山东省高考仿真模拟冲刺(三)数学理试题及答案

合集下载

山东省高三第三次模拟考试数学(理)试题 Word版含答案

山东省高三第三次模拟考试数学(理)试题 Word版含答案

山东省师大附中2017届高三第三次模拟考试数学(理)试题一、选择题:本大题共10个小题,每小题5分,共50分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.已知复数z 满足2zi i =-,i 为虚数单位,则z =( ) A . 2i - B .12i + C .12i -+ D .12i --2.已知集合1{|()1}2xA x =≤,2{|280}B x x x =--≤,则AB =( )A .{|20}x x -≤≤B .{|24}x x ≤≤C .{|04}x x ≤≤D .{|2}x x ≤-3.直线3y x =与曲线2y x =围成图形的面积为( ) A .272 B . 9 C . 92 D .2744.已知函数()sin()f x x ωϕ=+(0,||)2πωϕ><的最小正周期是π,若将其图象向右平移3π个单位后得到的函数为奇函数,则函数()y f x =的图象( ) A .关于点(,0)12π对称 B .关于直线12x π=对称C. 关于点5(,0)12π对称 D .关于直线512x π=对称 5.下列说法错误的是( )A .对于命题2:,10p x R x x ∀∈++>,则2000:,10p x R x x ⌝∃∈++≤ B .“1x =”是“2320x x -+=”的充分不必要条件C.若命题p q ∧为假命题,则,p q 都是假命题D .命题“若2320x x -+=,则1x =”的逆否命题为:“若1x ≠,则2320x x -+≠”6.“牟合方盖”是我国古代数学家刘徽在研究球的体积的过程中构造的一个和谐优美的几何体,它由完全相同的四个曲面构成,相对的两个曲面在同一个圆柱的侧面上,好似两个扣合(牟合)在一起的方形伞(方盖).其直观图如下左图,图中四边形是为体现其直观性所作的辅助线,其实际直观图中四边形不存在,当其主视图和左视图完全相同时,它的主视图和俯视图分别可能是( )A .,a bB .,a c C. ,c b D .,b d7.点(4,2)P -与圆224x y +=上任一点连线段的中点的轨迹方程是( ) A .22(2)(1)1x y -++= B .22(2)(1)4x y -++= C. 22(4)(2)4x y ++-= D .22(2)(1)1x y ++-=8.等比数列{}n a 的前n 项和为n S ,已知2532a a a =,且4a 与72a 的等差中项为54,则5S =( )A . 29B . 31 C. 33 D .369.已知双曲线C :22221(0,0)x y a b a b-=>>的左、右焦点分别为12,F F ,O 为坐标原点,P是双曲线上在第一象限内的点,直线2,PO PF 分别交双曲线C 左、右支于另一点,M N ,12||2||PF PF =,且260MF N ∠=,则双曲线C 的离心率为( )A 10.已知函数()f x 满足1()()f x f x=,且当1[,1]x π∈时,()ln f x x =,若当1[,]x ππ∈时,函数()()g x f x ax =-与x 轴有交点,则实数a 的取值范围是( )A .ln [,0]ππ-B .1[,]2ππ-- C. 1ln [,]πππ- D .[ln ,0]ππ-第Ⅱ卷二、填空题(每题5分,满分20分,将答案填在答题纸上)11.已知实数,x y 满足10101x y x y y +-≤⎧⎪-+≥⎨⎪≥-⎩,则3y x -的最小值为 .12.若经过抛物线24y x =焦点的直线l 与圆22(4)4x y -+=相切,则直线l 的斜率为 . 13.已知1sin()cos 63παα--=,则cos(2)3πα+= . 14.函数222,1()log (1),1x x f x x x ⎧-≤=⎨->⎩,则5[()]2f f = .15.在ABC ∆中,点D 满足34BD BC =,当点E 在射线AD (不含点A )上移动时,若AE AB AC λμ=+,则1λμ+的最小值为 .三、解答题 (本大题共6小题,共70分.解答应写出文字说明、证明过程或演算步骤.)16. ABC ∆的内角,,A B C 的对边分别为,,a b c ,已知2cos (cos cos )C a B b A c +=. (1)求角C ; (2)若c =ABC ∆ABC ∆的周长. 17. 如图,在三棱柱111ABC A B C -中,1C C ⊥底面ABC ,14CC AB AC BC ====,D 为线段AC 的中点.(1)求证:直线1//AB 平面1BC D ; (2)求三棱锥1D C CB -的体积.18. 已知正项数列{}n a 满足11a =,且*1()21nn n a a n N a +=∈+.(1)证明数列1{}na 为等差数列,并求数列{}n a 的通项公式; (2)设1(1)n n n nb n a a +=-,求数列{}n b 的前n 项和n T .19. 如图,在四棱锥P ABCD -中,底面ABCD 为直角梯形,//AD BC ,90ADC ∠=,平面PAD ⊥平面ABCD ,Q 为AD 的中点,M 是棱PC 上的点,2PA PD ==,112BC AD ==,CD =.(1)求证:平面PQB ⊥平面PAD ;(2)若二面角M BQ C --大小为30,求线段QM 的长.20. 已知椭圆C :22221(0)x y a b a b +=>>的右焦点为(1,0)F,且点(-在椭圆C 上.(1)求椭圆C 的标准方程;(2)已知动直线l 过点F ,且与椭圆C 交于,A B 两点,试问x 轴上是否存在定点Q ,使得716QA QB =-恒成立,求出点Q 的坐标;若不存在,请说明理由. 21. 已知函数2()2ln f x m x x =-,()2ln xg x e m x =-,()m R ∈,ln 20.693=. (1)讨论()f x 的单调性;(2)若()f x 存在最大值M ,()g x 存在最小值N ,且M N ≥,求证:2e m >.试卷答案一、选择题1-5: DCCDC 6-10: AABBD二、填空题11. 13-12. 79 14. 12-15.3三、解答题16.(1)2cos (cos cos )C a B b A c +=,由正弦定理得:2cos (sin cos sin cos )sin C A B B A C +=2cos sin()sin C A B C +=∵A B C π++=,,,(0,)a b c π∈,∴sin()sin 0A B C +=> ∴2cos 1C =,1cos 2C = ∵(0,)C π∈,∴3C π=.(2)由余弦定理得:2222cos c a b ab C =+-221722a b ab =+-2()37a b ab +-=1sin 2S ab C ===,∴6ab = ∴2()187a b +-=,5a b +=∴ABC ∆周长为5a b c ++=17.(1)连接1B C 交1BC 于点M ,连接DM ,在1ACB ∆中,D 为AC 中点,M 为1BC 中点, 所以1//DM AB ,又因为1AB ⊄平面1BC D ,DM ⊂平面1BC D所以1//AB 平面1BC D(2)因为1CC ⊥底面ABC ,所以1CC 为三棱锥1C DBC -的高, 所以11113D C CB C BCD BCD V V S CC --∆==⨯112432=⨯⨯⨯=18.(1)∵121n n n a a a +=+,∴1112n n a a +=+,∴1112n na a +-=又111a =,∴数列1{}n a 是以1为首项,2为公差的等差数列 ∴121nn a =-,∴*1()21n a n N n =∈- (2)由(1)知,111(1)(1)()(21)(21)42121nn n n b n n n n =-=⨯-⨯+-+-+∴123n n T b b b b =++++111111111[()()()(1)()]41335572121n n n =-+++-+++-+-+ 11[1(1)]421n n =-+-+ 19.(1)∵//AD BC ,12BC AD =,Q 为AD 的中点,∴四边形BCDQ 为平行四边形,∴//CD BQ又∵90ADC ∠=,∴90AQB ∠=,即QB AD ⊥. 又∵平面PAD ⊥平面ABCD ,且平面PAD 平面ABCD AD =∴BQ ⊥平面PAD ,∵BQ ⊂平面PQB , ∴平面PQB ⊥平面PAD .(2)∵PA PD =,Q 为AD 的中点,∴PQ AD ⊥ ∵平面PAD ⊥平面ABCD ,且平面PAD 平面ABCD AD = ∴PQ ⊥平面ABCD如图,以Q 为原点建立空间直角坐标系,平面BQC 的法向量为(0,0,1)n =又PQ,∴设(1PM PC λλ==-,[0,1]λ∈(,)()QM QP PM λλ=+=+-=-又QB =,设平面MBQ 的法向量为(,,)m x y z =)0x y z λ=-+=⎪⎩取(3,0,)1m λλ=- ∵二面角M BQ C --为30,∴33cos30||24||||m n m n λ==⇒=∴3(4QM =-,∴线段QM 20.(1)由题意,1c =∵点(1,2-在椭圆C 上,∴根据椭圆的定义可得:22a ==a ⇒=2221b ac =-= ∴椭圆C 的标准方程为2212x y +=. (2)假设x 轴上存在点(,0)Q m ,使得716QA QB =-恒成立.①当直线l 的斜率为0时,(A B ,则7,0)(2,0)16m m --=-∴22516m =,∴54m =±②当直线l 的斜率不存在时,(1,),(1,22A B -,则7(1(1,2216m m ---=- 215(1)164m m -=⇒=或34由①②可得:54m =下面证明54m =时,716QA QB =-恒成立.当直线l 的斜率为0时,结论成立;当直线l 的斜率不为0时,设直线l 的方程为1x ty =+,1122(,),(,)A x y B x y 直线方程代入椭圆方程,整理可得:22(2)210t y ty ++-=∴12222t y y t +=+,12212y y t =+, ∴112212125511(,)(,)()()4444QA QB x y x y ty ty y y =--=--+2121211(1)()416t y y t y y =+-++22222172(2)1616t t t --+=+=-+ 综上可知,x 轴上存在点5(,0)4Q ,使得716QA QB =-恒成立. 21.(1)由题意知,0x >,2'22()m x f x x-=,0m ≤时,'()0f x <,()f x 在(0,)+∞递减,0m >时,令'()0f x >0x ⇒<<'()0f x <x ⇒>∴()f x 在递增,在)+∞递减.(2)证明:'2()x xe mg x x-=,0m ≤时,'()0g x >恒成立,()g x 在(0,)+∞递增,无最小值,由(1)知,此时()f x 无最大值,故0m >. 令()2x u x xe m =-,则'()0x x u x e xe =+>, ∵(0)20u m =-<,2(2)2(1)0m u m m e =->,故存在唯一0(0,2)x m ∈,使得0()0u x =,即002x x e m =,列表如下:由(1)得:ln M f m m m ==-,000()2ln x N g x e m x ==-,由题意M N ≥,即00ln 2ln x n m m e m x -≥-,将002x x e m =代入上式有:0000000000ln 2ln 2222x x x x x x e x e x e x e e x -≥- 化简得:200003ln (ln 21)10222x x x x +-+-≥(*) 构造函数23()ln (ln 21)1222x x h x x x =+-+-,'31()(ln 1)(ln 21)22h x x x =++-+,显然'()h x 单调递增,且'1(1)(4ln 2)02h =->,'19()5ln 2088h =-<, 则存在唯一(0,1)t ∈,使得'()0h t =.且(0,)x t ∈时,'()0h x <,()h x 单调递减;(,)x t ∈+∞时,'()0h x >,()h x 单调递增. 又1(1)ln 2102h =--<,故()0h x ≥只会在(,)t +∞有解, 而(2)3ln 22(ln 21)2ln 20h =+-+=>故(*)的解是01x >,则0022x x e em =>.。

2024届高三数学仿真模拟卷(全国卷)(理科)(全解全析)

2024届高三数学仿真模拟卷(全国卷)(理科)(全解全析)

