的工具里,错误;C.画半径2cm的圆,需要知道长度,而尺规作图中的直尺是没有长度的,错误;D.正确选:D.【分析】根据尺规作图的定义分别分析9、【答案】C【考点】作图—尺规作图的定义【解析】【解答】A.延长射线AB到点C ,使BC=2AB ,说法错误,不能延长射线;B.点P在线段AB 上,点Q在直线AB的反向延长线上,说法错误,直线本身是向两方无限延长的,不能说延长直线;C.将射线OA绕点O旋转180°,终边OB与始边OA的夹角为一个平角,说法正确;D.已知线段a , b满足2a>b>0,在同一直线上作线段AB=2a , BC=b ,那么线段AC=2a-b ,说法错误,AC也可能为2a+b选:C.【分析】根据射线、直线、以及角的定义可判断出正确答案10、【答案】C【考点】作图—尺规作图的定义【解析】【解答】尺规作图所用的作图工具是指不带刻度的直尺和圆规选:C .【解析】【解答】A.直线本身是向两方无限延伸的,故不能延长直线AB ,故此选项错误;B.射线本身是向一方无限延伸的,不能延长射线OM ,可以反向延长,故此选项错误;C.延长线段AB到C ,使BC=AB ,说法正确,故此选项正确;D.直线本身是向两方无限延伸的,故此选项错误;选:C【分析】根据直线、射线和线段的特点分别进行分析12、【答案】B【考点】作图—尺规作图的定义【解析】【解答】A.根据直线的性质公理:两点确定一条直线,可知该选项正确;B.画弧既需要圆心,还需要半径,缺少半径长,故该选项错误;C.射线有一个端点,可以其端点截取任意线段,故选项正确;D.线段有具体的长度,可延长,正确选:B.【分析】根据基本作图的方法,逐项分析,从而得出正确的结论二、填空题13、【答案】没有刻度的直尺和圆规【考点】作图—尺规作图的定义【解析】【解答】由尺规作图的概念可知:尺规作图中的尺规指的是没有刻度的直尺和圆规【分析】本题考的是尺规作图的基本概念14、【答案】SSS【考点】作图—尺规作图的定义【解析】【解答】在尺规作图中,作一个角等于已知角是通过构建三边对应相等的全等三角形来证,因此由作法知其判定依据是SSS ,即边边边公理【分析】通过对尺规作图过程的探究,找出三条对应相等的线段,判断三角形全等.因此判定三角形全等的依据是边边边公理15、【答案】SSS【考点】作图—尺规作图的定义【解析】【解答】OC=O′C′,OD=O′D′,CD=C′D′,从而可以利用SSS判定其全等【分析】①以O为圆心,任意长为半径用圆规画弧,分别交OA、OB于点C、D;②任意画一点O′,画射线O'A',以O'为圆心,OC长为半径画弧C'E ,交O'A'于点C';③以C'为圆心,CD长为半径画弧,交弧C'E于点D';④过点D'画射线O'B',∠A'O'B'就是与∠AOB相等的角.则通过作图我们可以得到OC=O′C′,OD=O′D′,CD=C′D′,从而可以利用SSS判定其全等16、【答案】125【考点】作图—基本作图【解析】【解答】由题意可得:AD平分∠CAB ,∵∠C=90°,∠B=20°,∴∠CAB=70°,∴∠CAD=∠BAD=35°,∴∠ADB=180°-20°-35°=125°【分析】根据角平分线的作法可得AD平分∠CAB ,再根据三角形内角和定理可得∠ADB的度数17、【答案】3【考点】作图—基本作图【解析】【解答】①AD是∠BAC的平分线,说法正确;②∵∠C=90°,∠B=30°,∴∠CAB=60°,∵AD平分∠CAB ,∴∠DAB=30°,∴∠ADC=30°+30°=60°,因此∠ADC=60°正确;③∵∠DAB=30°,∠B=30°,∴AD=BD【分析】根据角平分线的作法可得①正确,再根据三角形内角和定理和外角与内角的关系可得∠ADC=60°,再根据线段垂直平分线的性质逆定理可得③正确三、作图题18、【答案】解: 如图所示:【考点】作图—基本作图【解析】【分析】①以点B为圆心,较大的长为半径画弧,交直线AC于两点,分别以这两点为圆心,大于这两点的距离的一半为半径画弧,两弧相交于一点,过点B和这点作射线,交直线AC于点D , BD就是所求的AC边上的高;②以点C为圆心,任意长为半径画弧,交CA , CB于两点,分别以这两点为圆心,以大于这两点的距离的一半为半径画弧,两弧相交于一点,做过点C和这点的射线交AB于点E , CE即为所求的角平分线19、【答案】解答:如图所示:【考点】作图—复杂作图【解析】【分析】(1)首先找出BC的中点,然后画线段AD即可;(2)利用量角器量出∠BCA的度数,再除以2,算出度数,然后画出线段CE即可;(3)利用直角三角板,一个直角边与AC重合,令一条直角边过点B ,画线段BF即可20、【答案】解:如图所示,四边形ABCD即为所求:【考点】正多边形和圆,作图—复杂作图【解析】【分析】画圆的一条直径AC,作这条直径的中垂线交⊙O于点BD,连结ABCD就是圆内接正四边形ABCD.本题考查的是复杂作图和正多边形和圆的知识,掌握中心角相等且都相等90°的四边形是正四边形以及线段垂直平分线的作法是解题的关键.四、解答题21、【答案】解:明白.作法:①以点P为圆心,以任意长为半径画圆,与直线l相交于点A , B;②分别以AB为圆心,以任意长为半径画圆,两圆相交于点MN ,连接MN即可得出直线l的垂线【考点】作图—复杂作图【解析】【分析】根据线段垂直平分线的作法即可得出结论.22、【答案】【解答】如图所示,△A′B′C′即为△ABC关于直线m对称的图形.【考点】作图—尺规作图的定义,作图—基本作图,作图—复杂作图,轴对称图形【解析】【分析】找出点A、B、C关于直线m的对称点的位置,然后顺次连接即可.。

中考数学复习解答题专项集训之尺规作图

中考数学复习解答题专项集训之尺规作图

中考数学复习解答题专项集训之尺规作图1.如图,点A、B、C在⊙O上且AB=AC,AB⊥AC,请你利用直尺和圆规,用三种不同的方法,找到圆心O.(保留作图痕迹)2.如图,已知△ABC,P为边AB上一点,请用尺规作图的方法在边AC上求作一点E,使AE+EP=AC.(保留作图痕迹,不写作法)3.如图,网格中每个小正方形的边长均为1,点A、B在小正方形的顶点上.(1)画出以AB为底的等腰直角△ABC(点C在小正方形的顶点上);(2)画出以AB为一边且面积为20的平行四边形ABDE,(点D、E都在小正方形的顶点上),连接CE,请直接写出线段CE的长.4.如图,BD是△ABC的角平分线,请用尺规作图法求作△ABC的内心.(保留作图痕迹,不写作法)5.如图,已知矩形ABCD,请利用尺规作图法,在CD上求作一点P,使得S△ADP=S△BCP.(保留作图痕迹,不写作法)6.已知正方形ABCD中,BC=3,E是边AB上的动点,连接AC和CE.(1)尺规作图:在图中分别作线段AC和CE的中点F和G,连接FG;(不写作法,不说明理由,写明结论并保留作图痕迹)(2)当CE=2AE时,求(1)中所作的线段FG的长度.7.如图,在正方形网格中,每个小正方形的边长都为1,△ABC的三个顶点均在格点上,请按要求完成下列问题(仅用无刻度的直尺作图,且保留必要的作图痕迹):(1)在AB上找一点D,使CD⊥AB;(2)在AC上找一点E,使BE平分∠ABC.8.如图,在△ABC中,D,E分别是AB,AC的中点.(1)过点E作CD的垂线,垂足为点O,交BC于点F(尺规作图,保留痕迹,不写作法);(2)根据(1)中作图,连接DF,若AC=BC,求证:四边形DECF是菱形.9.如图,在平面直角坐标系xOy中,A、B、C三点的坐标分别为(﹣5,4)、(﹣3,0)、(0,2).(1)画出△ABC;(2)△ABC面积为;(3)如图,△A'B'C'是由△ABC经过平移得到的.已知点P(a,b)为△ABC内的一点,则点P在△A'B'C'内的对应点P'的坐标是.10.作图题(1)填空:如果长方形的长为3,宽为2,那么对角线的长为.(2)如图,正方形网格中的每个小正方形边长都为1,每个小正方形的顶点叫格点,以格点为顶点(端点),分别按下列要求画图(不要求写画法和证明,但要标注顶点).①在图1中,画一个面积为4的菱形(有两点在格点即可),且邻边不垂直.②在图2中,画平行四边形ABCD,使∠A=45°,且面积为6.11.如图,已知△ABC.(1)尺规作图(请用2B铅笔):作∠ACB的平分线CD交AB于点D,再作CD的垂直平分线交AC于点E,交BC于点F,连接DE,DF(保留作图痕迹,不写作法);(2)试判断四边形DECF的形状,并说明理由.12.图①、图②、图③分别是5×5的正方形网格,网格中每个小正方形的边长均为1,每个小正方形的顶点称为格点,点A、B均在格点上,仅用无刻度的直尺在下列网格中按要求作图,所画图形的顶点均在格点上,保留作图痕迹.(1)在图①中,画一个面积为3钝角△ABC.