圆周角和圆心角的关系 学案 1

合集下载

圆周角和圆心角的关系教案

圆周角和圆心角的关系教案

圆周角和圆心角的关系教案教案:圆周角和圆心角的关系教学目标:1.理解圆周角和圆心角的定义;2.掌握圆周角和圆心角的关系;3.运用所学知识解决实际问题。

教学准备:1.教材:《数学必修二》;2.教具:投影仪、计算器。

教学过程:Step 1:导入新知1.讲解圆周角和圆心角的概念。

圆周角:圆上的两条弧所对的角叫做圆周角。

圆心角:由圆心射出的两条弧所对的角叫做圆心角。

2.提问学生:“在圆上,两条弧所对的角是否相等?”3.引导学生发现,根据圆周角的定义,圆周角的度数等于弧所对的圆心角的一半。

Step 2:讲解圆周角和圆心角的关系1.通过投影仪展示有关圆周角和圆心角的图形,并示范解题方法。

2.教师讲解定理:“在同一个圆或等圆中,所对圆心角相等的圆周角也相等;所对圆周角相等的圆心角也相等。

”Step 3:练习1.完成教材《数学必修二》的相关习题。

2.制定小组练习题,提高学生之间的合作学习能力。

Step 4:运用1.学生进行一些实际问题的解答,如“一个园丁想在花园中心种一圈花,他决定每两株花之间的夹角是圆心角45°,他一共要种多少株花?”引导学生运用圆周角和圆心角的关系解题。

2.学生自主完成其他实际问题的解答。

Step 5:总结1.归纳总结圆周角和圆心角的关系,明确圆周角等于所对圆心角的一半。

2.提问巩固所学内容。

教学扩展:1.学生之间进行小组竞赛,比赛谁能最快解出题目中的圆周角和圆心角的关系。

2.学生利用计算器综合运用所学知识解决实际问题。

3.4第1课时圆周角和圆心角的关系(教案)

3.4第1课时圆周角和圆心角的关系(教案)
举例:引导学生通过折叠、旋转等方法,观察圆周角和圆心角的变化,从而理解两者关系。
(2)运用圆周角和圆心角的关系解决问题:在实际问题中,学生可能不知道如何将所学的圆周角和圆心角关系应用到解题过程中。
举例:针对不同类型的题目,指导学生分析问题,找到运用圆周角和圆心角关系的关键步骤,并给出解题策略。
四、教学流程
3.加强实践活动的引导,让学生在讨论和操作过程中,能够更加深入地思考问题;
4.提高自己的课堂应变能力,针对学生的反馈,及时调整教学方法和策略。
3.成果展示:每个小组将向全班展示他们的讨论成果和实验操作的结果。
(四)学生小组讨论(用时10分钟)
1.讨论主题:学生将围绕“圆周角和圆心角在实际生活中的应用”这一主题展开讨论。他们将被鼓励提出自己的观点和想法,并与其他小组成员进行交流。
2.引导与启发:在讨论过程中,我将作为一个引导者,帮助学生发现问题、分析问题并解决问题。我会提出一些开放性的问题来启发他们的思考。
本节课将紧密围绕核心素养目标,关注学生能力培养,使学生在掌握知识的同时,提高数学学科综合素养。
三、教学难点与重点
1.教学重点
(1)圆周角和圆心角的概念及其关系:圆周角是圆上一段弧所对的角,圆心角是以圆心为顶点的角。圆周角是圆心角的一半,这是本节课的核心知识点。
举例:讲解圆周角和圆心角的定义,通过图示和实际操作,让学生直观感受两者的关系。
3.重点难点解析:在讲授过程中,我会特别强调圆周角和圆心角的关系,以及它们在解题中的应用这两个重点。对于难点部分,我会通过举例和比较来帮助大家理解。
(三)实践活动(用时10分钟)
1.分组讨论:学生们将分成若干小组,每组讨论一个与圆周角和圆心角相关的实际问题。
2.实验操作:为了加深理解,我们将进行一个简单的实验操作。通过观察和测量圆周角和圆心角,验证圆周角是圆心角的一半这一性质。