2024年高考第三次模拟考试数学(理科)·全解全析(考试时间:120分钟试卷满分:150分)注意事项:1.本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上.2.回答第Ⅰ卷时,选出每小题答案后,用2B 铅笔把答题卡上对应题目的答案标号涂黑.如需改动,用橡皮擦干净后,再选涂其他答案标号.写在本试卷上无效.3.回答第Ⅱ卷时,将答案写在答题卡上.写在本试卷上无效.4.测试范围:高考全部内容5.考试结束后,将本试卷和答题卡一并交回.第Ⅰ卷一、选择题:本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.若集合{}24A x x =-≤≤,{}260B x x x =-≥,则A B = ()A .[]2,0-B .[]0,4C .[]2,6-D .[]4,6【答案】A【分析】首先解一元二次不等式求出集合B ,再根据交集的定义计算可得.【详解】由260x x -≥,即()60x x -≥,解得6x ≥或0x ≤,所以{}(][)260,06,B x x x ∞∞=-≥=-⋃+,又{}24A x x =-≤≤,所以[]2,0A B ⋂=-.故选:A 2.已知3i 2z a =(R a ∈,i 是虚数单位),若21322z =,则=a ()A .2B .1C .12D .14【答案】C【分析】运用复数代数运算及两复数相等的性质求解即可.【详解】由题意知,22231(i)i=i2422z a a=+=-+,所以23142a⎧-=⎪⎪=,解得12a=.故选:C.3.如图,已知AM是ABC的边BC上的中线,若AB a=,AC b=,则AM等于()A.()12a b-B.()12a b--C.()12a b+D.()12a b-+【答案】C【分析】根据平面向量线性运算法则计算可得.【详解】因为AM是ABC的边BC上的中线,所以12CM CB=,所以12AM AC CM AC CB=+=+()()()111222AC A CB A AC aBA b=+-=+=+.故选:C4.已知函数()()πtan0,02f x xωϕωϕ⎛⎫=+><<⎝⎭的最小正周期为2π,直线π3x=是()f x图象的一条对称轴,则()f x的单调递减区间为()A.()π5π2π,2πZ66k k k⎛⎤-+∈⎥⎝⎦B.()5π2π2π,2πZ33k k k⎛⎤--∈⎥⎝⎦C.()4ππ2π,2πZ33k k k⎛⎤--∈⎥⎝⎦D.()π2π2π,2πZ33k k k⎛⎤-+∈⎥⎝⎦【答案】B【分析】根据()()πtan0,02f x xωϕωϕ⎛⎫=+><<⎝⎭的最小正周期确定ω的值,根据函数的对称轴求出ϕ,结合正切函数的单调性,列出不等式,即可求得答案.【详解】由于()()πtan 0,02f x x ωϕωϕ⎛⎫=+><< ⎪⎝⎭的图象是将()tan y x ωϕ=+的图象在x 轴下方部分翻折到x 轴上方,且()tan y x ωϕ=+π0,02ωϕ⎛⎫><<⎪⎝⎭仅有单调递增区间,故()()tan f x x ωϕ=+和()tan y x ωϕ=+的最小正周期相同,均为2π,则π12π,2ωω=∴=,即()1tan 2f x x ϕ⎛⎫=+ ⎪⎝⎭,又直线π3x =是()f x 图象的一条对称轴,则1π1π,Z 232k k ϕ⋅+=∈,即1ππ,Z 26k k ϕ=-∈,结合π02ϕ<<,得π3ϕ=,故()1πtan 23f x x ⎛⎫=+ ⎪⎝⎭,令π1πππ,Z 223k x k k -<+≤∈,则5π2π2π2π,Z 33k x k k -<≤-∈,即()f x 的单调递减区间为()5π2π2π,2πZ 33k k k ⎛⎤--∈ ⎥⎝⎦,故选:B5.已知直线l 过点()1,1A 交圆22:4O x y +=于,C D 两点,则“CD =l 的斜率为0”的()A .必要而不充分条件B .充分必要条件C .充分而不必要条件D .即不充分也不必要条件【答案】A【分析】根据充分性、必要性的定义,结合直线的斜率是否存在进行判断即可.【详解】当直线的斜率等于0时,直线的方程为1y =,代入方程224x y +=中,得x =,显然CD =;当直线的不存在斜率时,直线的方程为1x =,代入方程224x y +=中,得y =CD =因此是必要而不充分条件,故选:A6.甲、乙、丙、丁、戊共5名同学进行唱歌比赛,决出第一名到第五名.丙和丁去询问成绩,回答者对丙说:很遗憾,你和丁都没有得到冠军,对丁说:你当然不会是最差的从这两个回答分析,5人的名次排列方式共有()A .24种B .54种C .96种D .120种【答案】B【分析】根据题意,分2种情况讨论:①丙是最后一名,则丁可以为第二、三、四名,剩下的三人安排在其他三个名次,②丙不是最后一名,丙丁需要排在第二、三、四名,剩下的三人安排在其他三个名次,由加法原理计算可得答案.【详解】根据题意,丙丁都没有得到冠军,而丁不是最后一名,分2种情况讨论:①丙是最后一名,则丁可以为第二、三、四名,即丁有3种情况,剩下的三人安排在其他三个名次,有33A 6=种情况,此时有1863=⨯种名次排列情况;②丙不是最后一名,丙丁需要排在第二、三、四名,有23A 6=种情况,剩下的三人安排在其他三个名次,有33A 6=种情况,此时有6636⨯=种名次排列情况;则一共有361854+=种不同的名次情况,故选:B .7.函数()πln sin 2x x f x x⎛⎫⋅- ⎪⎝⎭=的部分图象大致为()A .B .C.D.【答案】C【分析】先求出函数的定义域和奇偶性,排除BD ,再求出特殊点的函数值,得到答案.【详解】()πln sin ln cos 2x x x x f x x x⎛⎫⋅- ⎪⋅⎝⎭==定义域为()(),00,∞-+∞U ,且()()()ln cos ln cos x x x x f x f x x x-⋅-⋅-==-=--,所以函数()f x 是奇函数,图象关于原点中心对称,排除B 、D .又()ln 2cos 2202f ⋅=<,故A 错误.故选:C .8.祖暅是我国南北朝时期伟大的数学家.祖暅原理用现代语言可以描述为“夹在两个平行平面之间的两个几何体,被平行于这两个平面的任意平面所截,如果截得的面积总相等,那么这两个几何体的体积相等”.例如,可以用祖暅原理推导半球的体积公式,如图,底面半径和高都为R 的圆柱与半径为R 的半球放置在同一底平面上,然后在圆柱内挖去一个半径为R ,高为R 的圆锥后得到一个新的几何体,用任何一个平行于底面的平面α去截这两个几何体时,所截得的截面面积总相等,由此可证明半球的体积和新几何体的体积相等.若用平行于半球底面的平面α去截半径为R 的半球,且球心到平面α,则平面α与半球底面之间的几何体的体积是()A .3π24R B .3π24R C .3π12R D .3π12R 【答案】C 【分析】分别求得面α截圆锥时所得小圆锥的体积和平面α与圆柱下底面之间的部分的体积,结合祖暅原理可求得结果.【详解】 平面α截圆柱所得截面圆半径2r =,∴平面α截圆锥时所得小圆锥的体积2311ππ3212V r R R =⋅=,又平面α与圆柱下底面之间的部分的体积为232πV R R R =根据祖暅原理可知:平面α与半球底面之间的几何体体积33321πππ21212V V V R R R =-=-=.故选:C.9.已知函数()21e 3ln ,ln ,ln ,ln 222f x x a f b f c f ⎛⎫⎛⎫⎛⎫==== ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭,则()A .a b c <<B .b a c <<C .c<a<bD .a c b<<【答案】B【分析】用定义证明函数()f x 的奇偶性及在()0,1上的单调性,利用函数()f x 的奇偶性及单调性,对数函数ln y x =的性质及对数运算可得结果.【详解】因为函数()f x 的定义域为{}0x x ≠,又()()ln ln f x x x f x -=-==,所以()f x 为偶函数,当01x <<时,任取12x x >,()()12121221ln ln ln ln ln ln 0f x f x x x x x x x -=-=-=-<,即()()12f x f x <,所以()f x 在()0,1上为减函数,因为31ln2ln02>>>,所以()()()113ln ln2ln2ln2ln 22a f f f f f c-⎛⎫⎛⎫===-=<= ⎪ ⎪⎝⎭⎝⎭,即a c <,设3401,1x x <<<,则()4444ln ln ln f x x x x ===,()3333ln ln ln f x x x x ===-,若()()34f x f x =,则34ln ln x x -=,所以341x x =,因为2e ln 2ln212=->,所以22e 11ln e 22ln2ln 2b f f f ⎛⎫ ⎪⎛⎫⎛⎫=== ⎪ ⎪⎪-⎝⎭⎝⎭ ⎪ ⎪⎝⎭,又()21ln21ln202ln22ln2--=>--,即11ln202ln2>>>-,所以()1ln22ln2f f ⎛⎫< ⎪-⎝⎭,即b a <,故选:B.10.已知数列{}n a 满足1,231,nn n n n a a a a a +⎧⎪=⎨⎪+⎩当为偶数时当为奇数时,若81a=,1a 的所有可能取值构成集合M ,则M 中的元素的个数是()A .7个B .6个C .5个D .4个【答案】B 【分析】由81a=,利用递推关系,分类讨论逆推出1a 的不同取值,进而可得答案.【详解】若81a =,又1,231,nn n n n a a a a a +⎧⎪=⎨⎪+⎩当为偶数时当为奇数时,根据上述运算法进行逆推,可得72a =,64a =,所以58a =或51a =;若58a =,则4316,32a a ==或35a =;当332a =时,2164,128a a ==或121a =;若35a =时,2110,20a a ==或13a =;当51a =,则4322,4,8a a a ===或21a =;当28a =时,116a =;当21a =时,12a =,故81a=时,1a 的所有可能的取值集合{}2,3,16,20,21,128M =即集合M 中含有6个元素.故选:B11.如图,已知双曲线2222:1(0,0)x y C a b a b-=>>的左、右焦点分别为1(,0)F c -,2(,0)F c ,点A 在C 上,点B 在y 轴上,A ,2F ,B 三点共线,若直线1BF1AF的斜率为C 的离心率是()AB .32CD .3【答案】B【分析】根据斜率及双曲线的对称性得12BF F △为等边三角形,再根据同角间关系求解三角函数值,进而用正弦定理求出121410,33AF c AF c ==,由双曲线定义可得423c a =,从而得到离心率.【详解】由题意,直线1BF12π3BF F ∴∠=,又12BF BF =,所以12BF F △为等边三角形,故12122BF BF F F c ===,2112π2π,33BF F F F A ∠=∠=,在12AF F △中,21tan 0F F A ∠>,则21F F A ∠为锐角,则212111sin 14F F A F F A ∠=∠=,212πsin sin 3A F F A ⎛⎫=+∠= ⎪⎝⎭由正弦定理,12121221sin sin sin F F AF AF AF F AF F A==∠∠,=∴121410,33AF c AF c ==,由122AF AF a -=,得423c a =,32c e a ∴==.故答案选:B .12.已知()f x ,()g x 都是定义在R 上的函数,对任意x ,y 满足()()()()()f x y f x g y g x f y -=-,且()()210f f -=≠,则下列说法正确的是()A .()01f =B .函数()21g x +的图象关于点()1,0对称C .()()110g g +-=D .若()11f =,则()202311n f n ==∑【答案】D【分析】利用赋值法结合题目给定的条件可判断AC ,取()()2π2πsin,cos 33f x xg x x ==可判断B ,对于D ,通过观察选项可以推断()f x 很可能是周期函数,结合()()()(),f x g y g x f y 的特殊性及一些已经证明的结论,想到令1y =-和1y =时可构建出两个式子,两式相加即可得出()()()11f x f x f x ++-=-,进一步得出()f x 是周期函数,从而可求()20231n f n =∑的值.【详解】解:对于A ,令0x y ==,代入已知等式得()()()()()000000f f g g f =-=,得()00f =,故A错误;对于B ,取()()2π2πsin,cos 33f x xg x x ==,满足()()()()()f x y f x g y g x f y -=-及()()210f f -=≠,因为()3cos 2π10g ==≠,所以()g x 的图象不关于点()3,0对称,所以函数()21g x +的图象不关于点()1,0对称,故B 错误;对于C ,令0y =,1x =,代入已知等式得()()()()()11010f f g g f =-,可得()()()()110100f g g f ⎡⎤-=-=⎣⎦,结合()10f ≠得()100g -=,()01g =,再令0x =,代入已知等式得()()()()()00f y f g y g f y -=-,将()00f =,()01g =代入上式,得()()f y f y -=-,所以函数()f x 为奇函数.令1x =,1y =-,代入已知等式,得()()()()()21111f f g g f =---,因为()()11f f -=-,所以()()()()2111f f g g =-+⎡⎤⎣⎦,又因为()()()221f f f =--=-,所以()()()()1111f f g g -=-+⎡⎤⎣⎦,因为()10f ≠,所以()()111g g +-=-,故C 错误;对于D ,分别令1y =-和1y =,代入已知等式,得以下两个等式:()()()()()111f x f x g g x f +=---,()()()()()111f x f x g g x f -=-,两式相加易得()()()11f x f x f x ++-=-,所以有()()()21f x f x f x ++=-+,即:()()()12f x f x f x =-+-+,有:()()()()()()11120f x f x f x f x f x f x -+=++--+-+=,即:()()12f x f x -=+,所以()f x 为周期函数,且周期为3,因为()11f =,所以()21f -=,所以()()221f f =--=-,()()300f f ==,所以()()()1230f f f ++=,所以()()()()()()()2023111232023202311n f n f f f f f f ===++++===∑ ,故D 正确.故选:D.第Ⅱ卷二、填空题:本大题共4小题,每小题5分,共20分13.已知数列{}n a 的前n 项和2n S n n =+,当9n nS a +取最小值时,n =.【答案】3【分析】根据n S 求得n a ,再结合对勾函数的单调性,即可求得结果.【详解】因为2n S n n =+,则当2n ≥时,()()221112n n n a S S n n n n n -=-=+----=,又当1n =时,112a S ==,满足2n a n =,故2n a n =;则9n n S a +29191222n n n n n ++⎛⎫==++ ⎪⎝⎭,又9y x x=+在()1,3单调递减,在()3,+∞单调递增;故当3n =时,9n n+取得最小值,也即3n =时,9n n S a +取得最小值.故答案为:3.14.若函数()sin 1f x x x ωω=-在[]0,2π上恰有5个零点,且在ππ[,415-上单调递增,则正实数ω的取值范围为.【答案】9542ω≤≤【分析】根据给定条件,利用辅助角公式化简函数()f x ,再利用正弦函数的性质求解即得.【详解】依题意,函数π()2sin(13f x x ω=+-,由()0f x =,得π1sin()32x ω+=,则ππ2π36x k ω+=+或π5π2π,Z 36x k k ω+=+∈,由[0,2π]x ∈,得πππ[,2π333x ωω+∈+,由()f x 在[0,2π]上恰有5个零点,得29ππ37π2π636ω≤+<,解得935412ω≤<,由3ππ22πx ω+≤-≤,得5ππ66x ωω-≤≤,即函数()f x 在5ππ[,66ωω-上单调递增,因此5ππ[,]ππ[,]41566ωω-⊆-,即45π6πω≤--,且π6π15ω≥,解得502ω<≤,所以正实数ω的取值范围为9542ω≤≤.故答案为:9542ω≤≤15.已知52345012345(23)x a a x a x a x a x a x +=+++++,则123452345a a a a a -+-+=.(用数字作答)【答案】15【分析】根据条件,两边求导得到12342345415(23)2345x a a x a x a x a x +=++++,再取=1x -,即可求出结果.【详解】因为52345012345(23)x a a x a x a x a x a x +=+++++,两边求导可得12342345415(23)2345x a a x a x a x a x +=++++,令=1x -,得到23454115(23)2345a a a a a -=-+-+,即12345234515a a a a a -+-+=,故答案为:15.16.已知定义在R 上的函数()f x 满足()4()0f x f x '+>,且(01f =),则下列说法正确的是.①()f x 是奇函数②(0,),()0x f x ∃∈+∞>③41(1)e f >④0x ∀>时,41()e xf x <【答案】②③【分析】根据构造函数的规律由令()()4e xg x f x =,再结合奇函数的性质可得①,求导分析单调性和极值可得②③④.【详解】令()()4e x g x f x =,则()()()()()4444e e e 4x x x g x f x f x f x f x '''=+=+⎡⎤⎣⎦,若()f x 是奇函数,则()()f x f x -=-,取0x =时,即()00f =,但(01f =),故①错误;因为4e 0,(0,)x x >∈+∞恒成立,且()4()0f x f x '+>,所以()0g x '>恒成立,()g x 在(0,)+∞上为单调递增函数,所以()()()()()44110e 101e g g f f f >⇒>⇒>,故②正确;由②可知,③正确;因为()g x 在(0,)+∞上为单调递增函数,所以当0x >时有()()()()0,001g x g g f >==,所以()()441e 1e x xf x f x >⇒>,故④错误;故答案为:②③三、解答题:本大题共70分.解答应写出文字说明、证明过程或演算步骤.第17~21题为必考题,每个试题考生都必须作答.第22、23题为选考题,考生根据要求作答.(一)必考题:共60分.17.(12分)已知()sin ,5sin 5sin m B A C =+ ,()5sin 6sin ,sin sin n B C C A =--垂直,其中A ,B ,C 为ABC 的内角.(1)求cos A 的大小;(2)若BC =ABC 的面积的最大值.【答案】(1)35;(2)4.