(2)在图②中,画一个等腰直角△ABD.(3)在图③中,画一个面积为6的四边形ABEF,且有一个内角为45°.13.如图,OD平分∠AOB,P为OA上一点.(1)请用直尺和圆规过点P作PQ∥OB,交OD于点Q(不写作法,保留作图痕迹);(2)求证:OP=PQ.14.在一节数学课上,老师出示一道练习题:“已知,如图,△ABC中,AB=AC,求作一点P,使得∠APC=∠A.”小王的作法是:①以点A为圆心,AB长为半径画⊙A;②以点B为圆心,BC长为半径画弧,交⊙A于点D;③连接DA并延长交⊙A于点P,则点P即为所求的点.(1)请使用直尺和圆规,将小王的作法完成(保留作图痕迹),并判断小王的作法是否正确;(2)在小王的作法基础上,若∠A=30°,AB=√3,求PC的长.15.如图,E为等腰三角形的一个顶点,在正方形ABCD内部,∠AEB=120°,请在CD 边上确定一点P,使得∠APD=60°(保留作图痕迹,不写作法).16.图①、图②、图③均是5×5的正方形网格,每个小正方形的边长为1,小正方形的顶点称为格点,线段AB的端点均在格点上.只用无刻度的直尺,在给定的网格中,按要求画出相应图形.(1)在网格①中画出AB中点,中点为C.(2)在网格②中画出△ABC,使△ABC为钝角等腰三角形,点C在格点上.(3)在网格③中画出以A、B、C、D为顶点的四边形,使这个四边形为中心对称图形,且AB=√2BC,点C、点D均在格点上.17.下面是小李设计的“利用直角和线段作矩形”的尺规作图过程.已知:如图1,线段a,b,及∠MAN=90°.求作:矩形ABCD,使AB=a,AD=b.作法:如图2,①在射线AM,AN上分别截取AB=a,AD=b;②以B为圆心,b长为半径作弧,再以D为圆心,a长为半径作弧,两弧在∠MAN内部交于点C;③连接BC,DC.∴四边形ABCD就是所求作的矩形.根据小李设计的尺规作图过程,解答下列问题:(1)使用直尺和圆规,依作法补全图2(保留作图痕迹);(2)完成下面的证明.证明:∵AB=DC=a,AD==b,∴四边形ABCD是平行四边形()(填推理的依据).∵∠MAN=90°,∴四边形ABCD是矩形()(填推理的依据).18.图①,图②均是8x8的正方形网格,点A、B、C均在格点上,请在给定的网格中用无刻度的直尺作图,并保留作图痕迹.(1)在图①中,作△ABC的中线BM;(2)在图②中,作△ABC的高线CN.19.图①、图②、图③均是6×6的正方形网格,每个小正方形的边长均为1,每个小正方形的顶点叫格点.△ABC的顶点均在格点,点D为AC上一格点,点E为AB上任一点,只用无刻度的直尺,在给定的网格中,分别按下列要求画图,保留作图痕迹.(1)在图①中画△ABC的中位线DF,使点F在边AB上.(2)在图②中画以AC为对角线的平行四边形ABCG.(3)在图③中作射线ED,在其上找到一点H,使DH=DE.20.如图,在▱ABCD中,BE平分∠ABC交AD于点E.(1)实践与操作:利用尺规作图,过点A作BE的垂线,分别交BE,BC于点F,G;(要求:尺规作图并保留作图痕迹,不写作法,标明字母)(2)猜想与证明:试猜想线段AE与BG的数量关系,并加以证明.。

2023年九年级数学中考专题:尺规作图类训练题(含简单答案)

2023年九年级数学中考专题:尺规作图类训练题(含简单答案)

2023年九年级数学中考专题:尺规作图类训练题一、单选题1.如图,Rt ABC △中,由90ACB ∠=︒,30B ∠=︒,要求用圆规和直尺作图,分成两个三角形,其中至少有一个三角形是等腰三角形.其作法错误的是( )A .B .C .D .2.如图,在ABC 中,已知45B ∠=︒,30C ∠=︒,分别以点A 、C 为圆心,大于12AC长为半径画弧,两弧在AC 两侧分别交于P 、Q 两点,作直线PQ 交BC 于点D ,交AC 于点E .若3DE =,则AB 的长为( )A .B .5C .6D .3.如图,在ABC 中,分别以点B 和点C 为圆心,大于12BC 长为半径画弧,两弧相交于点M ,N ,作直线MN ,交AC 于点D ,交BC 于点E ,连接BD ,则ABD △的周长为( )A .AB BC + B .BC AC + C .+AB ACD .AB AC BC ++4.请仔细观察用直尺和圆规作一个角等于已知角的示意图如图所示,请你根据所学的三角形全等有关的知识,说明画出D O C DOC '''∠=∠的依据是( )A .SASB .AASC .SSSD .SSA5.如图,已知AOB ∠,以点O 为圆心,以任意长为半径画弧①,分别交OA ,OB 于点 E ,F , 再以点 E 为圆心,以EF 长为半径画弧,交弧①于点 D ,画射线OD .若28AOB ∠︒=,则BOD ∠的补角的度数为( )A .124︒B .39︒C .56︒D .144︒6.王师傅用角尺平分一个角,如图①,学生小顾用三角尺平分一个角,如图①,他们都在AOB ∠两边上分别取OM ON =,前者使角尺两边相同刻度分别与M ,N 重合,角尺顶点为P ;后者分别过M ,N 作OA ,OB 的垂线,交点为P ,则射线OP 平分AOB ∠,均可由OMP ONP ≌△△得知,其依据分别是( )A .SSS ;SASB .SAS ;SSSC .SSS ;HLD .SAS ;HL7.如图,在Rt ABC △中,90B ,分别以A 、C 为圆心,大于AC 长的一半为半径画弧,两弧相交于点M 、N ,连接MN ,与AC 、BC 分别相交于点D 、E ,连接AE ,当3AB =,5AC =时,ABE 周长为( )A .7B .8C .9D .108.如图,已知AOB ∠.按照以下步骤作图:①以点O 为圆心,以适当的长为半径作弧,分别交AOB ∠的两边于C ,D 两点,连接CD .①分别以点C ,D 为圆心,以大于线段OC 的长为半径作弧,两弧在AOB ∠内交于点E ,连接CE ,DE .①连接OE 交CD 于点M .下列结论中不正确的是( )A .CEO DEO ∠=∠B .CM MD =C .OCD ECD ∠=∠D .12OCED S CD OE =⋅四边形二、填空题9.如图,在ABC 中,AC BC =,以点A 为圆心,AB 长为半径作弧交BC 于点D ,交AC 于点E ,再分别以点C ,D 为圆心,大于CD 的长为半径作弧,两弧相交于F ,G两点,作直线FG .若直线FG 经过点E ,则C ∠的度数为______︒,AEG ∠的度数为______︒.10.如图,Rt ABC △中,90C ∠=︒,13AB =,5BC =,利用尺规在AC ,AB 上分别截取AD ,AE ,使AD AE =,分别以D ,E 为圆心,以大于12DE 为长的半径作弧,两弧在BAC ∠内交于点F ,作射线AF 交边BC 于点G ,点P 为边AB 上的一动点,则GP的最小值为______.11.如图,在ABC 中,90C ∠=︒.按以下步骤作图:①以点A 为圆心,适当长为半径作圆弧,分别交边AB 、AC 于点M 、N ;①分别以点M 和点N 为圆心、大于MN 一半的长为半径作圆弧,在BAC ∠内,两弧交于点P ;①作射线AP 交边BC 于点D .若DAC ABC ∽△△,则B ∠的大小为______度.12.如图,在Rt ABC △中,90C ∠=︒,以顶点B 为圆心,BC 长为半径画弧,交AB 于点D ,再分别以点C ,D 为圆心,大于12CD 长为半径画弧,两弧交于点E ,作射线BE交AC 于点F .若12BC =,15AB =,若BCF △的面积为24,则ABC 的面积为__________.13.如图,在四边形ABCD 中,30A ∠=︒,AB AD =,取大于12AB 的长为半径,分别以点A ,B 为圆心作弧相交于两点,过此两点的直线交AD 边于点E (作图痕迹如图所示),连接BE ,BD .则EBD ∠的度数为______.14.如图,在t R ABC 中,90C ∠=︒,以点B 为圆心,以任意长为半径作弧,分别交,AB BC于点M ,N ;①分别以M ,N 为圆心12MN 的长为半径作弧,两弧在ABC ∠内交于点P ,交AC 于点D .若16,8ABDSAB ==,则线段CD 的长为 ___________.15.如图,在ABCD 中,以A 为圆心,AB 长为半径画弧交AD 于F ,分别以F 、B 为圆心,大于12BF 长为半径画弧,两弧交于点G ,作射线AG 交BC 于点E ,6BF =,5AB =,则AE 的长为 ___________.16.如图,四边形ABCD 是平行四边形,以点B 为圆心,BC 的长为半径作弧交AD 于点E ,分别以点C ,E 为圆心、大于12CE 的长为半径作弧,两弧交于点P ,作射线BP交AD 的延长线于点F ,60CBE ∠=︒,6BC =,则BF =___________.