九年级上册数学教案《圆周角与圆心角的关系》

九年级上册数学教案《圆周角与圆心角的关系》

九年级上册数学教案《圆周角与圆心角的关系》教材分析《圆周角》这节课是人教版九年级上册第二十四章第一节第四部分的内容,是在学生学习了圆、弧、弦、圆心角等概念和相关知识的基础上出现的。

圆周角与圆心角的关系,在圆的有关说理、作图、计算中,应用比较广泛。

通过对圆周角定理的探讨,培养学生严谨的思维品质。

同时,教会学生从特殊到一般的分类讨论的思维方法。

因此,本节课无论在知识上,还是方法上,都起着十分重要的作用。

所以这一节课既是对前面所学知识的延续,又是对后面研究圆与其它平面图形的桥梁。

学情分析初三学生已经具备一定的独立思考和探索能力,学生既能在探索过程中条理清晰地阐述自己的观点,又能在倾听别人意见的过程中,逐渐完善自己的想法。

因此,本节课设计了一系列探究活动,给学生提供探索与交流的空间,体现知识的形成过程。

由于学生有了自主意识及参与度的提高,因此,这节课可以给学生充分的时间讨论交流。

教学目标1、理解圆周角的概念,掌握圆周角的两个特征。

2、经历探索圆周角与圆心角及其对弧关系的过程,了解并证明圆周角定理,发展合情推理和演绎推理的能力。

3、能用圆周角定理,进行计算及证明。

教学重点探索圆周角和圆心角的关系。

教学难点感悟圆周角和圆心角定理,证明过程中的分类、转化的数学思想。

教学方法讲授法、演示法、讨论法、练习法教学过程一、创设情境如图,运动员在球门前画了一个圆,进行无人防守的射门训练。

点B对球门AC的张角与点D对球门AC的张角,哪个张角大?师:要研究这个问题,我们先研究∠ABC、∠ADC、∠AEC。

观察这几个角,你发现了什么?学生经过观察,发现几个角的顶点都在圆上,角两边都与圆相交。

圆周角定义:顶点在圆上,两边分别与圆还有一个交点,像这样的角,叫做圆周角。

二、探究新知如图,连接AO,BO,得到圆心角∠AOB。

可以发现,∠ACB与∠AOB对着同̂,分别测量图中AB̂所对的圆周角∠ACB和圆心角∠AOB的度数,它们一条弧AB之间存在什么关系呢?我们来研究这个问题。

圆周角与圆心角之间的关系学案

圆周角与圆心角之间的关系学案

圆周角学习目标1、经历探索圆周角的有关性质的过程.2、理解圆周角的概念及其相关性质,并能运用相关性质解决有关问题.3、体会分类、转化等数学思想方法,学会数学地思考问题. 重点 理解圆周角的概念及其相关性质,并能运用相关性质解决有关问题.难点体会分类、转化等数学思想方法,学会数学地思考问题一 、引入新课看课本,完成下列问题:(1)圆周角的定义 (2)圆周角的特证:① ② (3)下面各图中,哪一个角是圆周角?二、生成新知1、如图,任意画一个⊙O,在圆上取任意两点A,B. 点B 作⊙O 直径BC,连接BA,OA,那么 圆心角∠AOC 与它所对弧AC 的度数相等, 你能发现圆周角∠ABC 的度数与它所对的弧 的度数有怎样的数量关系?说明理由。

2、如果圆周角∠ABC 的两边都不经过圆心,那么圆心O 可能在∠ABC 的内部,也可能在∠ABC 的外部,在这两种情况下,对于圆周角∠ABC 的度数与它所对的弧的度数的关系,你还能得到类似的结论吗?能将这两种情况分别转化成上图的情况去解决吗小结:当解决一个问题有困难时,我们可以首先考虑其特殊情形,然后再设法解决一般问题,这是解决问题时常用的策略。