【详解】(1)由()sin ,5sin 5sin m B A C =+ ,()5sin 6sin ,sin sin n B C C A =-- 垂直,得0m n ⋅=,...............1分即sin (5sin 6sin )(5sin 5sin )(sin sin )0B B C A C C A -++-=,整理得2226sin sin sin sin sin 5B C A B C +-=,...............2分在ABC 中,由正弦定理得22265b c a bc +-=,...............3分由余弦定理得2223cos 25b c a A bc +-==,所以cos A 的大小为35................5分(2)由(1)知,在ABC 中,3cos 5A =,则4sin 5A ==,...............6分由22265b c a bc +-=,得22266482555a b c bc bc bc bc ==+-≥-=,即10bc ≤,...................................................................................................8分当且仅当b c =时取等号,...................................................................................................9分因此ABC 的面积12sin 425ABC S bc A bc ==≤ ,..........................................................11分所以ABC 的面积的最大值是4.....................................................12分18.(12分)2016年10月“蓝瘦香菇”等网络新词突然在网络流行,某社区每月都通过问卷形式进行一次网上调查,现从社区随机抽取了60名居民进行调查.已知上网参与问卷调查次数与参与人数的频数分布如下表:参与调查问卷次数[)0,2[)2,4[)4,6[)6,8[)8,10[]10,12参与调查问卷人数814814106(1)若将参与调查问卷不少于4次的居民称为“关注流行语居民”,请你根据频数分布表,完成22⨯列联表,据此调查你是否有99%的把握认为在此社区内“关注流行语与性别有关”?男女合计关注流行语8不关注流行语合计40(2)从被调查的人中按男女比例随机抽取6人,再从选取的6人中选出3人参加政府听证会,求选出的3人为2男1女的概率.附:参考公式()()()()()22n ad bc K a b c d a c b d -=++++及附表()2P K k ≥0.1000.0500.0100.001k 2.706 3.841 6.63510.828【答案】(1)列联表见解析,有99%的把握认为在此社区内“关注流行语与性别有关”;(2)35【详解】(1)依题意,关注流行语居民人数为81410638+++=,不关注流行语居民人数为81422+=,...................................................................................................2分所以22⨯列联表如下:男女合计关注流行语30838不关注流行语101222合计4020602K 的观测值2260(3012108)7.03 6.63540203822K ⨯-⨯=≈>⨯⨯⨯,................................................................4分所以有99%的把握认为在此社区内“关注流行语与性别有关”...................5分(2)依题意,男居民选出406660⨯=(人),.......................................6分记为a b c d ,,,,女居民选出2人,记为,E F ,从6人中任选3人的样本空间{,,,,,,,,,,abc abd abE abF acd acE acF adE adF aEF Ω=,,,,,,,,,}bcd bcE bcF bdE bdF bEF cdE cdF cEF dEF ,共20个,.................................9分选出的3人为2男1女的事件{,,,,,,,,,,,}A abE abF acE acF adE adF bcE bcF bdE bdF cdE cdF =,共12个,...........11分所以选出的3人为2男1女的概率123()205P A ==......................................12分19.(12分)在几何体中,底面ABC 是边长为2的正三角形.⊥AE 平面ABC ,若,5,4,3AE CD BF AE CD BF ===∥∥.(1)求证:平面DEF ⊥平面AEFB ;(2)是否在线段AE 上存在一点P ,使得二面角P DF E --的大小为π3.若存在,求出AP 的长度,若不存在,请说明理由.【答案】(1)证明见解析(2)存在;4AP =-【详解】(1)证明:如图,设,M N 分别为,EF AB 边的中点,连接,,MN DM CN ,..1分因为⊥AE 平面,,5,4,3ABC AE CD BF AE CD BF ===∥∥,所以42AE BFMN CD +===,//MN BF ,进而MN CD ∥,即四边形CNMD 为平行四边形,可得MD CN ∥,......................................3分在底面正三角形ABC 中,N 为AB 边的中点,则CN AB ⊥,......................................4分又⊥AE 平面ABC ,且CN ⊂平面ABC ,所以AE CN ⊥.由于⋂=AE AB A ,且AE AB ⊂、平面ABFE ,所以CN ⊥平面ABFE ......................5分因为,MD CN CN ⊥∥平面ABFE ,则MD ⊥平面ABFE ,又MD ⊂平面DEF ,则平面DEF ⊥平面AEFB .......................................6分(2)如图,以点A为坐标原点,建立空间直角坐标系,则()())0,0,5,0,2,4,E D F .设点()0,0,P t,则)()()1,1,0,2,1,0,2,4DF DE DP t =--=-=--..................8分设平面PDF 的法向量为()1111,,n x y z = ,平面EDF 的法向量为()2222,,n x y z =.由题意知110,0,n DF n DP ⎧⋅=⎪⎨⋅=⎪⎩即()111110,240,y z y t z --=-+-=⎪⎩令12z =,则114,y t x =-=14,2n t ⎫=-⎪⎭ ,......................................9分220,0,n DF n DE ⎧⋅=⎪⎨⋅=⎪⎩即222220,20,y z y z --=-+=⎪⎩取22z =,则)22n = ,...............................10分由121212π1cos ,cos 32n n n n n n ⋅===,28290t t +-=,解得:4t =±-,由于点P 为线段AE 上一点,故05t ≤≤,所以4t =-,......................................11分当4t =-时,二面角P DF E --所成角为锐角,即存在点P 满足,此时4AP =.......................................12分20.(12分)已知椭圆2222:1(0)x y C a b a b+=>>的右焦点为F ,点31,2P ⎛⎫ ⎪⎝⎭在椭圆C 上,且PF 垂直于x 轴.(1)求椭圆C 的方程;(2)直线l 斜率存在,交椭圆C 于,A B 两点,,,A B F 三点不共线,且直线AF 和直线BF 关于PF 对称.(ⅰ)证明:直线l 过定点;(ⅱ)求ABF △面积的最大值.【答案】(1)22143x y +=(2)(ⅰ)证明见解析;(ⅱ)4【详解】(1)点31,2P ⎛⎫⎪⎝⎭在椭圆C 上,且PF 垂直于x 轴,则有()1,0F 设椭圆C 的焦距为()20c c >,则1c =,.......................................................................1分点31,2P ⎛⎫ ⎪⎝⎭代入椭圆方程,有()222219191441a b a a +=+=-,解得2a =,则222413b a c =-=-=,所以椭圆C 的方程为22143x y +=...................................................................................3分(2)(ⅰ)设直线l 的方程为y kx m =+,由22143y y k x x m =+⎧⎪⎨⎪+⎩=,消去y ,整理得()2223484120kxkmx m +++-=,因为l 交椭圆C 于,A B 两点,所以()22Δ48430k m =-+>,设()()1122,,,A x y B x y ,所以21212228412,3434km m x x x x k k -+=-=++, (5)分因为直线AF 和直线BF 关于PF 对称,所以()()()()12121212121212220111111AF BF kx x m k x x my y kx m kx m k k x x x x x x +-+-+++=+=+==------所以()()()21212224128222203434m kmkx x m k x x m k m k m k k --+-+-=⨯+-⨯-=++所以222282488860km k km k m mk m --+--=解得4m k =-................................................................................................................7分所以直线l 的方程为()44y kx k k x =-=-,所以直线l 过定点()4,0................................,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,.......8分(ⅱ)设直线l 的方程为4x ny =+,由224143x ny x y =+⎧⎪⎨+=⎪⎩,消去x ,整理得()223424360n y ny +++=,因为l 交椭圆C 于,A B 两点,所以()()()222Δ241443414440n n n =-+=->,解得24n >,........................................................................................................9分1212222436,3434n y y y y n n +=-=++,所以12y y -=所以121331822ABFS y y =⨯-=⨯⨯ .............................10分令()24,0n t t -=>则18184ABC S ==≤,当且仅当163t =时取等号,所以ABF △面积的最大值为4......................................................................12分21.(12分)已知函数()2,0eax x f x a =>.(1)当2a =时,求函数()f x 的单调区间和极值;(2)当0x >时,不等式()()2cos ln ln 4f x f x a x x ⎡⎤-≥-⎣⎦恒成立,求a 的取值范围.【答案】(1)单调递增区间为:(0,1),单调递减区间为:(,0)-∞和(1,)+∞;极大值21(1)f e =,极小值(0)0f =;(2)(]0,2e 【详解】(1)当2a =时,()22=exx f x ()()2222222e e 22(1)=e e x x xxx x x x f x ⋅-⋅⋅--'=......................................2分令()=0f x ',解得0x =或1x =,......................................3分所以()()x f x f x '、、的关系如下表:x(,0)-∞0(0,1)1(1,)+∞()f x '-+-()f x 单调递减0单调递增21e 单调递减所以函数()f x 的单调递增区间为:(0,1),单调递减区间为:(,0)-∞和(1,)+∞;......................................4分极大值21(1)f e=,极小值(0)0f =;......................................5分(2)[]222()cos ln ()ln 4cos ln 2ln 4e eaa x xx x f x f x a x x a x x ⎛⎫-≥-⇔-≥- ⎪⎝⎭ln 2e 2(ln 2)cos(ln 2)0a x x a x x a x x -⇔----≥......................................6分令()e 2cos t g t t t =--,其中ln 2a x x t -=,设l (2)n a x x F x =-,0a >2()2a a x x xF x --='=令()0F x '>,解得:02ax <<,......................................8分所以函数()F x 在0,2a ⎛⎫ ⎪⎝⎭上单调递增,在,2a ⎛⎫+∞ ⎪⎝⎭上单调递减,max ()ln 22a a F x F a a ⎛⎫==- ⎪⎝⎭,且当0x +→时,()F x →-∞,所以函数()F x 的值域为,ln 2a a a ⎛⎤-∞- ⎥⎝⎦;......................................9分又()e 2sin t g t t '=-+,设()e 2sin t h t t =-+,,ln 2a t a a ⎛⎤∈-∞- ⎥⎝⎦,则()e cos t h t t '=+,当0t ≤时,e 1,sin 1t t ≤≤,且等号不同时成立,即()0g t '<恒成立;当0t >时,e 1,cos 1t t >≥-,即()0h t '>恒成立,所以()h t 在(0,)+∞上单调递增,又(0)1g '=-,(1)e 2sin10g '=-+>,所以存在0(0,1)t ∈,使得0()0g t '=,当00t t <<时,()0g t '<,当0t t >时,()0g t '>,所以函数()g t 在0(,)t -∞上单调递减,在0(,)t +∞上单调递增,且(0)0g =......................................11分当ln 02aa a -≤即02e a <≤时,()0g t ≥恒成立,符合题意;当ln02a a a ->即2e a >时,取10min ln ,2a t a a t ⎧⎫=-⎨⎬⎩⎭,必有1()0g t <,不符合题意.综上所述:a 的取值范围为(]0,2e ......................................12分(二)选考题:共10分.请考生在22、23题中任选一题作答,如果多做,则按所做的第一题计分.选修4-4:坐标系与参数方程22.(10分)在平面直角坐标系xOy 中,曲线C 的参数方程为12cos 2sin x y αα=+⎧⎨=⎩(α为参数).以坐标原点为极点,x 轴正半轴为极轴建立极坐标系,直线l的极坐标方程为sin 42πρθ⎛⎫-= ⎪⎝⎭.(1)求C 的普通方程和l 的直角坐标方程;(2)设直线l 与x 轴相交于点A ,动点B 在C 上,点M 满足AM MB =,点M 的轨迹为E ,试判断曲线C 与曲线E 是否有公共点.若有公共点,求出其直角坐标;若没有公共点,请说明理由.【答案】(1)C 的普通方程为()2214x y -+=,l 直角坐标方程为30x y -+=.(2)存在,坐标为33,,4444⎛⎛--- ⎪ ⎪⎝⎭⎝⎭【详解】(1)由题设曲线C 的参数方程,消参得()2214x y -+=,............................2分由cos ,sin x y ρθρθ==,且)πsin sin cos 4ρθρθρθ⎛⎫-=-=⎪⎝⎭y =30x y -+=,......................................4分∴C 的普通方程为()2214x y -+=,l 直角坐标方程为30x y -+=...............................5分(2)当0y =时,()33,0x A =-⇒-,易知()12cos ,2sin B a a +,设(),M x y ,可得()()3,,2cos 1,2sin AM x y MB a x a y =+=-+-,......................................6分32cos 1cos 1,2sin sin x a x x a AM MB y a y y a +=-+=-⎧⎧=⇒⎨⎨=-=⎩⎩(a 是参数),消参得方程为()2211,x y ++=......................................8分且1,2,1,3E C C E C E r r r r r r ==-=+=,则圆心距离2,d ==得C E C E r r d r r -<<+,则两圆相交,故两圆存在公共点,联立方程组()()22221114x y x y ⎧++=⎪⎨-+=⎪⎩,解得34x y ⎧=-⎪⎪⎨⎪=⎪⎩或34x y ⎧=-⎪⎪⎨⎪=⎪⎩,故坐标为33,,44⎛⎛--- ⎝⎭⎝⎭......................10分选修4-5:不等式选讲23.(10分)已知()2122f x x x x =-+-+.(1)求()2f x ≥的解集;(2)记()f x 的最小值为t ,且2(0,0)3a b t a b +=>>,求证:11254a b a b ⎛⎫⎛⎫++≥ ⎪⎪⎝⎭⎝⎭.【答案】(1)113x x x ⎧⎫≤≥⎨⎬⎩⎭或(2)证明见解析【详解】(1)()2122f x x x x =-+-+,当0x <时,532x -+≥,解得0x <,......................................1分当102x ≤<时,332x -+≥,解得103x ≤≤,......................................2分当112x ≤<时,12x +≥,解得x ∈∅,......................................3分当1x ≥时,532x -≥,解得1x ≥,......................................4分综上所述,()2f x ≥的解集为13x x ⎧≤⎨⎩或}1≥x .......................................5分(3)由已知可得()5301330211<12531x x x x f x x x x x -+<⎧⎪⎪-+≤≤⎪=⎨⎪+≤⎪⎪->⎩,所以当12x =时,()f x 的最小值为32...............................................................................................6分1a b ∴+=,211,24a b a b ab +⎛⎫+=∴≤= ⎪⎝⎭,当且仅当12a b ==取等,......................................8分令t ab =,则104t <≤,211()212225224a b ab a b ab ab t a b ab ab ab t +-⎛⎫⎛⎫++=++=+-=+-≥ ⎪⎪⎝⎭⎝⎭,当且仅当14t =取等,此时12a b ==.......................................10分。