三、解答题17.如图,在ABC 中,50A ∠=︒,30C ∠=,请用尺规作图法,在AC 上求作一点D ,使得BDC ABC ∽.(保留作图痕迹,不写作法)18.(1)操作实践:ABC 中,90A ∠=︒,22.5B ∠=︒,请画出一条直线把ABC 分割成两个等腰三角形,并标出分割成两个等腰三角形底角的度数;(要求画出一种分割方法即可)(2)分类探究:ABC 中,最小内角24B ∠=︒,若ABC 被一直线分割成两个等腰三角形,请画出相应示意图并写出ABC 最大内角的所有可能值;(3)猜想发现:若一个三角形能被一直线分割成两个等腰三角形,需满足什么条件?(请你至少写出两个条件,无需证明)19.如图,在ABC 中,点P ,Q 分别在边BC 及CB 的延长线上,且BQ CP =.(1)实践与探索:利用尺规按下列要求作图(不写作法,保留作图痕迹). ①作PQM CBA ∠=∠,且点M 在QC 的上方; ①在QM 上截取QR BA =; ①连接PR .(2)猜想与验证:试猜想线段AC 和RP 的数量关系,并证明你的猜想.20.如图,点D 是等边ABC 内部一点,且DB DC =,请仅用无刻度的直尺......,分别按下列要求画图.(1)在图①中BC 上找一点E ,使12BE BC =; (2)若2BDC A ∠=∠,在图①中AB AC 、边上分别找点M 、N ,使12MN BC =.参考答案:1.B2.A3.C4.C5.A6.C7.A8.C9.3612610.12 511.30 12.54 13.45︒14.4 15.816.18.(2)ABC的最大内角可能值是117︒或108︒或90︒或84︒;19.(2)RP AC=,答案第1页,共1页。

中考数学试题分类汇总《尺规作图》练习题

中考数学试题分类汇总《尺规作图》练习题

中考数学试题分类汇总《尺规作图》练习题(含答案)作角平分线1.如图,在△ABC中,∠B=30°,∠C=50°,通过观察尺规作图的痕迹,∠DAE的度数是35°.【分析】由线段垂直平分线的性质和等腰三角形的性质求得∠BAD=30°,结合三角形内角和定理求出∠CAD,根据角平分线的定义即可求出∠DAE的度数.【解答】解:∵DF垂直平分线段AB,∴DA=DB,∴∠BAD=∠B=30°,∵∠B=30°,∠C=50°,∴∠BAC=180°﹣∠B﹣∠C=180°﹣30°﹣50°=100°,∴∠CAD=∠BAC﹣∠BAD=100°﹣30°=70°,∵AE平分∠CAD,∴∠DAE=∠CAD=×70°=35°,2.如图,在△ABC中,∠ABC>∠ACB.(1)尺规作图:在∠ABC的内部作射线BD,交AC于E,使得∠ABE=∠ACB;(不写作法,保留作图痕迹)(2)若(1)中AB=7,AC=13,求AE的长.【解答】解:(1)如图,射线BE即为所求作.(2)∵∠A=∠A,∠ABE=∠C,∴△ABE∽△ACB,∴=,∴=,∴AE=.3.如图,在△ABC中,∠C=90°.(1)求作:射线AD,使它平分∠BAC交BC于点D(请用尺规作图,保留作图痕迹,不写作法);(2)若BD:DC=2:1,BC=7.8cm,求点D到AB的距离.【分析】(1)是基本作图,利用直尺和圆规即可作出;(2)过点D作DE⊥AB于E.根据BD:DC=2:1,BC=7.8cm,可得DC,进而即可求点D到边AB的距离.【解答】解:(1)如图所示:(2)过点D作DE⊥AB于E.∵AD平分∠BAC,DE⊥AB,DC⊥AC,∴CD=DE,∵BD:DC=2:1,BC=7.8cm,∴DC=7.8÷(2+1)=7.8÷3=2.6cm.∴DE=DC=2.6cm.∴点D到AB的距离为2.6cm.4.如图,在四边形ABCD中,∠ABC=90°,点E是AC的中点,且AC=AD.(1)尺规作图:作∠CAD的平分线AF,交CD于点F,连接EF,BF(保留作图痕迹,不写作法);(2)在(1)所作的图中,若∠BAD=45°,且∠CAD=2∠BAC,AC=2.判断△BEF的形状,并说明理由,再求出其面积.【解答】解:(1)如图所示:∠CAD的平分线AF即为所求;(2)△BEF是等边三角形;理由如下:∵∠BAD=45°,且∠CAD=2∠BAC,∴∠BAC=∠F AC=∠DAF=15°,∴∠BAF=30°,∵AC=AD,AF是∠CAD的平分线,∴AF⊥CD,∵点E是AC的中点,∴EF=AC=1,∵∠ABC=90°,∴BE=AC=1,∴BE=EF,∠BEC=∠BAE+∠ABE=2∠BAE=30°,∠FEC=∠F AE+∠AFE=2∠F AE=30°,∴∠BEF=60°,∴△BEF是等边三角形;S△BEF=×12=.5.如图,在Rt△ABC中,∠C=90°.(1)尺规作图:作∠A的角平分线AP交BC于点P;(保留作图痕迹,不写作法)(2)在(1)所作的图中,若AC=5,BC=12,求CP的长.【解答】解:(1)如图,AP即为所求;(2)在Rt△ABC中,∠C=90°.∵AC=5,BC=12,∴AB==13,过点P作PD⊥AB于点D,∵AP是∠CAB的平分线,PC⊥AC,PD⊥AB,∴PC=PD,在Rt△APC和Rt△APD中,,∴Rt△APC≌Rt△APD(HL),∴AC=AD=5,∴BD=AB﹣AD=13﹣5=8,∵BP=BC﹣CP=12﹣CP,在Rt△PBD中,根据勾股定理得PB2=PD2+BD2,∴(12﹣CP)2=CP2+82,∴CP=.作一个角等于另一个角6.如图,在△ABC中,∠ABC>∠C.(1)用直尺和圆规在∠ABC的内部作射线BM,使∠ABM=∠ACB(不要求写作法,保留作图痕迹);(2)若(1)中的射线BM交AC于D,AB=4,AC=6,求CD长.【分析】(1)利用基本作图(作一个角等于已知角)作∠ABM=∠ACB即可;(2)先证明△ABD∽△ACB,利用相似比求出AD,然后计算AC﹣AD即可.【解答】解:(1)如图,BM为所作;(2)∵∠ABD=∠C,∠BAD=∠CAB,∴△ABD∽△ACB,∴AB:AC=AD:AB,即4:6=AD:4,∴AD=,∴CD=AC﹣AD=6﹣=.7.观察用直尺和圆规作一个角等于已知角的示意图,能得出∠CPD=∠AOB的依据是()A.由“等边对等角”可得∠CPD=∠AOBB.由SSS可得△OGH≌△PMN,进而可证∠CPD=∠AOBC.由SAS可得△OGH≌△PMN,进而可证∠CPD=∠AOBD.由ASA可得△OGH≌△PMN,进而可证∠CPD=∠AOB【解答】解:由作法得OG=OH=PM=PN,GH=MN,根据“SSS”可判断△OGH≌△PMN,所以∠CPD=∠AOB.尺规作高、作垂线8.如图,已知钝角△ABC.(1)过钝角顶点B作BD⊥AC,交AC于点D(使用直尺和圆规,不写作法,保留作图痕迹);(2)若BC=8,∠C=30°,,求AB的长.【分析】(1)利用尺规作出BD⊥AC,垂足为D即可.(2)在Rt△BCD中求出BD,再在Rt△ABD中,求出AB即可.【解答】解:(1)如图,线段BD即为所求.(2)解:在Rt△BCD中,∵BC=8,∠C=30°∴BD=BC•sin30°=4,在Rt△ABD中,AB===10.作线段的垂直平分线9.如图,在▱ABCD中,AD>AB.(1)尺规作图:作DC边的中垂线MN,交AD边于点E(要求:保留作图痕迹,不写作法);(2)连接EC,若∠BAD=130°,求∠AEC的度数.【解答】解:(1)如图,直线MN,点E即为所求;(2)∵四边形ABCD是平行四边形,∴AB∥CD,∴∠A+∠D=180°,∵∠A=130°,∴∠D=50°∵MN垂直平分线段CD,∴ED=EC,∴∠D=∠ECD=50°,∴∠AEC=∠D+∠ECD=100°.10.(2022·广州从化区一摸)已知,如图,在Rt△ABC中,∠C=90°,AD平分∠CAB.(1)按要求尺规作图:作AD的垂直平分线(保留作图痕迹);【解答】解:(1)如图:分别以A、D为圆心,大于AD的长为半径作弧,两弧交于M、N,作直线MN,则直线MN即为AD的垂直平分线;11.如图,在△ABC中,AB=9,BC=6.(1)在AB上求作点E,使得EA=EC;(不写作法,保留作图痕迹)(2)若∠ACB=2∠A,求AE的长.【分析】(1)作线段AC的垂直平分线交AB于点E,连接EC即可;(2)证明△BCE∽△BAC,推出BC2=BE•BA,求出BE,可得结论.【解答】解:(1)如图,点E即为所求;(2)∵EA=EC,∴∠A=∠ECA,∵∠ACB=2∠A,∴∠BCE=∠A,∵∠B=∠B,∴△BCE∽△BAC,∴BC2=BE•BA,∴BE==4,∴AE=AB=EB=9﹣4=5.12.如图,在△ABC中,按以下步骤作图:①分别以点A,B为圆心,大于AB长为半径作弧,两弧交于M,N两点;②作直线MN交AC于点D,连接BD.