圆周角定理:推论1: 推论2: 三、巩固新知CB1、如图,点A 、B 、C 、D 在⊙O 上,点A 与点D 在点B 、C 所在直线的同侧,∠BAC=350 (1)∠BDC=_______°,理由是 (2)∠BOC=_______°,理由是2、若∠BAC=60°,∠BOC=______°(2) 若∠AOB=90°,∠ACB=______°四、拓展延伸1.如图,A 、B 、C 是⊙O 上三点,∠ACB=30°,则∠BAO 的度数是2.如图,在⊙O 中,已知∠OAC=20°,OA ∥CD ,则∠AOD= 3.如图,点A 、B 、C 是⊙O 上的三点,若∠BOC=56°,则∠A=.4.如图,OB 、OC 是⊙O 的半径,A 是⊙O 上一点,若已知∠B=20°, ∠C=30°,则∠A=5、如图,已知弦AB 的长等于⊙O 的半径,点C 是弧AMB 上一点,则∠ACB=6、如图,已知点A ,B ,C ,D ,E 是⊙O 的五等分点,则∠BAD 的度数是7、如图,∠BOD 的度数是1题图1题图 2题图 3题图6题图 7题图5题图六当堂检测1、如图1,点A、B、C、D四点在同一个圆上,且D是弧AC的中点,则图中与∠ABD相等的角的个数是。

圆周角和圆心角的关系教案

圆周角和圆心角的关系教案

圆周角和圆心角的关系教案教案目标:1. 理解和描述圆周角和圆心角的概念;2. 掌握圆周角和圆心角之间的关系;3. 能够解决与圆周角和圆心角相关的问题。

教学步骤:I. 引入(约5分钟)- 利用生活中的例子引起学生对圆周角和圆心角的注意,例如车轮、钟表等。

- 引导学生思考圆周角和圆心角的定义和特点。

II. 讲解圆周角和圆心角的概念(约10分钟)- 通过示意图解释圆周角和圆心角的定义,并介绍角度的度量单位。

- 强调圆周角是指相邻两条弧所对应的角,圆心角是指以圆心为顶点的角。

III. 圆周角和圆心角的关系(约15分钟)- 阐述圆周角和圆心角之间的关系,即圆周角的度数是圆心角的二倍。

- 使用具体案例和图形进行说明,让学生理解这一关系。

IV. 解决问题(约15分钟)- 给学生一些练习题,让他们应用所学的知识解决问题。

- 引导学生逐步解决问题,并给予必要的提示和指导。

- 鼓励学生主动思考和讨论,提高解决问题的能力。

V. 总结(约5分钟)- 和学生一起总结本节课所学的内容,检查是否达到了教学目标。

- 强调圆周角和圆心角之间的关系对圆的几何性质的重要性。

VI. 拓展活动(约10分钟)- 给学生一些拓展问题,让他们运用所学的知识进行探究和进一步思考。

- 鼓励学生在小组内互相讨论和合作,提出自己的观点和解决方法。

VII. 课堂作业(约5分钟)- 布置一些课后作业,包括练习题和思考题,巩固和拓展所学的内容。

- 强调作业的重要性,并鼓励学生按时完成和提交。

备注:以上教案的时间安排仅供参考,请根据实际情况做适当调整。

(教案完)。

圆心角与圆周角的关系教案

圆心角与圆周角的关系教案

圆周角与圆心角的关系一、知识讲解:1.圆周角与圆心角的的概念:顶点在圆上,并且两边都和圆相交的角叫做圆周角。

2.在同圆或等圆中,如果两条弦,两条弧,两个圆心角中有一组量相等,那么它们所对应的其它各组量都分别相等。

3.一条弧所对的圆周角等于这条弧所对的圆心角的一半。

4.直径所对的圆周角是90度,90度的圆周角所对的弦是直径。

5.圆的内接四边形对角之和是180度。

6.弧的度数就是圆心角的度数。

解题思路:1.已知圆周角,可以利用圆周角求出圆心角2.已知圆心角,可以利用圆心角求出圆周角3.已知直径和弧度,可以求出圆周角与圆心角1.圆周角与圆心角的定义顶点在圆上,并且两边都和圆相交的角叫做圆周角。