山东省烟台市2024高三冲刺(高考数学)统编版(五四制)模拟(综合卷)完整试卷

山东省烟台市2024高三冲刺(高考数学)统编版(五四制)模拟(综合卷)完整试卷

山东省烟台市2024高三冲刺(高考数学)统编版(五四制)模拟(综合卷)完整试卷一、单选题:本题共8小题,每小题5分,共40分 (共8题)第(1)题已知函数是上的偶函数,且的图象关于点对称,当时,,则的值为()A.-2B.-1C.0D.1第(2)题等比数列的公比,其中为i虚数单位,若,则().A.B.C.D.第(3)题双曲线C:的焦距为4,焦点到C的一条渐近线的距离为1,则C的渐近线方程为()A.B.C.D.第(4)题若函数的部分图象如图所示,则下列选项可能正确的是()A.B.C.D.第(5)题为非零向量,满足,且,则()A.B.C.D.第(6)题费马原理是几何光学中的重要原理,可以推导出圆锥曲线的一些光学性质,如:点为椭圆(为焦点)上一点,则点处的切线平分外角.已知椭圆为坐标原点,是点处的切线,过左焦点作的垂线,垂足为,则为()A.B.2C.3D.第(7)题在各棱长均为1的正三棱柱中,、分别为、的中点,过、、三点的截面将三棱柱分成上下两部分,记体积较小部分的体积为,另一部分的体积为,则的值为()A.B.C.D.第(8)题从甲队60人、乙队40人中,按照分层抽样的方法从两队共抽取10人,进行一轮答题.相关统计情况如下:甲队答对题目的平均数为1,方差为1;乙队答对题目的平均数为1.5,方差为0.4,则这10人答对题目的方差为()A.0.8B.0.675C.0.74D.0.82二、多选题:本题共3小题,每小题6分,共18分 (共3题)第(1)题正方体绕直线旋转之后与其自身重合,则的值可以是()A.B.C.D.第(2)题画法几何的创始人——法国数学家加斯帕尔·蒙日发现:与椭圆相切的两条垂直切线的交点的轨迹是以椭圆中心为圆心的圆,我们通常把这个圆称为该椭圆的蒙日圆.已知椭圆.分别为椭圆的左、右焦点,直线的方程为,为椭圆的蒙日圆上一动点,分别与椭圆相切于两点,为坐标原点,下列说法正确的是()A.椭圆的蒙日圆方程为B.记点到直线的距离为,则的最小值为C.一矩形四条边与椭圆相切,则此矩形面积最大值为D.的面积的最小值为,最大值为第(3)题下列结论正确的是()A.一组数据7,8,8,9,11,13,15,17,20,22的第80百分位数为17B.若随机变量,满足,则C.若随机变量,且,则D.根据分类变量与的成对样本数据,计算得到.依据的独立性检验,可判断与有关三、填空题:本题共3小题,每小题5分,共15分 (共3题)第(1)题已知实数,满足,则的最小值是______.第(2)题若存在过点的直线与函数,的图象都相切,则_______.第(3)题已知集合A={0,1,2,3},B={x| x2-x-2<0},则A∩B=______.四、解答题:本题共5小题,每小题15分,最后一题17分,共77分 (共5题)第(1)题已知双曲线的焦距为,点在C上.(1)求C的方程;(2)直线与C的右支交于两点,点与点关于轴对称,点在轴上的投影为.①求的取值范围;②求证:直线过点.第(2)题已知等差数列的公差为,前项和为,且满足_____.(从①②成等比数列;③,这三个条件中任选两个补充到题干中的横线位置,并根据你的选择解决问题)(1)求;(2)若,求数列的前项和.第(3)题如图,在三棱锥中,,点是的中点,点是的重心,点是上的点,且.(1)求证:平面;(2)若平面平面,求直线与平面所成角的正弦值.第(4)题已知函数,曲线在处的切线与直线垂直.(1)求的值.(2)证明:当时,.第(5)题设(1)当,求函数的零点个数.(2)函数,若对任意,恒有,求实数的取值范围。