若BD=BC,∠A=36°,则∠C的度数为()A.72°B.68°C.75°D.80°【解答】解:由作法可得MN垂直平分AB,∴DA=DB,∴∠DBA=∠A=36°,∵∠BDC=∠A+∠DBC,∴∠BDC=72°,∵BD=BC,∴∠C=∠BDC=72°,即∠C的度数为72°.13.如图,在△ABC中,分别以A、B为圆心,大于AB的长为半径画弧,两弧交于P、Q两点,直线PQ 交BC于点D,连接AD;再分别以A、C为圆心,大于AC的长为半径画弧,两弧交于M,N两点,直线MN交BC于点E,连接AE.若CD=11,△ADE的周长为17,则BD的长为6.【解答】解:由作法得PQ垂直平分AB,MN垂直平分AC,∴DA=DB,EA=EC,∵△ADE的周长为17,∴DA+EA+DE=17,∴DB+DE+EC=17,即BC=17,∴BD=BC﹣CD=17﹣11=6.14.如图,已知∠BAC=60°,AD是角平分线且AD=10,作AD的垂直平分线交AC于点F,作DE⊥AC,则△DEF周长为5+5.【解答】解:∵AD的垂直平分线交AC于点F,∴F A=FD,∵AD平分∠BAC,∠BAC=60°,∴∠DAE=30°,∴DE=AD=5,∴AE===5,∴△DEF周长=DE+DF+EF=DE+F A+EF=DE+AE=5+5,复杂作图15.如图,在△ABC中,AB=AC,点P在BC上.(1)求作:△PCD,使点D在AC上,且△PCD∽△ABP;(要求:尺规作图,保留作图痕迹,不写作法)(2)在(1)的条件下,若∠APC=2∠ABC.求证:PD∥AB.【分析】(1)尺规作图作出∠APD=∠ABP,即可得到∠DPC=∠P AB,从而得到△PCD∽△ABP;(2)根据题意得到∠DPC=∠ABC,根据平行线的判定即可证得结论.【解答】解:(1)如图:作出∠APD=∠ABP,即可得到△PCD∽△ABP;(2)证明:如图,∵∠APC=2∠ABC,∠APD=∠ABC,∴∠DPC=∠ABC,∴PD∥AB.16.如图1,在△ABC中,D是AB边上的一点,小明用尺规作图,做法如下:如图2,①以B为圆心,任意长为半径作弧,交BA于F、交BC于G;②以D为圆心,BF为半径作弧,交DA于M;③以M为圆心,FG为半径作弧,两弧相交于N;④过点D作射线DN交AC于点E.若∠ADE=52°,∠C=78°,则∠A 的度数是50度.【解答】解:由作图可知DE∥BC,∴∠AED=∠C=78°,∴∠A=180°﹣∠ADE﹣∠AED=180°﹣52°﹣78°=50°,。

中考数学专题训练-尺规作图 (1-3)(原卷版)

中考数学专题训练-尺规作图 (1-3)(原卷版)

中考数学专题训练-尺规作图(1)一:作已知角的平分线(1)以O为圆心,任意长为半径作弧,分别交OA,OB于点M,N;(2)分别以点M,N为圆心,以大于12MN的长为半径作弧,两弧相交于点P;(3)作射线OP,OP即为所作的角平分线. 二:作已知线段的垂直平分线(1)分别以M、N为圆心,大于12MN的相同线段为半径画弧,两弧相交于P,Q;(2)连接PQ,交MN于O.则PQ就是所求作的MN的垂直平分线.1.如图,在四边形ABCD中,AD∥BC,∠D=90°,AD=4,BC=3.分别以点A,C为圆心,大于12AC长为半径作弧,两弧交于点E,作射线BE交AD于点F,交AC于点O.若点O是AC的中点,则CD 的长为()A.22B.4 C.3 D.102.已知锐角∠AOB,如图,(1)在射线OA上取一点C,以点O为圆心,OC长为半径作PQ,交射线OB于点D,连接CD;(2)分别以点C,D为圆心,CD长为半径作弧,交PQ于点M,N;(3)连接OM,MN.根据以上作图过程及所作图形,下列结论中错误的是()A.∠COM=∠COD B.若OM=MN.则∠AOB=20°C.MN∥CD D.MN=3CD3.如图,在△ABC中,∠C=90°,∠A=30°,以点B为圆心,适当长为半径画弧,分别交BA,BC于点M,N;再分别以点M,N为圆心,大于12MN的长为半径画弧,两弧交于点P,作射线BP交AC于点D.则下列说法中不正确的是()A.BP是∠ABC的平分线B.AD=BDC.S△CBD∶S△ABD=1∶3 D.CD=12 BD4.如图,在△ABC中,点D是AB边上的一点.(1)请用尺规作图法,在△ABC内,求作∠ADE,使∠ADE=∠B,DE交AC于E;(不要求写作法,保留作图痕迹)(2)在(1)的条件下,若ADDB=2,求AEEC的值.5.如图,在△ABC中,AC<AB<BC.(1)已知线段AB的垂直平分线与BC边交于点P,连接AP,求证:∠APC=2∠B.(2)以点B为圆心,线段AB的长为半径画弧,与BC边交于点Q,连接AQ.若∠AQC=3∠B,求∠B的度数.6.在△ABC中,AB=AC,点A在以BC为直径的半圆内.请仅用无刻度的直尺分别按下列要求画图(保留画图痕迹).(1)在图1中作弦EF,使EF∥BC;(2)在图2中以BC为边作一个45°的圆周角.1.如图,已知矩形AOBC 的三个顶点的坐标分别为O(0,0),A(0,3),B(4,0),按以下步骤作图:①以点O 为圆心,适当长度为半径作弧,分别交OC,OB 于点D,E;②分别以点D,E 为圆心,大于12DE 的长为半径作弧,两弧在∠BOC 内交于点F;③作射线OF,交边BC于点G,则点G 的坐标为( )A. (4,43) B. (43,4) C. (53,4) D. (4,53)2.在数学课上,老师提出如下问题:尺规作图:确定图1中CD所在圆的圆心.已知:CD.求作:CD所在圆的圆心O.曈曈的作法如下:如图2,(1)在CD上任意取一点M,分别连接CM,DM;(2)分别作弦CM,DM的垂直平分线,两条垂直平分线交于点O.点O就是CD所在圆的圆心.老师说:“曈曈的作法正确.”请你回答:曈曈的作图依据是_____.3.如图,在菱形ABCD中,AB=4,按以下步骤作图:①分别以点C和点D为圆心,大于12CD的长为半径画弧,两弧交于点M,N;②作直线MN,且MN恰好经过点A,与CD交于点E,连接BE,则BE的值为()A. 77774.如图,在已知的△ABC中,按以下步骤作图:①分别以B、C为圆心,以大于12BC的长为半径作弧,两弧相交于点M、N;②作直线MN交AB于点D,连接CD,若CD=AD,∠B=20°,则下列结论中错误的是()A. ∠CAD =40°B. ∠ACD =70°C. 点D 为△ABC 的外心D. ∠ACB =90° 5.如图,直线443y x =-+与x 轴、y 轴的交点为A ,B ,按以下步骤作图:①以点A 为圆心,适当长度为半径作弧,分别交AB ,x 轴于点C ,D ;②分别以点C ,D 为圆心,大于12CD 的长为半径作弧,两弧在∠OAB 内交于点M ;③作射线AM ,交y 轴于点E ,则点E 的坐标为( )A. (0,2)B. (0,3)C. (0,32)D. (0,43) 6.如图,在△ABC 中,AB =AC .(1)用尺规作图法在AC 边上找一点D ,使得BD =BC (保留作图痕迹,不要求写作法):(2)若∠A =30°,求∠ABD 的大小.7.如图,在Rt ABC 中,C 90∠=,B 30∠=.()1用直尺和圆规作O ,使圆心O 在BC 边,且O 经过A ,B 两点上(不写作法,保留作图痕迹); ()2连接AO ,求证:AO 平分CAB ∠.8.如图,在Rt△ABC中,∠C=90°,∠A=28°.(1)作AC边上的垂直平分线DE,交AC于点D,交AB于点E(用直尺和圆规作图,不写作法,但要保留作图痕迹);(2)连接CE,求∠BCE的度数.9.如图,▱ABCD中,(1)作边AB的中点E,连接DE并延长,交CB的延长线于点F;(用尺规作图,保留作图痕迹,不要求写作法):(2)已知▱ABCD的面积为8,求四边形EBCD的面积.中考数学专题训练-尺规作图 (2)一.选择题1.如图,矩形ABCD 中60BAC ∠=︒,以点A 为圆心,以任意长为半径作弧分别交AB ,AC 于点M ,N两点,再分别以点M ,N 为圆心,以大于12MN 的长为半径作弧交于点P ,作射线AP 交BC 于点E ,若2BE cm =,则CE 的长为( )A .6cmB .63cmC .4cmD .43cm2.如图,60AOB ∠=︒,以点O 为圆心,以任意长为半径作弧交OA ,OB 于C ,D 两点;分别以C ,D为圆心,以大于12CD 的长为半径作弧,两弧相交于点P ;以O 为端点作射线OP ,在射线OP 上截取线段4OM =,则M 点到OB 的距离为( )A .4B .3C .2D .233.如图,Rt OAB ∆的直角边OA 在x 轴上,OB 在y 轴的正半轴上,且(3,0)A ,4sin 5OAB ∠=.