注意圆周角定义的两个基本特征:(1)顶点在圆上;(2)两边都和圆相交。

二、教学内容【1】圆心角:顶点在圆心的角。

利用两个错误的图形来强调圆周角定义的两个基本特征:练习:判断下列各图形中的是不是圆周角,并说明理由.【2】理解圆周角定理的证明一条弧所对的圆周角的度数等于这条弧所对的圆心角度数的一半。

已知:⊙O中,弧BC所对的圆周角是∠BAC,圆心角是∠BOC,求证:∠BAC= 1/2∠BOC.分析:通过图形的演示指导学生进一步去寻找圆心O与∠BAC的关系本题有三种情况:(1)圆心O在∠BAC的一边上 O(2)圆心O在∠BAC的内部(3)圆心O在∠BAC的外部 B D C●如果圆心O在∠BAC的边AB上,只要利用三角形内角和定理的推论和等腰三角形的性质即可证明●如果圆心O在∠BAC的内部或外部,那么只要作出直径AD,将这个角转化为上述情况的两个角的和或差即可证明:圆心O在∠BAC的一条边上 AOA=OC==>∠C=∠BAC∠BOC=∠BAC+∠C O==>∠BAC=1/2∠BOC. B C【3】圆周角与圆心角的关系(1).在同圆或等圆中,如果两条弦,两条弧,两个圆心角中有一组量相等,那么它们所对应的其它各组量都分别相等。

圆周角和圆心角的关系(一)教学设计

图1 (1) (2) (3) (4) (5) (7) (6) (8)§3.3、圆周角和圆心角的关系(一)教学目标:1、 理解圆周角的概念;掌握圆周角和圆心角之间的关系,并会运用它进行有关的证明和运算.2、经历探索圆周角和圆心角关系的过程,培养学生观察、分析、猜想、归纳和逻辑推理的能力;通过渗透分类讨论、归纳等数学思想方法,培养学生的探究意识和探索新知识的能力.3、在经历探索圆周角和圆心角关系的过程中,感受探索的艰辛与喜悦,体验数学活动充满着探索与创造,激发学生的学习欲望.教学重点与难点:重点是:理解圆周角的概念;掌握圆周角与圆心角之间的关系定理.难点是:圆周角和圆心角关系定理的证明.教学方法:引导发现法.在老师的启发引导下,学生经过观察、操作、猜测、推理论证、发现、归纳等方法,探究出新知.教学手段:多媒体PPT 课件使用教材的构思:本节课对教材内容进行了重新加工,以学生熟悉的圆心角引入圆周角,学习新概念,并比较它们的异同.在探究圆周角和圆心角关系定理时,以“问题串”形式,教师创设问题情境,层层推进教学,使学生经历观察、操作、猜想、讨论、推理、归纳等数学活动,最后得到新知,并获得一些学习数学学习的方法.同时,课堂练习的设计力求符合不同层次学生的心理特点,通过练习,让不同层次学生体会到本节课是学有所得的,真正体现“使不同的人在数学上得到不同的发展”的新课程理念.教学流程:一、 创设问题,引入新课:(说明:由学生熟悉的知识,以问题形式引出课题,回顾旧知的同时明确新知,激发学生的学习热情,引导学生充分体会新旧知识间的联系.)问题1:什么是圆心角?如图1:哪个是圆心角?圆心角有什么主要特征?学生回顾概念,根据概念分辨图形,进一步理解圆心角的主要特征.问题2:图1(2)的角有什么主要特征?他与圆心角有什么联系和区别?学生观察、比较、发现,并尝试归纳总结.师引导生观察角的顶点、角的两边与圆的位置关系,然后师生共同归纳总结(学生口述,教师板书内容).ABC O图3 图2问题3:按照“顶点在圆上,两边都和圆相交”的条件画图,能画出多少个这样的角? 学生画图、发现,并与同桌交流,得到结论:无数多个.师:这无数多个具有共同特征的角,就是圆周角.圆周角和我们前面所学的圆心角之间有什么关系呢?就让我们一起走进今天的课堂.(引入新课,板书课题)二、讲授新课,探究新知:(一)、圆周角定义:板书:顶点在圆上,两边都和圆相交的角叫做圆周角.师引导生强调圆周角的两个特征:1)顶点在圆上;2)两边在圆内的部分是圆的两条弦,即两边都和圆相交,两者缺一不可,并与圆心角区别.学生理解概念,并找出圆周角与圆心角的异同点.巩固练习:图1中还有圆周角吗?学生观察、分析.中下游生口答,并分析其他图为什么不是圆周角.当遇到问题时,其他学生补充.(通过此过程,让学生再次强化理解有关概念.)(二)、探究圆周角和圆心角之间的关系:问题4:小组交流:在你们所画的图中,圆周角和圆心有几种位置关系?学生在小组内交流、汇总,并在全班交流,补充.师投影展示学生所发现的几中位置关系,并让其他小组补充.师:通过画图,我们知道:以圆上任意一点为顶点的圆周角有无数多个,但它们与圆心的位置关系只有三种,如图2: (1) 圆心在圆周角的一边上,(2) 圆心在圆周角的内部, (3) 圆心在圆周角的外部.问题5:在同一个圆中,任意的圆周角和圆心角有什么大小关系?师引导生画图发现.学生画图、观察、测量、发现:它们之间不一定存在某种特殊的关系.如图3:问题6:如果圆周角和圆心角都对同一圆中的一条弧,如图4:在⊙O 中,∠A 、∠BOC 都对着弧BC ,那么这两个角存在着怎样的关系呢?学生画图、测量、比较、发现、猜想.再试一试,并在小组内交流,归纳总结,最后在全班交流. 师引导生完成,师生共同补充归纳得出结论:(师板书) 命题:一条弧所对的圆周角等于它所对圆心角的一半.师:对于从有限次试验中得出的命题,能当做定理吗?学生:不能.需要用学过的定义和定理对得出的结论的各种情况,进行严密的推理论证后才能做为定理来用。