2023届山东省高考模拟练习(三)数学试题

2023届山东省高考模拟练习(三)数学试题

2023届山东省高考模拟练习(三)数学试题一、单选题:本题共8小题 每小题5分 共40分。

在每小题给出的四个选项中 只有一项是符合题目要求的.1.(5分)已知集合{|12}A x x =-< {|0}B x x => 则(A B = )A .{|0}x x >B .{|1}x x >-C .{|02}x x <D .{|2}x x2.已知复数z 满足i z i =-)21(,则z 在复平面内对应的点位于( ) A .第一象限B .第二象限C .第三象限D .第四象限3.已知平面向量a 与b 的夹角为60︒ (2,0)a = ||1b = 则|2|a b -的值为( ) A .2B .2C .4D .124.如图l 在高为h 的直三棱柱容器111C B A ABC -中 a AC AB ==,AC AB ⊥现往该容器内灌进一些水 水深为h ',然后固定容器底面的一边AB 于地面上 再将容器倾斜 当倾斜到某一位置时 水面恰好为C B A 11(如图2) 则hh '=( ) A .32B .45 C .21D .22 5.某软件研发公司对某软件进行升级 主要是对软件程序中的某序列},,,{321 a a a A =重新编辑 编辑新序列为},,,{342312*a a a a a a A ---=,它的第n 项为n n a a -+1,若**)(A 的所有项都是2 且244=a 325=a 则=1a ( ) A .8B .10C .12D .146.立德学校于三月份开展学雷锋主题活动 某班级5名女生和2名男生 分成两个小组去两地参加志愿者活动 每小组均要求既要有女生又要有男生 则不同的分配方案有( )种. A .20B .4C .60D .807.已知()x f 是定义在R 上的奇函数 当[]1,0∈x 时,()x a x f 2cos π-=,若函数()1+=x f y 是偶函数 则下列结论不正确的为( ) A .a=1B .()x f 的最小正周期T =4C .()x x f y 6log -=有4个零点D .()()20222023f f >8.已知双曲线)0,0(12222>>=-b a by a x 的右焦点为F 过点F 且斜率为)0(=/k k 的直线l交双曲线于A 、B 两点 线段AB 的中垂线交x 轴子于点D . 若||3||DF AB ≥,则双曲线的离心率取值范围是( ) A .⎥⎦⎤ ⎝⎛332,1B .(]3,1C .[)+∞,3D .⎪⎪⎭⎫⎢⎣⎡∞+,332 二、多项选择题:本题共4小题 每小题5分 共20分 在每小题给出的选项中 有多项符合题目要求 全部选对的得5分 部分选对的得2分 有选错的得0分.9.每年4月23日为“世界读书日” 树人学校于四月份开展“书香润泽校园 阅读提升思想”主题活动 为检验活动效果 学校收集当年二至六月的借阅数据如下表:月份 二月 三月 四月 五月 六月 月份代码x l 2 3 4 5 月借阅量y (百册)4.95.15.55.75.8根据上表 可得y 关于x 的经验回归方程为a x yˆ24.0ˆ+= 则( ) A .68.4ˆ=aB .借阅量4.9 5.1 5.5 5.7 5.8的上四分位数为5.7C .y 与x 的线性相关系数r >0D .七月的借阅量一定不少于6. 12万册 10.已知33sin( cos 42)(-+⋅=)πx x x f 下列选项正确的是( )A .)(x f 的值域为(][)+∞-∞-,11,B .)(x f 的对称中心为))(0,23(Z k k ∈+ππC .)(x f 的单调递增区间为)23,212(ππππk k ++和))(2127,23(Z k k k ∈++ππππ D .x x g 2cos 1)(=图像向右平移12π个单位与)(x f 的图像重合 11.如图 点M 是棱长为l 的正方体1111D C B A ABCD -中的侧面11A ADD 上的一个动点(包含边界) 则下列结论正确的是( )A .不存在点M 满足⊥CM 平面BD C 1B .存在无数个点M 满足1AD CM ⊥C .当点M 满足D A M A 1131=时 平面M BD 1截正方体所得截面的面积为26 D .满足||2||1MD MD =的点M 的轨迹长度是92π 12.已知)1(1)(>-=x x xx f 若βα,分别是方程x e x f =)(和x x f n 1)(=的根 则下列说法正确的是( ) A .2n 21<αB .111>+βαC .6<βaD .4ln >+ββ第Ⅱ卷 非选择题三、填空题:本题共4小题 每小题5分 共20分. 13.二项式()nxx 2+的二项式系数之和为64 则展开式中的6x 的系数是 (填数字)14.己知βα,为锐角 211)tan(-=+βα 54cos =β 则=αsin 15.已知点P 是椭圆14:22=+y x C 上一点 椭圆C 在点P 处的切线l 与圆4:22=+y x O交于A B 两点 当三角形AOB 的面积取最大值时 切线l 的斜率等于 16.已知四边形ABCD 为平行四边形 4=AB 3=AD 3π=∠BAD 现将ABD ∆沿直线BD 翻折 得到三棱锥BCD A -' 若13='C A 则三棱锥BCD A -'的内切球与外接球表面积的比值为 .四、解答题:本题共6小题 共70分。

山东省临沂市高考数学三模试卷(理科)解析版

山东省临沂市高考数学三模试卷(理科)解析版

想”的学生,学校将联系本人,咨询月薪过低的原因,为以后的毕业生就业提供更
15. 在
的展开式中,x3 项的系数为______.
16. 已知抛物线 C:y2=2px(p>0)的焦点为 F,直线 l 与 C 交于 A,B 两点,AF⊥BF,
线段 AB 的中点为 M,过点 M 作抛物线 C 的准线的垂线,垂足为 N,则 的最小
值为______. 三、解答题(本大题共 7 小题,共 82.0 分)
20. 在中国移动的赞助下,某大学就业部从该大学 2018 年已就业的 A、B 两个专业的 大学本科毕业生中随机抽取了 200 人进行月薪情况的问卷调查,经统计发现,他们 的月薪收入在 3000 元到 9000 元之间,具体统计数据如表:
月薪(百万)[30,40) [40,50) [50,60) [60,70) [70,80) [80,90)
D. h(x)的图象关于 x=-1 对称
7. 秦九韶,中国古代数学家,对中国数学乃至世界数学的发展做出了杰出贡献.他所
创立的秦几韶算法,直到今天,仍是多项式求值比较先进的算法.用秦九韶算法是
将 f(x)=2019x2018+2018x2017+2017x2016+…+2x+1 化为 f(x)=(…((
8. 在△ABC 中,B=45°,D 是 BC 边上一点,AD= ,AC=4,DC=3,则 AB 的长为(

A.
B.
C.
D.
9. 若双曲线
的一条渐近线被圆 x2+(y-2)2=2 所截得的弦
长为 2,则双曲线 C 的离心率为( )
A.
B. 2
C.
D.
10. 如图是某几何体的三视图,则过该几何体顶点的所有截面中,最大截面的面积是(

2025届山东省六地市部分学校高考仿真模拟数学试卷含解析

2025届山东省六地市部分学校高考仿真模拟数学试卷含解析

2025届山东省六地市部分学校高考仿真模拟数学试卷注意事项:1. 答题前,考生先将自己的姓名、准考证号填写清楚,将条形码准确粘贴在考生信息条形码粘贴区。

2.选择题必须使用2B 铅笔填涂;非选择题必须使用0.5毫米黑色字迹的签字笔书写,字体工整、笔迹清楚。

3.请按照题号顺序在各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试题卷上答题无效。

4.保持卡面清洁,不要折叠,不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。

一、选择题:本题共12小题,每小题5分,共60分。

在每小题给出的四个选项中,只有一项是符合题目要求的。

1.在棱长为a 的正方体1111ABCD A B C D -中,E 、F 、M 分别是AB 、AD 、1AA 的中点,又P 、Q 分别在线段11A B 、11A D 上,且11(0)A P AQ m m a ==<<,设平面MEF 平面MPQ l =,则下列结论中不成立的是( )A .//l 平面11BDDB B .l MC ⊥C .当2am =时,平面MPQ MEF ⊥ D .当m 变化时,直线l 的位置不变2.已知()f x 为定义在R 上的奇函数,若当0x ≥时,()2xf x x m =++(m 为实数),则关于x 的不等式()212f x -<-<的解集是( )A .()0,2B .()2,2-C .()1,1-D .()1,33.已知数列{}n a 为等差数列,n S 为其前n 项和,6353a a a +-=,则7S =( ) A .42B .21C .7D .34.若01a b <<<,则b a , a b , log b a ,1log ab 的大小关系为( ) A .1log log b a b aa b a b >>> B .1log log a bb ab a b a >>> C .1log log b a b aa ab b >>> D .1log log a b b aa b a b >>> 5.已知236a b ==,则a ,b 不可能满足的关系是() A .a b ab +=B .4a b +>C .()()22112a b -+-< D .228a b +>6.已知ABC △的面积是12,1AB =,2BC =,则AC =( )A .5B .5或1C .5或1D .57.设实数满足条件则的最大值为( ) A .1B .2C .3D .48.将函数()sin(2)3f x x π=-()x R ∈的图象分别向右平移3π个单位长度与向左平移n (n >0)个单位长度,若所得到的两个图象重合,则n 的最小值为( )A .3π B .23π C .2π D .π 9.某工厂只生产口罩、抽纸和棉签,如图是该工厂2017年至2019年各产量的百分比堆积图(例如:2017年该工厂口罩、抽纸、棉签产量分别占40%、27%、33%),根据该图,以下结论一定正确的是( )A .2019年该工厂的棉签产量最少B .这三年中每年抽纸的产量相差不明显C .三年累计下来产量最多的是口罩D .口罩的产量逐年增加 10.已知复数41iz i=+,则z 对应的点在复平面内位于( ) A .第一象限 B .第二象限 C .第三象限D .第四象限11.某几何体的三视图如图所示(单位:cm ),则该几何体的体积(单位:3cm )为( )A .163B .6C .203D .22312.已知复数z 满足()11z i i +=-(i 为虚数单位),则z 的虚部为( ) A .i -B .iC .1D .1-二、填空题:本题共4小题,每小题5分,共20分。