按以下步骤作图:①以点A 为圆心,适当长度为半径作弧,分别交OA ,AB 于点C ,D ;②分别以C ,D 为圆心,大于12CD 的长为半径作弧,两弧在OAB ∠内交于点M ;③作射线AM ,交y 轴于点E .则点E 的坐标为( )A .4(0,)3B .3(0,)2C .(0,3)D .(0,2)4.如图所示,在Rt ABC ∆中,90C ∠=︒,按以下步骤作图:①以点A 为圆心,以小于AC 的长为半径作弧,分别交AC 、AB 于点M ,N ;②分别以点M ,N 为圆心,以大于12MN 的长为半径作弧,两弧相交于点O ; ③作射线OA ,交BC 于点E ,若6CE =,10BE =.则AB 的长为( )A .11B .12C .18D .205.如图,ABCD 中,4CD =,6BC =,按以下步骤作图:①以点C 为圆心,适当长度为半径作弧,分别交BC ,CD 于M ,N 两点:②分别以点M ,N 为圆心,以大于12MN 的长为半径画弧,两弧在ABCD 的内部交于点P ;③连接CP 并延长交AD 于点E ,交BA 的延长线于点F ,则AF 的长为( )A .1B .2C .2.5D .36.在ABC ∆中,5BC =,12AC =,90C ∠=︒,以点B 为圆心,BC 为半径作圆弧,与AB 交于D ,再分别以A ,D 为圆心,大于12AD 的长为半径作圆弧交于点M ,N ,作直线MN ,交AC 于E ,则AE 的长度为( )A .42B .4C .133D .57.如图,在菱形ABCD 中,按以下步骤作图:①分别以点C 和点D 为圆心,大于12CD 的同样的长为半径作弧,两弧交于M ,N 两点; ②作直线MN ,交CD 于点E ,连接BE .若直线MN 恰好经过点A ,则下列说法错误的是( )A .60ABC ∠=︒B .2ABE ADE S S ∆∆=C .若4AB =,则47BE =D .3tan 5CBE ∠= 8.如图,Rt ABC ∆中,90ACB ∠=︒.(1)以点C 为圆心,以CB 的长为半径画弧,交AB 于点G ,分别以点G ,B 为圆心,以大于12GB 的长为半径画弧,两弧交于点K ,作射线CK ;(2)以点B 为圆心,以适当的长为半径画弧,交BC 于点M ,交AB 的延长线于点N ,分别以点M ,N为圆心,以大于12MN 的长为半径画弧,两弧交于点P ,作直线BP 交AC 的延长线于点D ,交射线CK 于点E ;(3)过点D 作DF AB ⊥交AB 的延长线于点F ,连接CF .根据以上操作过程及所作图形,有如下结论:①CE CD =;②BC BE BF ==;③12CDFB S CF BD =⋅四边形; ④BCF BCE ∠=∠.所有正确结论的序号为( )A .①②③B .①③C .②④D .③④二.填空题9.如图,在ABC ∆中,按以下步骤作图: ①分别以点B 和点C 为圆心,大于12BC 的长为半径作弧,两弧相交于点M 和N ; ②作直线MN ,分别交边AB ,BC 于点D 和E ,连接CD .若90BCA ∠=︒,8AB =,则CD 的长为 .10.如图,BD 是矩形ABCD 的对角线,在BA 和BD 上分别截取BE ,BF ,使BE BF =,分别以E ,F为圆心,以大于12EF 的长为半径作弧,两弧在ABD ∠内交于点G ,作射线BG 交AD 于点P ,若5AP =,则点P 到BD 的距离为 .11.如图,四边形ABCD 中,//AD BC ,90D ∠=︒,4AD =,3BC =.分别以点A ,C 为圆心,大于12AC 长为半径作弧,两弧交于点E ,射线BE 交AD 于点F ,交AC 于点O .若点O 恰好是AC 的中点,则CD 的长为 .12.如图,在ABC ∆中,90B ∠=︒,以点A 为圆心,适当长为半径画弧,分别交AB ,AC 于点D ,E ,再分别以D ,E 点为圆心,大于12DE 为半径画弧,两弧交于点F ,作射线AF 交边BC 于点G ,若1BG =,4AC =,则ACG ∆的面积为 .13.如图,在Rt ABC ∆中,90C ∠=︒,以顶点A 为圆心,适当长为半径画弧,分别交AC 、AB 于点M 、N ,再分别以点M 、N 为圆心,大于12MN 的长为半径画弧,两弧交于点P ,作射线AP 交边BC 于点D ,若4CD =,12AB =,则ABD ∆的面积是 .14.如图,在菱形ABCD 中,按以下步骤作图:①分别以点A 和B 为圆心,以大于12AB 的长为半径作弧,两弧相交于点E 、F ;②作直线EF 交BC 于点G ,连接AG ;若AG BC ⊥,3CG =,则AD 的长为 .三.解答题15.下面是小东设计的“过直线外一点作这条直线的平行线”的尺规作图过程.已知:直线l 及直线l 外一点P .求作:直线PQ ,使得//PQ l .作法:如图,①任意取一点K ,使点K 和点P 在直线l 的两旁;②以P 为圆心,PK 长为半径画弧,交l 于点A ,B ,连接AP ;③分别以点P ,B 为圆心,以AB ,PA 长为半径画弧,两弧相交于点Q (点Q 和点A 在直线PB 的两旁);④作直线PQ .所以直线PQ 就是所求作的直线.根据小东设计的尺规作图过程,(1)使用直尺和圆规,补全图形;(保留作图痕迹)(2)完成下面的证明.证明:连接BQ ,PQ = ,BQ = ,∴四边形PABQ 是平行四边形( )(填推理依据).//PQ l ∴.16.下面是小元设计的“过直线外一点作已知直线的平行线”的尺规作图过程.已知:如图,直线l 和直线外一点P .求作:过点P 作直线l 的平行线.作法:如图,①在直线l 上任取点O ;②作直线PO ;③以点O 为圆心OP 长为半径画圆,交直线PO 于点A ,交直线l 于点B ;④连接AB,以点B为圆心,BA长为半径画弧,交O于点C(点A与点C不重合);⑤作直线CP;则直线CP即为所求.根据小元设计的尺规作图过程,完成以下任务.(1)补全图形;(2)完成下面的证明:证明:连接BP、BC,=,AB BC∴AB BC=,∴∠=∠,=,又OB OP∴∠=∠,∴∠=∠,CPB OBP∴)(填推理的依据).CP l//(17.下面是小明设计的“在已知三角形的一边上取一点,使得这点到这个三角形的另外两边的距离相等”的尺规作图过程:∆.已知:ABC求作:点D,使得点D在BC边上,且到AB,AC边的距离相等.作法:如图,∠的平分线,交BC于点D.作BAC则点D即为所求.根据小明设计的尺规作图过程,(1)使用直尺和圆规,补全图形(保留作图痕迹);(2)完成下面的证明.⊥于点F,证明:作DE AB⊥于点E,作DF AC∠,AD平分BAC∴=()(括号里填推理的依据).18.如图,在O 中,点A 为弧CD 的中点过点B 作O 的切线BF ,交弦CD 的延长线于点F . (Ⅰ)如图①,连接AB ,若50F ∠=︒,求ABF ∠的大小;(Ⅱ)如图②,连接CB ,若35F ∠=︒,//AC BF ,求CBF ∠的度数.19.如图,已知MON ∠,A ,B 分别是射线OM ,ON 上的点.(1)尺规作图:在MON ∠的内部确定一点C ,使得//BC OA 且12BC OA =;(保留作图痕迹,不写作法) (2)在(1)中,连接OC ,用无刻度直尺在线段OC 上确定一点D ,使得2OD CD =,并证明2OD CD =.20.【概念认识】若以三角形某边上任意一点为圆心,所作的半圆上的所有点都在该三角形的内部或边上,则将符合条件且半径最大的半圆称为该边关联的极限内半圆.如图①,点P 是锐角ABC ∆的边BC 上一点,以P 为圆心的半圆上的所有点都在ABC ∆的内部或边上.当半径最大时,半圆P 为边BC 关联的极限内半圆.【初步思考】若等边ABC ∆的边长为1,则边BC 关联的极限内半圆的半径长为 .如图②,在钝角ABC ∆中,用直尺和圆规作出边BC 关联的极限内半圆(保留作图痕迹,不写作法).【深入研究】如图③,30AOB ∠=︒,点C 在射线OB 上,6OC =,点Q 是射线OA 上一动点.在QOC ∆中,若边OC 关联的极限内半圆的半径为r ,当1≤r ≤2时,求OQ 的长的取值范围.21.如图,已知线段AB . (1)仅用没有刻度的直尺和圆规作一个以AB 为腰、底角等于30︒的等腰ABC ∆.(保留作图痕迹,不要求写作法)(2)在(1)的前提下,若2AB cm =,则等腰ABC ∆的外接圆的半径为 cm .22.人们在长期的数学实践中总结了许多解决数学问题的方法,形成了许多光辉的数学思想,其中转化思想是中学数学中最活跃,最实用,也是最重要的数学思想,例如将不规则图形转化为规则图形就是研究图形问题比较常用的一种方法.51013的三角形的面积.问题解决:在解答这个问题时,先建立一个正方形网格(每个小正方形的边长为1)5、1013的格点三角形ABC ∆(如图1).5AB =是直角边分别为1和2的直角三角形的斜边,10BC =1和3的直角三角形的斜边,13AC =2和3的直角三角形的斜边,用一个大长方形的面积减去三个直角三角形的面积,这样不需求ABC ∆的高,而借用网格就能计算出它的面积.(1)请直接写出图1中ABC ∆的面积为 .(2)类比迁移:求出边长分别为5、22、17的三角形的面积(请利用图2的正方形网格画出相应的ABC ∆,并求出它的面积).23.如图,已知ABC ∆,利用尺规完成下列作图(不写画法,保留作图痕迹).(1)作ABC ∆的外接圆;(2)若ABC ∆所在平面内有一点D ,满足CAB CDB ∠=∠,BC BD =,求作点D .中考数学专题训练-尺规作图(3)1.尺规作图的定义:只用不带刻度的直尺和圆规通过有限次操作,完成画图的一种作图方法.尺规作图可以要求写作图步骤,也可以要求不一定要写作图步骤,但必须保留作图痕迹。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