圆周角和圆心角的关系(第一课时)公开课学案[1][1]

圆周角和圆心角的关系(第8周第一课时)学习目标:1、理解圆周角的概念,掌握圆周角的两个特征、定理的内容及简单应用;2、学习重点:圆周角的概念和圆周角定理3、学习难点:圆周角定理的证明中由“特殊到一般”的数学思想方法和完全归纳法的数学思想. 学习过程:(一)复习填空,导入新知:顶点在圆心的角叫________,圆心角的度数_______它所对弧的度数。

(二)学生探究,教师引领:1、圆周角定义: 。

圆周角必须具备两个条件:①顶点在________,②两边_________(缺一不可) 2、下列图形中的角是不是圆周角?3、动手探索如图是一个圆柱形的海洋馆的横截面示意图,人们可以通过其中的圆弧形玻璃窗 观看窗内的海洋动物,同学甲站在圆心O 的位置,同学乙站在正对着玻璃窗的靠墙的位置C ,同学丙、丁分别站在其他靠墙的位置D 和E 问题1:同学乙、丙、丁三人的视角(∠ACB 、ADB 和 ∠AEB 有什么特点?它们大小之间有什么关系?问题2:同学甲的视角∠AOB的视角与乙、丙、丁三人的视角相同吗?他们有什么关系呢?① 分别量一下 所对的圆周角∠ACB 、∠ADB 和∠AEB 的度数,比较一下,再改变圆周角的位置,圆周角的度数有没有变化?你有什么发现? ∠ACB=________、∠ADB=_______、∠AEB=_______② 再量出图中 所对的圆周角和圆心角的度数,比较一下,你有什么发现? 用量角器量一量∠A0B=______, 4、归纳圆周角定理在_____或____中,同弧或等弧所对的______相等.都等于这条弧所对的圆心角的____. 5、圆周角定理的推论半圆(或______)所对的圆周角是_______; 90°的圆周角所对的弦是__________.乙三、学生展示,教师点评(先完成课本86第1题)(1)、下列图形中,哪些图形中的圆心角∠BOC 和圆周角∠A 是同对一条弧。

(2).如图1,∠1、∠2、∠3、∠4中相等的角有____________(3)、如图2,圆中角X 的度数为______________.(4)、如图3,在⊙O中,∠BOC=50°,则∠BAC=____________。