新高考数学模拟仿真卷(山东卷)第3卷

新高考数学模拟仿真卷(山东卷)第3卷

2020届新高考数学模拟仿真卷(山东卷)第3卷1、已知集合{|23}A x x =-≤≤,2{|30}B x x x =-≤,则A B ⋃=( ) A.[2,3]-B.[2,0]-C.[0,3]D.[3,3]-2、已知z 为复数,若(1i)i z ⋅+=(i 是虚数单位),则||z =( ) A.1C.123、在6⎫⎝的二项展开式中,2x 的系数为( ) A.154B.154-C.38D.38-4、已知平面α⊥平面,l βαβ⋂=,,a b αβ⊂⊂,则“a l ⊥”是“a b ⊥”的( ) A.充分不必要条件 B.必要不充分条件 C.充要条件D.既不充分也不必要条件5、盒中装有形状、大小完全相同的5张“刮刮卡”,其中只有2张“刮刮卡”有奖,现甲从盒中随机取出2张,则至少有一张有奖的概率为( ) A.12 B.35C.710D.456、直线20x y ++=分别与x 轴, y 轴交于,A B 两点,点p 在圆22(2)2x y -+=上.则ABP △面积的取值范围是( )A. []2,6B. []4,8C.D. ⎡⎣7、若函数()()()[)11,,212,2,2x x f x f x x ⎧--∈-∞⎪=⎨-∈+∞⎪⎩,则函数()()1F x x f x =⋅-的零点个数为( )A.4个B.5个C.6个D.7个8、在平面直角坐标系xOy 中,P 是椭圆22143y x +=上的一个动点,点()()1,1,0,1A B -,则PA PB +的最大值为( )A. 2B. 3C. 4D. 59、已知(1,2),(3,4)a b ==r r ,若a kb +r r与-a kb r r 互相垂直,则实数k=( )A. 5B. 5-C. 5-D.510、下图是某商场2018年洗衣机、电视机和电冰箱三种电器各季度销量的百分比堆积图(例如:第三季度内,洗衣机销量约占20%,电视机销量约占50%,电冰箱销量约占30%).根据该图,以下结论中不一定正确的是( )A.电视机销量最大的是第四季度B.电冰箱销量最小的是第四季度C.电视机的全年销量最大D.洗衣机的全年销量最小11、已知数列{}n a 是各项均为正数的等比数列,{}n b 是公差不为0的等差数列,且2288,a b a b ==,则( )A.55a b =B.55a b <C.44a b <D.66a b =12、对于函数sin π,[0,2]()1(2),(2,)2x x f x f x x ∈⎧⎪=⎨-∈+∞⎪⎩,则下列结论正确的是( )A.任取12,[2,)x x ∈+∞,都有12|()()|1f x f x -≤B.函数()y f x =在[4,5]上单调递增C.函数()ln(1)y f x x =--有3个零点D.若关于x 的方程()(0)f x m m =<恰有3个不同的实根123,,x x x ,则123132x x x ++=13、已知πtan(+)=34θ,则2sin22cos θθ-的值为__________.14、在平面直角坐标系xOy 中,若双曲线2221(0)y x b b-=>经过点(3,4),则该双曲线的渐近线方程是___________.15、如图,已知正方体1111ABCD A B C D -的棱长为1,则四棱锥111A BB D D -的体积为__________.16、在ABC △中,已知π,4,63ABC AB BC ∠===,过点B 作BD AC ⊥于点D,则BD =______,sin ABD ∠=_______.17、已知函数()2cos (3cos )1f x x x x =+-. (1)求函数()f x 的最小正周期和对称中心坐标;(2)讨论()f x 在区间π[0,]2上的单调性.18、已知数列{}n a 的前n 项和为n S ,满足22n n S a =-. (1)求数列{}n a 的通项公式;(2)设(21)n n b n a =-,求数列{}n b 的前n 项和n T .19、某村为了发展家庭经济,引进了一黄桃品种,这个品种有两种培育方法,其中一种是压枝培育,另一种是嫁接培育.为了解两种培育的情况,从中随机抽取500棵树,统计其挂果数量,统计结果如下表.根据统计,可知挂果数量落在[]85,105内的频率为0.66.(1)求,a b的值.(2)若认为挂果数量大于90个的树是良种,小于90个的树是次种,根据统计得出22⨯列联表,请将其补充完整.(3)由列联表说明有多大把握认为挂果数量与培育方法有关.参考公式:()()()()()22n ad bcKa b c d a c b d-=++++,其中n a b c d=+++.参考数据:20、如图,在多面体ABCDEF 中,四边形ABCD 是边长为43的菱形,60BCD ∠=︒,AC 与BD 交于点O ,平面FBC ⊥平面ABCD ,23//,,EF AB FB FC EF ==.(1)求证:OE ⊥平面ABCD ;(2)若FBC △为等边三角形,点Q 为AE 的中点,求二面角Q BC A --的余弦值.21、已知抛物线2:2(0)C y px p =>的焦点为F,点(,25)M a 在抛物线C 上 (1)若6MF =,求抛物线的标准方程(2)若直线x y t +=与抛物线C 交于,A B 两点,点N 的坐标为(1,0),且满足NA NB ⊥,原点O 到直线AB 2求p 的取值范围.22、已知函数()1ln (R)f x ax x a =--∈. (1)讨论函数()f x 在定义域内的极值点的个数;(2)若函数()f x 在1x =处取得极值,且对任意的(0,)x ∀∈+∞,()2f x bx ≥-恒成立,求实数b 的最大值.答案以及解析1答案及解析: 答案:A解析:由题意知,2{|30}{|03}B x x x x x =-≤=≤≤,又{|23}A x x =-≤≤,∴{|23}[2,3]A B x x ⋃=-≤≤=-.故选A.2答案及解析: 答案:D解析:由已知得i i(1i)1i 1i (1i)(1i)22z -===+++-,所以||z ==3答案及解析: 答案:D解析:由二项式定理可得6⎫-⎝的通项为616rr t T C -+⎛= ⎝⎝⎭()636122rrr r C x --⎛⎫=- ⎪⎝⎭()0,1,2,3,...,6r =,令32r -=,则1r =,所以2x 的系数为()6111613228C -⎛⎫⨯-=- ⎪⎝⎭,故选D.4答案及解析: 答案:A解析:因为平面α⊥平面,,,l a b βαβαβ⋂=⊂⊂,所以当a l ⊥时,由面面垂直的性质定理,可得a b ⊥;反之,当a b ⊥时,a 与l 不一定是垂直的,所以“a l ⊥”是“a b ⊥”的充分不必要条件.故选A.5答案及解析: 答案:C解析:从5张“刮刮卡”中随机取出2张,共有2510C =种情况,2张均没有奖的情况有233C =(种),故所求概率为3711010-=.6答案及解析: 答案:A解析:因为直线20x y ++=分别与x 轴,y 轴交于,A B 两点 (2,0),(0,2)A B ∴---,则22AB =因为点P 在圆22(2)2x y -+=上 所以圆心为(2,0),则圆心到直线距离1202222d ++=故点P 到直线20x y ++=的距离2d 的范围为[2,32] 则2212[2,6]2ABP S AB d d ==∈△ 故答案选A.7答案及解析: 答案:C解析:先作出()f x 的图象,再分析零点个数.显然0x =不是()F x 的零点,所以()F x 的零点就是()1f x x=的根,即只需考虑()f x 与()1g x x =有几个交点,由于()()55f g >,()()77f g <,易知有6个交点,选C.8答案及解析: 答案:D解析:椭圆方程为22143y x +=,∴焦点坐标为()0,1B -和()'0,1B , 连接'PB ,'AB ,根据椭圆的定义,得'24PB PB a +==,可得4'PB PB =-,因此()()4'4'PA PB PA PB PA PB +=+-=+-. ∵''PA PB AB -≤,∴4'415PA PB AB +≤+=+= 当且仅当点P 在'AB 延长线上时,等号成立. 综上所述,可得PA PB +的最大值为59答案及解析: 答案:BD解析:由已知()(1)234a b ==,,,,若a kb +与a kb -互相垂直,则()()0a kb a kb +⋅-=,即2220a k b -=,即25250k -=,即215k =,所以5k =.10答案及解析: 答案:ABD解析:对于A ,对比四个季度中,第四季度所销售的电视机所占百分比最大,但由于销售总量未知,所以销量不一定最大.同理,易知B 不一定正确在四个季度中,电视机在每个季度的销量所占百分比都最大,即在每个季度销量都是最多的,所以全年销量最大的是电视机,C 正确.对于D ,洗衣机在第四季度所占百分比不是最小的,故D 不一定正确.11答案及解析: 答案:BC解析:设{}n a 的公比为(0)q q >,{}n b 的公差为(0)d d ≠,111n nn a a a q q q-==⋅,11(1)n b b n d b d nd =+-=-+,将其分别理解成关于n 类 (指数函数指数函数的图象为下凹曲线)和一次函数( 一次函数的图象为直线),则俩函数图象在2,8n n ==处相交,故n n a b <(37)n ≤≤,从而445566,,a b a b a b <<<12答案及解析:答案:ACD解析:sinπ,[0,2] ()1(2),(2,)2x xf xf x x∈⎧⎪=⎨-∈+∞⎪⎩的图象如图所示,当[2,)x∈+∞时,()f x的最大值为12,最小值为12-,∴任取12,[2,)x x∈+∞,都有12|()()|1f x f x-≤恒成立,故A正确;函数()y f x=在[4,5]上的单调性和在[0,1]上的单调性相同,则函数()y f x=在[4,5]上不单调,故B错误;作出ln(1)y x=-的图象,结合图象,易知ln(1)y x=-的图象与()f x的图象有3个交点,∴函数()ln(1)y f x x=--有3个零点,故C正确;若关于x的方程()(0)f x m m=<恰有3个不同的实根123,,x x x,不妨设123x x x<<,则123x x+=,372x=,∴123132x x x++=,故D正确.故选ACD.13答案及解析:答案:45-解析:先由条件求得1tan2θ=,再根据同角三角函数的基本关系,以及二倍角公式可得2222tan2sin22cos1tan1tanθθθθθ-=-++,运算求得结果.14答案及解析:答案:2y x=解析:由已知得222431b-=,解得2b=2b=-0b>,所以2b=因为1a=,所以双曲线的渐近线方程为2y x=±.15答案及解析: 答案:13解析:如图所示,连结11A C ,交11B D 于点O ,很明显11AC ⊥平面11BDD B , 则1A O 是四棱锥的高,且221111121122AO AC ==+= 111212BDD B S BD DD =⨯四边形结合四棱锥体积公式可得其体积为:11212333V Sh ===.16答案及解析: 答案:62177解析:因为π,4,63ABC AB BC ∠===,所以由余弦定理得2222cos AC AB BC AB BC ABC =+-⋅⋅∠,即211636246282AC =+-⨯⨯⨯=,所以27AC =,又111sin 222ABC S AC BD AB BD AB BC ABC =⋅=⋅=⋅⋅∠△,所以346621227BD ⨯=,故2227AD AB BD =-,所以7sin AD ABD AB ∠==17答案及解析:答案:(1)由题意,函数2()2cos (3cos )123cos 2cos 1f x x x x x x x =+-=+-π32cos22sin(2+)6x x x =+=,所以函数()f x 的最小正周期2π2π=π2T w ==, 令()0f x =,即π2sin(2)06x +=,即π2π,6x k k Z +=∈,解得ππ,122k x k Z =-+∈所以函数()f x 的对称中心为ππ(,0),122k k Z -+∈. (2)由(1)可知()π2sin(2)6f x x =+,令πππ2π22π,262k x k k Z -+≤+≤+∈,解得ππππ,36k x k k Z -+≤≤+∈, 令ππ3π2π22π,262k x k k Z +≤+≤+∈,解得π2πππ,63k x k k Z +≤≤+∈, 又因为[0,]2x π∈,当0k =时,函数()f x 的单调递增区间为π0,6⎡⎤⎢⎥⎣⎦,单调递减区间为ππ,62⎛⎤⎥⎝⎦.18答案及解析:答案:(1)∵22n n S a =-,当1n =时1122S a =- ∴12a = 当2n ≥时 22n n S a =-,1122n n S a --=-两式相减得 122n n n a a a -=-(2)n ≥,∴122n n a a n -=≥, ∵120a =≠∴12nn a a -=,2n ≥ ∴{}n a 是以首项为2,公比为2的等比数列 2n n a = (2)由(1)知(21)2n n b n =-231123252(23)2(21)2n n n T n n -=⋅+⋅+⋅++-⋅+-⋅L 23412123252(23)2(21)2n n n T n n +=⋅+⋅+⋅+-⋅+-⋅L两式相减得23122222(21)2n n n T n --=+⨯+++--⋅L () 3112112(12)2(21)226(21)2(23)2612n n n n n n T n n n -++++⋅--=+--⋅=---⋅=----1(23)26n n T n +=-+19答案及解析:答案:(1)因为挂果数量落在[]85,105内的频率为0.66, 所以其颗数为5000.66330⨯=.由表可知挂果数量落在[)75,85内的颗数有0.0061050030⨯⨯=. 挂果数量落在[)85,95内的颗数有0.024********⨯⨯= 挂果数量落在[)115,125内的颗数有0.0081050040⨯⨯= 所以3301205003303040100.042,100.02500500a b ----=÷==÷= . (2)补充完整的列联表如下:(3) ()225001001806016010.393260240160340K ⨯⨯-⨯=≈⨯⨯⨯.因为10.3937.879>所以有99.5%的把握认为挂果数量与培育方法有关.20答案及解析:答案:(1)取BC 的中点H ,连接,OH FH , 因为FB FC =,所以FH BC ⊥.因为平面FBC ⊥平面ABCD ,平面FBC ⋂平面ABCD BC =,FH ⊂平面FBC , 所以FH ⊥平面ABCD .因为,H O 分别为,BC AC 的中点,所以//OH AB 且12OH AB =.又//EF AB ,12EF AB =,所以//EF OH =,所以四边形OEFH 为平行四边形,所以//OE FH , 所以OE ⊥平面ABCD .(2)因为菱形ABCD 中,60,BCD AB ∠=︒=所以2OA OC ==,在等边三角形FBC 中,43BC =,所以2FH =, 所以2OE FH ==.易知,,OA OB OE 两两垂直,以O 为坐标原点,,,OA OB OE 所在直线分别为,,x y z 轴建立空间直角坐标系O xyz -,如图所示,则23(2,0,0),(2,0,0),(0,0,2),(1,0,1)A B C E Q -, 所以23(2,BC =-u u u r ,(3,0,1)CQ =u u u r .设平面BCQ 的法向量为(,,)m x y z =u r,则00BC m CQ m ⎧⋅=⎪⎨⋅=⎪⎩u u u r u r u u u r u r 得232030x y x z ⎧-=⎪⎨⎪+=⎩, 取1x =,可得(1,3,3)m =--u r.易知平面ABC 的一个法向量为(0,0,1)n =r,则313cos ,||||1139m n m n m n ⋅===⨯++u r ru r r u r r ,易知二面角Q BC A --为锐二面角, 所以二面角Q BC A --313.21答案及解析:答案:(1)由题意及抛物线的定义得62pa +=,又点(,25)M a 在抛物线C 上,所以202pa = 由62202p a pa⎧+=⎪⎨⎪=⎩解得25p a =⎧⎨=⎩或101p a =⎧⎨=⎩ 所以抛物线的标准方程为24y x =或220y x =(2)联立方程得22x y ty px+=⎧⎨=⎩,消去y,整理得22(22)0x t p x t -++=设1122(,),(,)A x y B x y由根与系数的关系可得2121222,x x t p x x t +=+= 因为NA NB ⊥,所以1212(1)(1)0x x y y --+=又1122,y t x y t x =-=-,所以212122(1)()10x x t x x t -++++=,得22121t t p t -+=+由原点O 到直线AB≥即2t ≤-(舍去)或2t ≥因为221421411t t p t t t -+==++-++,函数2211t t y t -+=+在[2,)t ∈+∞上单调递增 所以16p ≥,即p 的取值范围为1[,)6+∞22答案及解析:答案:(1)()f x 的定义域为()11(0,),ax f x a x x-'+∞=-=, 当0a ≤时, ()0f x '<在(0,)+∞上恒成立,函数()f x 在(0,)+∞上单调递减,所以()f x 在(0,)+∞上没极值点. 当0a >时,由'()0f x >得1x a >,由'()0f x <得10x a<<, 所以()f x 在1(0,)a 上单调递减,在1(,)a +∞上单调递增,即()f x 在1x a =处有极小值.综上,当0a ≤时, ()f x 在(0,)+∞上没有极值点;当0a >时, ()f x 在(0,)+∞上有一个极值点.(2)因为函数()f x 在1x =处取得极值,所以'(1)10f a =-=,则1a =,从而()1ln f x x x =--, 由()2f x bx ≥-,得1ln 1xb x x+-≥. 令1ln ()1,(0,)x g x x x x =+-∈+∞,则2ln 2'()x g x x -= 由'()0g x >得2e x >,由'()0g x <得20e x <<, 则()g x 在2(0,e )上单调递减,在2(e ,)+∞上单调递增,所以2min 21()(e )1e g x g ==-,故实数b 的最大值时211e -.。