考点20 尺规作图一、尺规作图1.尺规作图的定义在几何里,把限定用没有刻度的直尺和圆规来画图称为尺规作图.2.五种基本作图(1)作一条线段等于已知线段;(2)作一个角等于已知角;(3)作一个角的平分线;(4)作一条线段的垂直平分线;(5)过一点作已知直线的垂线.3.根据基本作图作三角形(1)已知三角形的三边,求作三角形;(2)已知三角形的两边及其夹角,求作三角形;(3)已知三角形的两角及其夹边,求作三角形;(4)已知三角形的两角及其中一角的对边,求作三角形;(5)已知直角三角形一直角边和斜边,求作直角三角形.4.与圆有关的尺规作图(1)过不在同一直线上的三点作圆(即三角形的外接圆);(2)作三角形的内切圆.5.有关中心对称或轴对称的作图以及设计图案是中考常见类型.6.作图题的一般步骤(1)已知;(2)求作;(3)分析;(4)作法;(5)证明;(6)讨论.其中步骤(3)(4)(5)(6)一般不作要求,但作图中一定要保留作图痕迹.二、尺规作图的方法1.尺规作图的关键(1)先分析题目,读懂题意,判断题目要求作什么;(2)读懂题意后,再运用几种基本作图方法解决问题.2.根据已知条件作等腰三角形或直角三角形求作三角形的关键是确定三角形的三个顶点,作图依据是三角形全等的判定,常借助基本作图来完成,如作直角三角形就先作一个直角.考向一基本作图1.最基本、最常用的尺规作图,通常称为基本作图.2.基本作图有五种:(1)作一条线段等于已知线段;(2)作一个角等于已知角;(3)作一个角的平分线;(4)作一条线段的垂直平分线;(5)过一点作已知直线的垂线.典例1如图,在△ABC中,∠ACB=90°,分别以点A和B为圆心,以相同的长(大于12AB)为半径作弧,两弧相交于点M和N,作直线MN交AB于点D,交BC于点E,连接CD,下列结论错误的是A.AD=BD B.BD=CDC.∠A=∠BED D.∠ECD=∠EDC【答案】D【解析】∵MN为AB的垂直平分线,∴AD=BD,∠BDE=90°,∵∠ACB=90°,∴CD=BD,∵∠A+∠B=∠B+∠BED=90°,∴∠A=∠BED,∵∠A≠60°,AC≠AD,∴EC≠ED,∴∠ECD≠∠EDC.故选D.典例2如图,已知∠MAN,点B在射线AM上.(1)尺规作图:①在AN上取一点C,使BC=BA;②作∠MBC的平分线BD,(保留作图痕迹,不写作法)(2)在(1)的条件下,求证:BD∥AN.【解析】(1)①以B点为圆心,BA长为半径画弧交AN于C点;如图,点C即为所求作;②利用基本作图作BD平分∠MBC;如图,BD即为所求作;(2)先利用等腰三角形的性质得∠A=∠BCA,再利用角平分线的定义得到∠MBD=∠CBD,然后根据三角形外角性质可得∠MBD=∠A,最后利用平行线的判定得到结论.∵AB=AC,∴∠A=∠BCA,∵BD平分∠MBC,∴∠MBD=∠CBD,∵∠MBC=∠A+∠BCA,即∠MBD+∠CBD=∠A+∠BCA,∴∠MBD=∠A,∴BD∥AN.1.根据下图中尺规作图的痕迹,可判断AD一定为三角形的A.角平分线B.中线C.高线D.都有可能2.(1)请你用尺规作图,作AD平分∠BAC,交BC于点D(要求:保留作图痕迹);(2)∠ADC的度数.考向二复杂作图利用五种基本作图作较复杂图形.典例2如图,在同一平面内四个点A,B,C,D.(1)利用尺规,按下面的要求作图.要求:不写画法,保留作图痕迹,不必写结论.①作射线AC;②连接AB,BC,BD,线段BD与射线AC相交于点O;③在线段AC上作一条线段CF,使CF=AC–BD.(2)观察(1)题得到的图形,我们发现线段AB+BC>AC,得出这个结论的依据是__________.【答案】见解析.【解析】(1)①如图所示,射线AC即为所求;②如图所示,线段AB,BC,BD即为所求;③如图所示,线段CF即为所求;(2)根据两点之间,线段最短,可得AB+BC>AC.故答案为:两点之间,线段最短.3.作图题:学过用尺规作线段与角后,就可以用尺规画出一个与已知三角形一模一样的三角形来.比如给定一个△ABC,可以这样来画:先作一条与AB相等的线段A′B′,然后作∠B′A′C′=∠BAC,再作线段A′C′=AC,最后连接B′C′,这样△A′B′C′就和已知的△ABC一模一样了.请你根据上面的作法画一个与给定的三角形一模一样的三角形来.(请保留作图痕迹)1.根据已知条件作符合条件的三角形,在作图过程中主要依据是A.用尺规作一条线段等于已知线段B.用尺规作一个角等于已知角C.用尺规作一条线段等于已知线段和作一个角等于已知角D.不能确定2.下列作图属于尺规作图的是A.画线段MN=3 cmB.用量角器画出∠AOB的平分线C.用三角尺作过点A垂直于直线l的直线D.已知∠α,用没有刻度的直尺和圆规作∠AOB,使∠AOB=2∠α3.如图,已知钝角△ABC,依下列步骤尺规作图,并保留作图痕迹.步骤1:以C为圆心,CA为半径画弧①;步骤2:以B为圆心,BA为半径画弧②,交弧①于点D;步骤3:连接AD,交BC延长线于点H.下列叙述正确的是A.BH垂直平分线段AD B.AC平分∠BADC.S△ABC=BC·AH D.AB=AD4.如图,点C在∠AOB的OB边上,用尺规作出了∠AOB=∠NCB,作图痕迹中,弧FG是A.以点C为圆心,OD为半径的弧B.以点C为圆心,DM为半径的弧C.以点E为圆心,OD为半径的弧D.以点E为圆心,DM为半径的弧5.如图,△ABC中,∠C=90°,∠CAB=50°.按以下步骤作图:①以点A为圆心,小于AC长为半径画弧,分别交AB、AC于点E、F;②分别以点E、F为圆心,大于12EF长为半径画弧,两弧相交于点G;③作射线AG交BC边于点D.则∠ADC的度数为A.65°B.60°C.55°D.45°6.如图,△ABC为等边三角形,要在△ABC外部取一点D,使得△ABC和△DBC全等,下面是两名同学做法:甲:①作∠A的角平分线l;②以B为圆心,BC长为半径画弧,交l于点D,点D即为所求;乙:①过点B作平行于AC的直线l;②过点C作平行于AB的直线m,交l于点D,点D即为所求.A.两人都正确B.两人都错误C.甲正确,乙错误D.甲错误,乙正确7.在△ABC中,按以下步骤作图:①分别以A,B为圆心,大于12AB的长为半径画弧,相交于两点M,N;②作直线MN交AC于点D,连接BD.若CD=BC,∠A=35°,则∠C=__________.8.如图,在△ABC中,AB=A C.以点C为圆心,以CB长为半径作圆弧,交AC的延长线于点D,连接BD.若∠A=32°,则∠CDB的大小为__________度.9.按要求用尺规作图(要求:不写作法,但要保留作图痕迹,并写出结论)已知:线段AB;求作:线段AB的垂直平分线MN.10.如图,已知△ABC,∠BAC=90°,(1)尺规作图:作∠ABC的平分线交AC于D点(保留作图痕迹,不写作法)(2)若∠C=30°,求证:DC=DB.1.(2019•河南)如图,在四边形ABCD中,AD∥BC,∠D=90°,AD=4,BC=3.分别以点A,C为圆心,大于12AC长为半径作弧,两弧交于点E,作射线BE交AD于点F,交AC于点O.若点O是AC的中点,则CD的长为A.22B.4 C.3 D.102.(2019•包头)如图,在Rt△ABC中,∠B=90°,以点A为圆心,适当长为半径画弧,分别交AB、AC于点D,E,再分别以点D、E为圆心,大于12DE为半径画弧,两弧交于点F,作射线AF交边BC于点G,若BG=1,AC=4,则△ACG的面积是A.1 B.32C.2 D.523.(2019•北京)已知锐角∠AOB,如图,(1)在射线OA上取一点C,以点O为圆心,OC长为半径作PQ,交射线OB于点D,连接CD;(2)分别以点C,D为圆心,CD长为半径作弧,交PQ于点M,N;(3)连接OM,MN.