圆周角和圆心角的关系导学案


O
B
D C
A
O
B
C
A
D A
A O
B
C
O
B
C
O
B
C
定理:一条弧所对的圆周角等于它所对的圆心角的一半。
5.定理证明: (1)圆心在∠BAC 的一边上。
A
O
B
C
证明过程:
2/5
(2)圆心在∠BAC 的内部。
O
B
C
(3)圆心在∠BAC 的外部。
O
A
B
C
分析: 因为圆心角的度数等于它所对弧的度数,所以圆周角的度 数就等于所对弧度数的一半。 三、练习
的关系?

二、圆周角与圆心角
A
教师个人添 加(学生学 习记录)
O
B
C
3.圆周角定义:顶点在圆上,并且两边都和圆相 交的角叫圆周角。 圆周角:角的顶点在圆上,两边是圆的两条弦 圆心角:角的顶点是圆心,两边是圆的两条半径 4.下列图形中,哪些图形中的圆心角∠BOC 和圆周角∠A 是同对 一条弧。
1/5
A
圆周角与圆心角的关系
学习目标:
1.了解圆周角的概念; 经历探索圆周角和圆心角的关系的过 程, 理解和掌握圆周角定理;
2.通过探索圆周角与圆心角的关系, 体会分类、转化、归纳 等数学思想方法
重点难点: 学习流程:
重点:圆周角和圆心角的关系 难点:圆周角和圆心角的关系
一、复习引入
1.圆心角的定义?

2.在同圆或等圆中,圆心角的度数和它所对的弧的度数
(4)
(5)
(6)
11.如图 5,AB 是⊙O 的直径, BC BD ,∠A=25°,则∠BOD 的

圆周角和圆心角的关系(第一课时)学案[1]

图2图3图1圆周角和圆心角的关系(第一课时)学习目标:(1)理解圆周角的概念,掌握圆周角的两个特征、定理的内容及简单应用; (2)渗透由“特殊到一般”,由“一般到特殊”的数学思想方法以及转化、分类、归纳等数学思想;学习重点:圆周角的概念和圆周角定理 学习难点:圆周角定理的证明中由“特殊到一般”的数学思想方法和完全归纳法的数学思想. 学习过程:(一)复习填空,导入新知:顶点在圆心的角叫________,圆心角的度数_______它所对弧的度数。

(二)自主探究,学习新知:1、圆周角定义: 。

圆周角必须具备两个条件:①顶点在________,②两边_________(缺一不可)课本练习P123T1,自主完成后统一纠正。

2、圆周角定理学生动手:请画出下列各图中劣弧AB 所对的圆周角,并度量其度数。

弧AB 为120︒ 弧AB 为90︒ 弧AB 为60︒①分别写出劣弧AB 所对的圆心角A O B ∠度数:图1____图2_____图3_____ ②度量劣弧AB 所对的圆周角A C B ∠的度数:图1_____图2_____图3______ ③比较两个角的度数,你从特例中发现了什么? 学生猜想:2.通过特例猜想的结论在一般角度情况下是否成立呢?(请学生独立证明) 证明:(教师讲解)①∵∠AOC=∠B+∠C 又∵OB=OC∴∠B=∠C ∴∠B=12∠AOC教师点拨:对于第二和第三种情况,我们是否可以用化未知为已知的方法来解决它们:② ③圆周角定理:(点拨:在本定理的证明中采用了分情况证明。