2020届山东省潍坊市高考模拟训练理科数学模拟试题(三)有答案

2020届山东省潍坊市高考模拟训练理科数学模拟试题(三)有答案

高考模拟训练试题 理科数学(三) 本试卷分第I 卷和第Ⅱ卷两部分,共5页,满分150分.考试结束后,将本试卷和答题卡一并交回.注意事项:1.答题前,考生务必先将自己的姓名、准考证号填写在答题卡上,认真核对条形码上的姓名、准考证号,并将条形码粘贴在答题卡的指定位置上.2.选择题答案使用2B 铅笔填涂,如需改动,用橡皮擦干净后,再选涂其他答案的标号;非选择题答案使用0.5毫米规格的黑色中性(签字)笔或碳素笔书写,字体工整,笔迹清楚.3.请按照题号在各题的答题区域(黑色线框)内作答,超出答题区域书写的答案无效.4.保持卷面清洁,不折叠,不破损.第I 卷(共50分)一、选择题:本大题共10个小题,每小题5分,共50分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.若复数z 满足24iz i =+,则z 在复平面内对应的点的坐标是A.()4,2B. ()2,4-C. ()2,4D. ()4,2-2.已知集合{}11M x x =-<,集合{}223N x x x =-<,则R M C N ⋂= A. {}02x x <<B. {}12x x -<< C. {}102x x x -<≤≤<3或 D. ∅ 3.下列结论中正确的是 A.“1x ≠”是“()10x x -≠”的充分不必要条件B.已知随机变量ξ服从正态分布()()5,1460.7N P ξ≤≤=,且,则()6=0.15P ξ>C.将一组数据中的每个数据都减去同一个数后, 平均与方差均没有变化D.某单位有职工750人,其中青年职工350人,中年职工250人,老年职工150人.为了解该单位职工的健康情况,应采用系统抽样的方法中抽取样本4.某几何体的三视图如图所示,则该几何体的体积是A.263π+ B. 113π C. 116π D. 263π+ 5.已知函数()()()sin 0,0f x A x A ωϕω=+>>的图象与直线()0y b b A =<<的三个相邻交点的横坐标分别是2,4,8,则()f x 的单调增区间是A. []()6,63k k k Z ππ+∈B. []()63,6k k k Z -∈C. []()6,63k k k Z +∈D. []()63,6k k k Z ππ-∈6.a 为如图所示的程序框图中输出的结果,则()cos a πθ-的结果是A. cos θB. cos θ-C. sin θD. sin θ-7.在ABC ∆中,,,a b c 分别为,,A B C ∠∠∠所对的边,若函数()()3222113f x x bx a c ac x =+++-+有极值点,则B ∠的范围是A. 0,3π⎛⎫ ⎪⎝⎭B. 0,3π⎛⎤ ⎥⎝⎦C.,3ππ⎛⎫ ⎪⎝⎭D.,3ππ⎡⎤⎢⎥⎣⎦8.已知()2243,0,23,0,x x x f x x x x ⎧-+≤⎪=⎨--+>⎪⎩不等式()()[]2,1f x a f a x a a +>-+在上恒成立,则实数a 的取值范围是A.()2,0-B. (),0-∞C. ()0,2D. (),2-∞-9.设12,F F 分别是双曲线()222210,0x y a b a b -=>>的左、右两个焦点,若双曲线右支上存在一点P ,使()220OP OF F P +=u u u r u u u u r u u u u r g (O 为坐标原点),且123PF PF =,则双曲线的离心率为A. 212+B. 21+C. 31+D. 31+10.定义域是R 的函数,其图象是连续不断的,若存在常数()R λλ∈使得()()f x f x λλ++=0对任意实数都成立,则称()f x 是R 上的一个“λ的相关函数”的结论:①()0f x =是常数函数中唯一一个“λ的相关函数”;② ()2f x x =是一个“λ的相关函数”;③“ 12的相关函数”至少有一个零点;④若x y e =是“λ的相关函数”,则10λ-<<.其中正确..结论的个数是 A.1B.2C.3D.4 第II 卷(非选择题 共100分)注意事项:将第II 卷答案用0.5mm 规格的黑色签字笔答在答题卡的相应位置上.二、填空题:本大题共5小题,每小题5分,共25分.11.若二项式6a x x ⎛- ⎪⎝⎭的展开式中的常数项为-160,则()2031a x dx -=⎰_________. 12.过点()1,2M 的直线l 与圆()()22:3425C x y -+-=交于A,B 两点,C 为圆心,当ACB ∠最小时,直线l 的方程是________. 13.用红、黄、蓝三种颜色之一去涂图中标号为1,2,…,9的9个小正方形(如图),使得任意相邻(有公共边的)小正方形所涂颜色都不相同,且标号为“1,5,9”的小正方形涂相同的颜色,则符合条件的所有涂去共有_________种.14.设x D ∈,对于使()f x M ≤恒成立的所有常数M 中,我们把M 的最小值叫作()f x 的上确界.例如()22,f x x x x R =-+∈的上确界是1.若,,1a b R a b +∈+=且,则 122a b--的上确界为________. 15.对于函数()[]()()sin ,0,2,12,2,,2x x f x f x x π⎧∈⎪=⎨-∈+∞⎪⎩有下列4个结论:①任取[)()()1212,0,2x x f x f x ∈+∞-≤,都有恒成立; ②()()()22f x kf x k k N *=+∈,对于一切[)0,x ∈+∞恒成立;③函数()()ln 1y f x x =--有3个零点;④对任意0x >,不等式()k f x x ≤恒成立,则实数k 的取值范围是5,4⎡⎫+∞⎪⎢⎣⎭. 则其中所有正确结论的序号是________.三、解答题:本大题共6小题,共75分.解答应写出文字说明、证明过程或演算步骤.16. (本小题满分12分)已知向量()()()2sin ,cos ,3cos ,2cos ,1a x x b x x f x a b =-==+g .(I )求函数()f x 的最小正周期,并求当2,123x ππ⎡⎤∈⎢⎥⎣⎦时()f x 的取值范围; (II )将函数()f x 的图象向左平移3π个单位,得到函数()g x 的图象.在ABC ∆中,角A,B,C 的对边分别为,,,a b c 若1,2,42A g a b c ⎛⎫==+= ⎪⎝⎭,求ABC ∆的面积.17. (本小题满分12分)甲、乙两人进行定点投篮比赛,在距篮筐3米线内设一点A ,在点A 处投中一球得2分;在距篮筐3米线外设一点B ,在点B 处投中一球得3分.已知甲、乙两人在A 和B 点投中的概率相同,分别是1123和,且在A,B 两点处投中与否相互独立.设定每人按先A 后B 再A 的顺序投篮三次,得分高者为胜.(I )若甲投篮三次,试求他投篮得分ξ的分布列和数学期望;(II )求甲胜乙的概率.18. (本小题满分12分)-的一个面ABC内接于圆O,G,H分别是AE,BC的中点,如图,一四棱锥A BCDEAB是圆O的直径,四边形DCBE为平行四边形,且DC⊥平面ABC.(I)证明:GH//平面ACD;--的余弦值.(II)若AC=BC=BE=2,求二面角O CE B19. (本小题满分12分)已知{}n a 是各项都为正数的数列,其前n 项和为n S ,且n S 为n a 与1n a 的等差中项. (I )求证:数列{}2n S 为等差数列; (II )求数列{}n a 的通项公式;(III )设()1n n n b a -=,求{}n b 的前n 项和n T .20. (本小题满分13分) 设椭圆()2222:10x y C a b a b +=>>的左、右焦点分别为12,F F ,上顶点为A ,过点A 与AF 2垂直的直线交y 轴负半轴于点Q ,且12220F F F Q +=u u u u r u u u u r .(I )求椭圆C 的离心率;(II )若过A,Q,F 2三点的圆恰好与直线:30l x -=相切,求椭圆C 的方程; (III )在(II )的条件下,过右焦点F 2作斜率为k 的直线l 与椭圆C 交于M ,N 两点,在x 轴上是否存在点(),0P m ,使得以PM ,PN 为邻边的平行四边形是菱形?如果存在,求出m 的取值范围;如果不存在,说明理由.21. (本小题满分14分)已知函数()2ln 21f x x x ax =+-+(a 为常数). (I )讨论函数()f x 的单调性;(II )证明:若对任意的(a ∈,都存在(]00,1x ∈使得不等式()()20ln f x a m a a +>-成立,求实数m 的取值范围.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