根据以上作图过程及所作图形,下列结论中错误的是A.∠COM=∠COD B.若OM=MN.则∠AOB=20°C.MN∥CD D.MN=3CD4.(2019•广西)如图,在△ABC中,AC=BC,∠A=40°,观察图中尺规作图的痕迹,可知∠BCG的度数为A.40°B.45°C.50°D.60°5.(2019•新疆)如图,在△ABC中,∠C=90°,∠A=30°,以点B为圆心,适当长为半径画弧,分别交BA,BC于点M,N;再分别以点M,N为圆心,大于12MN的长为半径画弧,两弧交于点P,作射线BP交AC于点D.则下列说法中不正确的是A.BP是∠ABC的平分线B.AD=BDC.S△CBD∶S△ABD=1∶3 D.CD=12 BD6.(2019•荆州)如图,矩形ABCD的顶点A,B,C分别落在∠MON的边OM,ON上,若OA=OC,要求只用无刻度的直尺作∠MON的平分线.小明的作法如下:连接AC,BD交于点E,作射线OE,则射线OE平分∠MON.有以下几条几何性质:①矩形的四个角都是直角,②矩形的对角线互相平分,③等腰三角形的“三线合一”.小明的作法依据是A.①②B.①③C.②③D.①②③7.(2019•河北)根据圆规作图的痕迹,可用直尺成功找到三角形外心的是A.B.C.D.8.(2019•长沙)如图,Rt△ABC中,∠C=90°,∠B=30°,分别以点A和点B为圆心,大于12AB的长为半径作弧,两弧相交于M、N两点,作直线MN,交BC于点D,连接AD,则∠CAD的度数是A.20°B.30°C.45°D.60°9.(2019•襄阳)如图,分别以线段AB的两个端点为圆心,大于AB的一半的长为半径画弧,两弧分别交于C,D两点,连接AC,BC,AD,BD,则四边形ADBC一定是A.正方形B.矩形C.梯形D.菱形10.(2019•广东)如图,在△ABC中,点D是AB边上的一点.(1)请用尺规作图法,在△ABC内,求作∠ADE,使∠ADE=∠B,DE交AC于E;(不要求写作法,保留作图痕迹)(2)在(1)的条件下,若AD DB =2,求AEEC的值.11.(2019•长春)如图,在ABC △中,ACB ∠为钝角.用直尺和圆规在边AB 上确定一点D .使2ADC B ∠=∠,则符合要求的作图痕迹是A .B .C .D .12.(2019•贵阳)如图,在△ABC 中,AB =AC ,以点C 为圆心,CB 长为半径画弧,交AB 于点B 和点D ,再分别以点B ,D 为圆心,大于12BD 长为半径画弧,两弧相交于点M ,作射线CM 交AB 于点E .若AE =2,BE =1,则EC 的长度是A .2B .3C .3D .513.(2019•宜昌)通过如下尺规作图,能确定点D 是BC 边中点的是A .B .C .D .14.(2019•潍坊)如图,已知AOB ∠.按照以下步骤作图:①以点O 为圆心,以适当的长为半径作弧,分别交AOB ∠的两边于C ,D 两点,连接CD ;②分别以点C ,D 为圆心,以大于线段OC 的长为半径作弧,两弧在AOB ∠内交于点E ,连接CE ,DE ;③连接OE 交CD 于点M .下列结论中错误的是A .CEO DEO ∠=∠B .CM MD =C .OCD ECD ∠=∠D .12OCED S CD OE =⋅四边形 15.(2019•东营)如图,在Rt ABC 中,90ACB ∠=︒,分别以点B 和点C 为圆心,大于12BC 的长为半径作弧,两弧相交于D E ,两点,作直线DE 交AB 于点F ,交BC 于点G ,连接CF .若3AC =,2CG =,则CF 的长为A .52B .3C .2D .7216.(2019•宁夏)如图,在Rt ABC △中,90C ∠=︒,以顶点B 为圆心,适当长度为半径画弧,分别交AB BC ,于点M N ,,再分别以点M N ,为圆心,大于12MN 的长为半径画弧,两弧交于点P ,作射线BP交AC于点D.若30A∠=︒,则BCDABDSS=△△__________.17.(2019•贵港)尺规作图(只保留作图痕迹,不要求写出作法):如图,已知ABC△,请根据“SAS”基本事实作出DEF△,使DEF ABC△≌△.18.(2019•玉林)如图,已知等腰ABC△顶角30A∠=︒.(1)在AC上作一点D,使AD BD=(要求:尺规作图,保留作图痕迹,不必写作法和证明,最后用黑色墨水笔加墨);(2)求证:BCD△是等腰三角形.19.(2019•长春)图①、图②、图③均是6×6的正方形网格,每个小正方形的顶点称为格点,小正方形的边长为1,点A B C D E F 、、、、、均在格点上.在图①、图②、图③中,只用无刻度的直尺,在给定的网格中按要求画图,所画图形的顶点均在格点上,不要求写出画法. (1)在图①中以线段AB 为边画一个ABM △,使其面积为6. (2)在图②中以线段CD 为边画一个CDN △,使其面积为6.(3)在图③中以线段EF 为边画一个四边形EFGH ,使其面积为9,且90EFG ∠=︒.20.(2019•哈尔滨)图1、2是两张形状和大小完全相同的方格纸,方格纸中每个小正方形的边长均为1,线段AC 的两个端点均在小正方形的顶点上.(1)在图1中画出以AC 为底边的等腰直角ABC △,点B 在小正方形顶点上;(2)在图2中画出以AC 为腰的等腰ACD △,点D 在小正方形的顶点上,且ACD △的面积为8.21.(2019•济宁)如图,点M 和点N 在AOB ∠内部.∠两边的距离也相等(保留作图(1)请你作出点P,使点P到点M和点N的距离相等,且到AOB痕迹,不写作法);(2)请说明作图理由.22.(2019•河池)如图,AB为O的直径,点C在O上.∠的平分线,与O交于点D;连接OD,交BC于点E(不写作法,只保(1)尺规作图:作BAC留作图痕迹,且用黑色墨水笔将作图痕迹加黑);(2)探究OE与AC的位置及数量关系,并证明你的结论.23.(2019•赤峰)已知:AC是ABCD的对角线.(1)用直尺和圆规作出线段AC 的垂直平分线,与AD 相交于点E ,连接CE .(保留作图痕迹,不写作法);(2)在(1)的条件下,若35AB BC ==,,求DCE △的周长.24.(2019•杭州)如图,在△ABC 中,AC <AB <BC .(1)已知线段AB 的垂直平分线与BC 边交于点P ,连接AP ,求证:∠APC =2∠B .(2)以点B 为圆心,线段AB 的长为半径画弧,与BC 边交于点Q ,连接AQ .若∠AQC =3∠B ,求 ∠B 的度数.25.(2019•吉林)图①,图②均为4×4的正方形网格,每个小正方形的顶点称为格点.在图①中已画出线段AB ,在图②中已画出线段CD ,其中A 、B 、C 、D 均为格点,按下列要求画图: (1)在图①中,以AB 为对角线画一个菱形AEBF ,且E ,F 为格点;(2)在图②中,以CD 为对角线画一个对边不相等的四边形CGDH ,且G ,H 为格点,∠CGD =∠CHD=90°.26.(2019•武汉)如图是由边长为1的小正方形构成的网格,每个小正方形的顶点叫做格点.四边形ABCD 的顶点在格点上,点E是边DC与网格线的交点.请选择适当的格点,用无刻度的直尺在网格中完成下列画图,保留连线的痕迹,不要求说明理由.(1)如图1,过点A画线段AF,使AF∥DC,且AF=DC.(2)如图1,在边AB上画一点G,使∠AGD=∠BGC.(3)如图2,过点E画线段EM,使EM∥AB,且EM=AB.27.(2019•江西)在△ABC中,AB=AC,点A在以BC为直径的半圆内.请仅用无刻度的直尺分别按下列要求画图(保留画图痕迹).(1)在图1中作弦EF,使EF∥BC;(2)在图2中以BC为边作一个45°的圆周角.1.【答案】B【解析】由作图的痕迹可知:点D是线段BC的中点,∴线段AD是△ABC的中线,故选B.如图,在△ABC中,∠C=90°,∠B=40°.2.【解析】(1)如图,AD为所作;(2)∵∠C=90°,∠B=40°.∴∠BAC=90°–40°=50°,∵AD平分∠BAC,∴∠BAD=12∠BAC=25°,∴∠ADC=∠B+∠BAD=40°+25°=65°.3.【解析】首先作一条射线,进而截取AB=A′B′,∠CAB=∠C′A′B′,进而截取AC=A′C′,进而得出答案.如图所示:△A′B′C′即为所求.1.【答案】C【解析】根据已知条件作符合条件的三角形,需要使三角形的要素符合要求,或者是作边等于已知线段,或者是作角等于已知角,故选C.2.【答案】D【解析】选项A,画线段MN=3 cm,需要知道长度,而尺规作图中的直尺是没有长度的,错误;选项B,考点冲关变式拓展用量角器画出∠AOB的平分线,量角器不在尺规作图的工具里,错误;选项C,用三角尺作过点A垂直于直线l的直线,三角尺也不在作图工具里,错误;选项D,正确.