应不应该分情况证明,主要是看各种情况是否一样,如果情况一样则不需要,如果情况不一样,则必须分情况证明,分情况的原则是要做到不重不漏。

)方法总结:当解决一个问题有困难时,我们可以首先考虑其特殊情形,然后再设法解决一般问题。

这是解决问题时常用的策略。

(三)定理的应用: 例1.完成下列选择题1.如图,⊙O 是ABC ∆的外接圆,AB 是直径,若︒=∠80BOC ,则A ∠等于( )O CBA图6A .60ºB .50ºC .40ºD .30º2.如图,A B C △内接于O ⊙,若28O A B ∠=°,则C ∠的大小为( )A . 28°B .56°C .60°D .62° 3.如图,已知CD 为⊙O 的直径,过点D 的弦DE 平行 于半径OA ,若∠D 的度数是50°,则∠C 的度数是: A .25° B .40° C .30° D .50°例2.如图,OA 、OB 、OC 都是圆O 的半径,∠ AOB=2∠ BOC .求证:∠ACB=2∠ BAC拓展:已知⊙O 中的弦AB 长等于半径,求弦AB 所对的圆心角和圆周角的度数.练习:一条弦分圆为1:4两部分,求这条弦所对的圆周角的度数? 三、课堂小结:四、作业:课本习题P124T2,3 体会:。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

§3.3 圆周角和圆心角的关系(第一课时)
学习目标:
(1)理解圆周角的概念,掌握圆周角的两个特征、定理的内容及简单应用;
(2)继续培养学生观察、分析、想象、归纳和逻辑推理的能力;
(3)渗透由“特殊到一般”,由“一般到特殊”的数学思想方法.
学习重点:
圆周角的概念和圆周角定理
学习难点:
圆周角定理的证明中由“一般到特殊”的数学思想方法和完全归纳法的数学思想.学习方法:
指导探索法.
学习过程:
一、举例:
1、已知⊙O中的弦AB长等于半径,求弦AB所对的圆周角和圆心角的度数.
2、如图,OA、OB、OC都是圆O的半径,∠AOB=2∠BOC.求证:∠ACB=2∠BAC
3、如图,已知圆心角∠AOB=100°,求圆周角∠ACB、∠ADB的度数?
4、一条弦分圆为1:4两部分,求这弦所对的圆周角的度数?
5、已知AB为⊙O的直径,AC和AD为弦,AB=2,AC=2,AD=1,求∠CAD的度数.
6、如图,A、B、C、D、E是⊙O上的五个点,则图中共有个圆周角,分别是

7、如图,已知△ABC是等边三角形,以BC为直径的⊙O交AB、AC于D、E.(1)求证:△DOE是等边三角形;(2)如图3-3-14,若∠A=60°,AB≠AC,则①中结论是否成立?如果成立,请给出证明;如果不成立,请说明理由?
8、已知等圆⊙O1和⊙O2相交于A、B两点,⊙O1经过O2,点C是

B
AO
2
上任一点(不与A、
O2、B重合),连接BC并延长交⊙O2于D,连接AC、AD.求证:.(1)操作测量:图a)供操作测量用,测量时可使用刻度尺或圆规将图(a)补充完整,并观察和度量AC、CD、AD三条线段的长短,通过观察或度量说出三条线段之间存在怎样的关系?
(2)猜想结论(求证部分),并证明你的猜想;(在补充完整的图(a)中进行证明)
(3)如图b),若C点是

2
BO的中点,AC与O
1O2相交于E点,连接O1C,O2C.求证:
CE2=O1O2·EO2.
二、课外练习:
1、⊙O的弦AB等于半径,那么弦AB所对的圆周角一定是().
(A)30°(B)150°(C)30°或150°(D))60°
2、△ABC中,∠B=90°,以BC为直径作圆交AC于E,若BC=12,
AB=12,则的度数为().
(A)60°(B)80°(C)100°(D))120°
3、如图,△ABC是⊙O的内接等边三角形,D是AB上一点,AB
与CD交于E点,则图中60°的角共有( )个.
(A)3 (B)4 (C)5 (D)6
4、如图,△ABC内接于⊙O,∠OBC=25°,则∠A的度数为()
(A)70°(B)65°(C)60°(D))50°
5、圆内接三角形三个内角所对的弧长为3:4:5,那么这个三角形
内角的度数分别为__________.
6、如图,AB是⊙O的直径,CD⊥AB于D,AD=9cm,DB=4cm,求CD和AC的长.
7、已知:如图,△ABC是⊙O的内接三角形,⊙O的直径BD交AC于E,AF⊥BD于F,延长AF交BC于G.求证:。

相关文档
最新文档