高考仿真模拟冲刺考试(三)数学理满分150分 考试用时120分钟参考公式:如果事件A ,B 互斥,那么P (A+B )=P (A )+P (B ); 如果事件A ,B 独立,那么P (AB )=P (A )·P (B ).如果事件A 在一次试验中发生的概率是p ,那么n 次独立重复试验中事件A 恰好发生k 次的概 率:).,,2,1,0()1()(n k p p C k P kn kkn n =-=-第Ⅰ卷(选择题 共50分)一、选择题:(本大题共10小题,每小题5分,共50分.每小题给出的四个选项中,只有一项是符合题目要求的) 1.若复数2(1)ai +(i 为虚数单位)是纯虚数,则实数=a ( )A .1±B .1-C .0D .1 2.下列有关命题的叙述错误的是( )A .若p 且q 为假命题,则p ,q 均为假命题B .若p ⌝是q 的必要条件,则p 是q ⌝的充分条件C .命题“x x R x -∈∀2,≥0”的否定是“x x R x -∈∃2,<0”D .“x >2”是“211<x ”的充分不必要条件3.设集合{}{}|,|5,,A x x k N B x x x Q ==∈=≤∈则B 等于( )A .{1, 2,5}B .{l, 2,4, 5}C .{1,4, 5}D .{1,2,4}4.在样本的频率分布直方图中,一共有)3(≥m m 个小矩形,第3个小矩形的面积等于其余m-1个小矩形面积和的41,且样本容量为100,则第3组的频数是 ( )A .10B .25C .20D .405.如右图,在△ABC 中, 13AN NC =,P 是BN 上的一点,若29AP m AB AC −−→−−→−−→=+,则实数m 的值为 ( )A .19B .31C .1D .36.已知()()()2,log 0,1x a fx a g x x a a -==>≠,若()()440f g ⋅-<,则y=()f x ,y=()g x 在同一坐标系内的大致图象是 ( )7.已知()f x 为R 上的可导函数,且,x R ∀∈均有/()()f x f x >,则有( )A .20132013(2013)(0),(2013)(0)e f f f e f ->< B .20132013(2013)(0),(2013)(0)e f f f e f -<< C .20132013(2013)(0),(2013)(0)e f f f e f ->> D .20132013(2013)(0),(2013)(0)ef f f e f -<>8.将函数x y 2sin =的图象向右平移4π个单位,再向上平移1个单位,所得函数图象对应的解析式为( )A .1)42sin(+-=πx yB .x y 2cos 2= C .x y 2sin 2=D .x y 2cos -=9.将A ,B ,C ,D ,E 五种不同的文件放入编号依次为1,2,3,4,5,6,7的七个抽屉内,每个抽屉至多放一种文件,若文件A 、B 必须放入相邻的抽屉内,文件C 、D 也必须放在相邻的抽屉内,则所有不同的放法有( )A .192B .144C .288D .24010.如果函数2()ln(1)a f x xb =-+的图象在1x =处的切线l 过点1(0,)b-,并且l 与圆C :221x y +=相离,则点(a,b )与圆C 的位置关系是( )A .在圆上B .在圆外C .在圆内D .不能确定第Ⅱ卷(非选择题 共100分)二、填空题:(本大题共5个小题,每小题5分,共25分.将答案填在题中横线上) 11.等差数列{a n }中,a 4+ a 10+ a 16=30,则a 18-2a 14的值为 .12.设动点),(y x P 满足⎪⎪⎩⎪⎪⎨⎧≥≥≤+≤+00502402y x y x y x ,则y x z 25+=的最大值是 .13.二项式(1+sinx )n的展开式中,末尾两项的系数之和为7,且系数最大的一项的值为25,则x 在[0,2π]内的值为 . 14.直线l 过点(1,3)-,且与曲线12y x =-在点(1,1)-处的切线相互垂直,,则直线l 的方程为 ;15.下列结论中正确的是 .① 函数y=f (x )是定义在R 上的偶函数,且f (x+1)=- f (x ),则函数y=f (x )的图像关于直线x=1对称;② 2~(16,),(17)0.35,(1516)0.15;N P P ξσξξ>=<<=已知若则③ ()(,),(,0]f x -∞+∞-∞已知是定义在上的偶函数且在上是增函数1.21(ln ),(log 3),(0.4),;43a fb fc f c a b -===<<设则④ 线性相关系数r 的绝对值越接近于1,表明两个变量线性相关程度越弱.三、解答题(本大题共6个小题,共75分.解答应写出文字说明,证明过程或演算步骤) 16.(本小题满分12分)设△ABC 的内角,,A B C 所对的边分别为,,a b c ,且6,2a c b +==,7cos 9B =. (Ⅰ)求,a c 的值; (Ⅱ)求sin()A B -的值.如图,在三棱锥ABC S -中,平面⊥SAB 平面SBC ,BC AB ⊥,AB AS =,过A 作SB AF ⊥,垂足为F ,点G E ,分别是棱SC SA ,的中点.求证:(Ⅰ)平面//EFG 平面ABC ;(Ⅱ)SA BC ⊥.一个盒子装有六张卡片,上面分别写着如下六个函数:31()f x x =,2()5xf x =,3()2f x =,421()21x xf x -=+,5()sin()2f x x π=+,6()cos f x x x =. (Ⅰ)从中任意拿取2张卡片,若其中有一张卡片上写着的函数为奇函数。

在此条件下,求两张卡片上写着的函数相加得到的新函数为奇函数的概率;(Ⅱ)现从盒子中逐一抽取卡片,且每次取出后均不放回,若取到一张写有偶函数的卡片则停止抽取,否则继续进行,求抽取次数ξ的分布列和数学期望.设函数22222()1(,)23n nn x x x f x x x R n N n=-+++++∈∈ ,证明:(Ⅰ)对每个nn N ∈,存在唯一的2[,1]3n x ∈,满足()0n n f x =; (Ⅱ)对任意np N ∈,由(Ⅰ)中n x 构成的数列{}n x 满足10n n p x x n+<-<已知函数()f x=lnx-ax-3(a≠0).(Ⅰ)讨论()f x的单调性;(Ⅱ)若对于任意的a∈[1,2],函数23()[2()]2xg x x m f x'=+-在区间(a,3)上有最值,求实数m的取值范围.如图,点)1,0(-P 是椭圆)0(1:22221>>=+b a b y a x C 的一个顶点,1C 的长轴是圆4:222=+y x C 的直径.21,l l 是过点P 且互相垂直的两条直线,其中1l 交圆2C 于两点,2l 交椭圆1C 于另一点D (Ⅰ)求椭圆1C 的方程;(Ⅱ)求ABD ∆面积取最大值时直线1l 的方程.理科数学(三)18.解:(Ⅰ)()31f x x =为奇函数;()25xf x =为偶函数;()32f x =为偶函数;()42121x x f x -=+为奇函数;()5sin()2f x x π=+为偶函数; ()6cos f x x x =为奇函数.所有的基本事件包括两类:一类为两张卡片上写的函数均为奇函数;另一类为两张卡片上写的函数为一个是奇函数, 一个为偶函数;故基本事件总数为112333C C C + .满足条件的基本事件为两张卡片上写的函数均为奇函数,故满足条件的基本事件个数为23C故所求概率为2311233314C P C C C ==+,(Ⅱ)ξ可取1,2,3,4. 103)2(,21)1(151316131613=⋅=====C C C C P C C P ξξ,201)4(,203)3(1313141115121613141315121613=⋅⋅⋅===⋅⋅==C C C C C C C C P C C C C C C P ξξ;故ξ的分布列为.47201420331032211=⨯+⨯+⨯+⨯=ξE ∴ξ的数学期望为.4719.(Ⅰ) 224232224321)(0n x x x x x x f n x y x nn n ++++++-=∴=> 是单调递增的时,当是x 的单调递增函数,也是n 的单调递增函数. 011)1(,01)0(=+-≥<-=n n f f 且.010)(],1,0(321>>>≥=∈⇒n n n n x x x x x f x ,且满足存在唯一x x x x x x x x x x x x x f x n n n -⋅++-<--⋅++-=++++++-≤∈-1141114122221)(,).1,0(2122242322 时当]1,32[0)23)(2(1141)(02∈⇒≤--⇒-⋅++-≤=⇒n n n n n n n n x x x x x x x f综上,对每个n n N ∈,存在唯一的2[,1]3n x ∈,满足()0n n f x =;(证毕) (Ⅱ) 由题知04321)(,012242322=++++++-=>>≥+nxx x x x x f x x nn n n n n n n p n n)()1(4321)(2212242322=+++++++++++-=+++++++++++p n x n x n x x x x x x f p n pn n p n n p n p n p n p n p n p n p n 上式相减:22122423222242322)()1(432432p n x n x n x x x x x n x x x x x pn p n n p n np n p n p n p n p n nnn n n n ++++++++++=++++++++++++++ )()(2212244233222)()1(-4-3-2--p n x n x n x x x x x x x x x x pn pn n pn nnn p n np n np n np n p n n +++++++++=+++++++++ n x x n p n n p n n 1-111<⇒<+-=+. 20.(Ⅰ)1(0,),()ax f x x-'+∞=定义域,110,(0,)()0;(,),()0,a x f x x f x a a''>∈>∈+∞<当时时时0,(0,),()0a x f x '<∈+∞>当时时,110,()(0,),(,);a f x a a>+∞所以当时的单调增区间为减区间为0,()(0,),.a f x <+∞当时的单增区间为无减区间(Ⅱ)322()(),()3(2)12mg x x a x x g x x m a x '=++-=++-, ()(,3),()(,3),(0)10g x a g x a g '∴=-< 函数在区间上有最值函数在区间上不单调,2()03(2)10[1,2],(3)036260g a a m a a a g m a '<⎧++-<⎧∴∈⎨⎨'>++>⎩⎩即对任意的恒成立 153219[1,2],3236260m aa m am a ⎧<-⎪∈-<<-⎨⎪++>⎩即对任意的恒成立得。

相关文档
最新文档