故选D.3.【答案】A【解析】由作法可得BH为线段AD的垂直平分线,故选A.4.【答案】D【解析】作图痕迹中,弧FG是以点E为圆心,DM为半径的弧,故选D.5.【答案】A【解析】由题意得AG为∠CAB的角平分线,则∠ADC=25°,∵∠C=90°,∴∠ADC=65°,故选A.6.【答案】A【解析】(甲)如图一所示,∵△ABC为等边三角形,AD是∠BAC的角平分线,∴∠BEA=90°,∴∠BED=90°,∴∠BEA=∠BED=90°,由甲的作法可知,AB=BD,∴∠ABC=∠DBC,在△ABC与△DBC中,AB BDABC DBC BC BC⎪∠⎪⎩∠⎧⎨===,∴△ABC≌△DBC,故甲的作法正确;(乙)如图二所示,∵BD∥AC,CD∥AB,∴∠ABC=∠DCB,∠ACB=∠DBC,在△ABC和△DCB中,ABC DCBBC CBACB DBC∠∠∠⎧⎪⎪⎩∠⎨===,∴△ABC≌△DCB(ASA),∴乙的作法是正确的.故选A.7.【答案】40°【解析】∵根据作图过程和痕迹发现MN垂直平分AB,∴DA=DB,∴∠DBA=∠A=35°,∵CD=BC,∴∠CDB=∠CBD=2∠A=70°,∴∠C=40°,故答案为:40°.8.【答案】37【解析】∵AB=AC,∠A=32°,∴∠ABC=∠ACB=74°,又∵BC=DC,∴∠CDB=∠CBD=12∠ACB=37°,故答案为:37.9.【解析】作法:(1)分别以A,B点为圆心,以大于2AB的长为半径作弧,两弧相交于M,N两点;(2)作直线MN,MN即为线段AB的垂直平分线.10.【解析】(1)射线BD即为所求.(2)∵∠A=90°,∠C=30°,∴∠ABC=90°﹣30°=60°,∵BD平分∠ABC,∴∠CBD=12∠ABC=30°,∴∠C=∠CBD=30°,∴DC=DB.1.【答案】A【解析】如图,连接FC,则AF=FC.∵AD∥BC,∴∠FAO=∠BCO.在△FOA与△BOC中,FAO BCOOA OCAOF COB∠=∠⎧⎪=⎨⎪∠=∠⎩,∴△FOA≌△BOC(ASA),∴AF=BC=3,∴FC=AF=3,FD=AD-AF=4-3=1.在△FDC中,∵∠D=90°,∴CD2+DF2=FC2,∴CD2+12=32,∴CD=22A.2.【答案】C【解析】由作法得AG平分∠BAC,∴G点到AC的距离等于BG的长,即G点到AC的距离为1,所以△ACG的面积=12×4×1=2.故选C.直通中考3.【答案】D【解析】由作图知CM=CD=DN,∴∠COM=∠COD,故A选项正确;∵OM=ON=MN,∴△OMN是等边三角形,∴∠MON=60°,∵CM=CD=DN,∴∠MOA=∠AOB=∠BON=13∠MON=20°,故B选项正确;∵∠MOA=∠AOB=∠BON=20°,∴∠OCD=∠OCM=80°,∴∠MCD=160°,又∠CMN=12∠AON=20°,∴∠MCD+∠CMN=180°,∴MN∥CD,故C选项正确;∵MC+CD+DN>MN,且CM=CD=DN,∴3CD>MN,故D选项错误,故选D.4.【答案】C【解析】由作法得CG⊥AB,∵AC=BC,∴CG平分∠ACB,∠A=∠B,∵∠ACB=180°-40°-40°=100°,∴∠BCG=12∠ACB=50°.故选C.5.【答案】C【解析】由作法得BD平分∠ABC,所以A选项的结论正确;∵∠C=90°,∠A=30°,∴∠ABC=60°,∴∠ABD=30°=∠A,∴AD=BD,所以B选项的结论正确;∵∠CBD=12∠ABC=30°,∴BD=2CD,所以D选项的结论正确;∴AD=2CD,∴S△ABD=2S△CBD,所以C选项的结论错误.故选C.6.【答案】C【解析】∵四边形ABCD为矩形,∴AE=CE,而OA=OC,∴OE为∠AOC的平分线.故选C.7.【答案】C【解析】三角形外心为三边的垂直平分线的交点,由基本作图得到C选项作了两边的垂直平分线,从而可用直尺成功找到三角形外心.故选C.8.【答案】B【解析】在△ABC中,∵∠B=30°,∠C=90°,∴∠BAC=180°-∠B-∠C=60°,由作图可知MN为AB的中垂线,∴DA =DB ,∴∠DAB =∠B =30°,∴∠CAD =∠BAC -∠DAB =30°,故选B . 9.【答案】D【解析】由作图可知:AC =AD =BC =BD ,∴四边形ACBD 是菱形,故选D . 10.【解析】(1)如图,∠ADE 为所作.(2)∵∠ADE =∠B , ∴DE ∥BC , ∴AE ADEC DB==2. 11.【答案】B【解析】∵2ADC B ∠=∠且ADC B BCD ∠=∠+∠, ∴B BCD ∠=∠, ∴DB DC =,∴点D 是线段BC 中垂线与AB 的交点,故选B . 12.【答案】D【解析】由作法得CE ⊥AB ,则∠AEC =90°,AC =AB =BE +AE =2+1=3,在Rt△ACE 中,CE 22325-=.故选D . 13.【答案】A【解析】作线段BC 的垂直平分线可得线段BC 的中点. 由此可知:选项A 符合条件,故选A . 14.【答案】C【解析】由作图步骤可得:OE 是AOB ∠的角平分线,∴∠COE =∠DOE , ∵OC =OD ,OE =OE ,OM =OM , ∴△COE ≌△DOE ,∴∠CEO =∠DEO , ∵∠COE =∠DOE ,OC =OD ,∴CM =DM ,OM ⊥CD ,∴S四边形OCED=S△COE+S△DOE=111222OE CM OE DM CD OE⋅+⋅=⋅,但不能得出OCD ECD∠=∠,∴A、B、D选项正确,不符合题意,C选项错误,符合题意,故选C.15.【答案】A【解析】由作法得GF垂直平分BC,∴FB FC=,2CG BG==,FG BC⊥,∵90ACB∠=︒,∴FG AC∥,∴BF CF=,∴CF为斜边AB上的中线,∵22345AB=+=,∴1522CF AB==.故选A.16.【答案】12【解析】由作法得BD平分ABC∠,∵90C=︒∠,30A∠=︒,∴60ABC∠=︒,∴30ABD CBD∠=∠=︒,∴DA DB=,在Rt BCD△中,2BD CD=,∴2AD CD=,∴12BCDABDSS=△△.故答案为:12.17.【解析】如图,DEF△即为所求.18.【解析】(1)如图,点D为所作.(2)∵AB AC =, ∴1(18036)722ABC C ︒=-︒∠∠==︒, ∵DA DB =,∴36ABD A ∠=∠=︒,∴363672BDC A ABD ∠=∠+∠=︒+=︒︒, ∴BDC C ∠=∠, ∴BCD △是等腰三角形.19.【解析】(1)如图①所示,ABM △即为所求.(2)如图②所示,CDN △即为所求. (3)如图③所示,四边形EFGH 即为所求.20.【解析】(1)作AC 的垂直平分线,作以AC 为直径的圆,垂直平分线与圆的交点即为点B .(2)以C 为圆心,AC 为半径作圆,格点即为点D .21.【解析】(1)如图,作∠AOB 的角平分线与线段MN 的垂直平分线交于P 点,即点P 到点M 和点N 的距离相等,且到AOB ∠两边的距离也相等.(2)理由:角的平分线上的点到角的两边的距离相等、直平分线上的点到线段两端点的距离相等. 22.【解析】(1)如图所示:(2)OE AC ∥,12OE AC =. 理由如下:∵AD 平分BAC ∠,∴12BAD BAC ∠=∠, ∵12BAD BOD ∠=∠,∴BOD BAC ∠=∠, ∴OE AC ∥, ∵OA OB =,∴OE 为ABC △的中位线, ∴OE AC ∥,12OE AC =. 23.【解析】(1)如图,CE 为所作.(2)∵四边形ABCD 为平行四边形,∴53AD BC CD AB ====,, ∵点E 在线段AC 的垂直平分线上, ∴EA EC =,∴DCE △的周长538CE DE CD EA DE CD AD CD =++=++=+=+=. 24.【解析】(1)∵线段AB 的垂直平分线与BC 边交于点P ,∴PA =PB ,∴∠B=∠BAP,∵∠APC=∠B+∠BAP,∴∠APC=2∠B.(2)根据题意可知BA=BQ,∴∠BAQ=∠BQA,∵∠AQC=3∠B,∠AQC=∠B+∠BAQ,∴∠BQA=2∠B,∵∠BAQ+∠BQA+∠B=180°,∴5∠B=180°,∴∠B=36°.25.【解析】(1)如图,菱形AEBF即为所求.(2)如图,四边形CGDH即为所求.26.【解析】(1)如图所示,线段AF即为所求.(2)如图所示,点G即为所求.(3)如图所示,线段EM即为所求.27.【解析】(1)如图1,EF为所作.(2)如图2,∠BCD为所作.。

相关文档
最新文档