场效应管放大电路

合集下载

场效应管共源放大电路

场效应管共源放大电路

54/734.2.3 场效应管三种基本放大电路场效应管放大电路的组成只能有三种连接方式:①共源极(CS, Common-Source)放大电路②共漏极(CD, Common-Drain)放大电路③共栅极(CG, Common-Gate )放大电路1. 共源放大电路•直流分析U GS = U G -U S-ID R S2G S D D SS G S,th(1)UI I U =-U GSQ 和I DQU DSQ =E D -I DQ (R S +R D )D 212E R R R+=一般r ds 较大可忽略i d GR G R 1R 2R D R L D r ds R S S U gsU i U o未接C s 时io U U U A =- g m U gs (R D //R L )U gs + g m U gs R s =- g m R 'D 1+ g m R s R 'D =R D //R L •交流分析g m U gsI d G R G R 1R 2R D R L D r ds R S g m U gs U gs U i U o S 未接C s 时U A =- g m R 'D1+ g m R sr 'i r 'i =R G +(R 1//R 2)≈R Gr 'o r 'o ≈ R D接入C s 时A U = -g m (R D //R L )r 'i =R G +(R 1//R 2)≈R Gr 'o =R D R s 的作用是提供一个直流栅源电压、引入直流负反馈来稳定工作点。

但它同时对交流也起负反馈作用,使电路的放大倍数降低。

接入C S 可以消除R S 对交流的负反馈作用。

(详见反馈章节)57/73共源放大电路小结:共源放大电路特点:电压增益高,输入电阻高,输出电阻较高,输出电压与输入电压反相。

A U = -g m (R D //R L )r 'i =R G +(R 1//R 2)≈R G r 'o =RD58/73制作单位:北京交通大学电子信息工程学院 《模拟电子技术》课程组。

场效应管放大电路

场效应管放大电路

场效应管放大电路
一、实验要求
(1)建立场效应管放大电路。

(2)分析场效应管放大电路的性能
二、实验内容
(1)建立结型场效应管共源放大电路。

结型场效应管取理想模式。

用信号发生器产生频率为lkHz、幅值为10mV的正弦信号。

(2)打开仿真开关,用示波器观察场效应管放大电路的输入波形和输出波形。

测量输出波形的幅值,计算电压放大倍数。

(3)建立如图3-3所示的场效应管放大电路的直流通路。

打开仿真开关,利用电压表和电流表测量电路静态参数。

三、实验电路原理图
结型场效应管共源放大电路
场效应管放大电路的直流通路
四、实验结果及分析
1、函数信号发生器
输入信号输出信号波形:
分析:
共源放大电路的电压放大倍数为10。

输出波形的幅值为100mv。

2、场效应管放大电路的直流通路大电路的直流通路
分析:
根据实验数据可得,场效应管的漏源电压为15.076V,栅源电压为0.411V,漏极电流为0。

.05mA。

电压表和电流表测到的栅源电压,漏源电压,漏极电流。

五、实验结论
与双极型晶体管放大电路的共发射极、共集电极和共基极电路相对应,场效应管放大电路也有三种基本组态:共源电路、共漏电路、共栅电路。

其电路结构与分析方法与双极型晶体管放大电路类似。

第四章场效应管放大电路

第四章场效应管放大电路
一、N沟道MOS管的直流参数 (1).开启电压VT:
N沟道MOS管,在VGS<VT时,不能形成导电 沟道,管子处于截止状态;只有当VGS≥VT时,才有沟 道形成。 VT——开启电压。
这种在VGS=0时没有沟道,只有VGS≥VT时才能 形成感生导电沟道的MOS管称为增强型MOS管。
第四章 场效应管放大电路
→形成由栅极指向P型
衬底的纵向电场
+
→将靠近栅极下方的空 穴向下排斥
-
→形成耗尽层。
第四章 场效应管放大电路
现假设vDS=0V,在s、g间加一电压vGS>0V 当vGS增大时→耗尽层增宽,并且该大电场会 把衬底的自由电子吸引到
耗尽层与绝缘层之间,形
成一N型薄层,构成漏-源 之间的导电沟道,称为反
N沟道耗尽型 MOS管 与 N沟 道 增 强型MOS管基本相 似。
区别:耗尽型
MOS 管 在 vGS=0 时 ,漏-源极间已有 导电沟道产生;
增强型MOS管要
在vGS≥VT时才出现 导电沟道。
5.1.5
第四章 场效应管放大电路
N沟道耗尽型MOSFET 在栅极下方的SiO2 层中掺入了大量的金 属正离子。所以当 vGS=0 时 , 这 些 正 离 子 已经感应出反型层, 形成了沟道。
夹断区
VT
2VT
第四章 场效应管放大电路
①截止区: vGS<vT
无导电沟道,iD=0,管子处于截止区.
②可变电阻区: vDS< vGS-vT
iD

K n [2(GS
T
)DS

2 DS
]
Kn

nCox
2
(W L
)
单位:mA V 2

场效应管放大电路

场效应管放大电路

场效应管放大电路
场效应管放大电路是一种重要的净化信号,广泛应用于消声、信号加强和纠正输入和输出信号的应用之中。

场效应管放大电路具有较高的稳定性,施加在输入和输出端的电压可以产生不同的放大倍数,可以增强信号的稳定性,并且有过载保护的功能,可以有效的减少输出噪声。

另外,场效应管放大电路的另一个重要优点是低失真率。

场效应管放大电路的输出电流和最大允许电压有直接的关系,当电压变化时,输出也会相应发生变化,这就可以很好的减少信号传输中的失真率,同时保证输出电流的稳定性。

此外,场效应管放大电路的功耗很低,因为放大电路的输出电压可以由输入端得到调节,这就可以有效的减少电源的功耗,大大改善节电效果。

总之,场效应管放大电路具有低失真率、低功耗和高稳定性等优点,广泛应用于各类电子设备中,提高了得到净化信号的效果。

第三章 场效应管放大电路讲解

第三章  场效应管放大电路讲解
起来。
d
结构图
B衬底 g
s
电路符号
回主页 总目录 章目录 上一页 下一页 退出
因此在栅源电压为零时,在正的vDS作用下,也有较 大的漏极电流iD由漏极流向源极。
当vGS>0时,由于绝缘层的存在,并不会产生栅极电 流 iG ,而是在沟道中感应出更多的负电荷,使沟道变 宽。在vDS作用下,iD将具有更大的数值。
回主页 总目录 章目录 上一页 下一页 退出
3.1.2 N沟道耗尽型MOSFET
⒈ 结构和工作原理简述 这种管子在制造时,
SiO2绝缘层 中掺有大量
正离子
由于二氧化硅绝缘层中掺
有大量的正离子,即使在
vGS= 0时,由于正离子的 作用,也和增强型接入正
N型沟道
栅源电压并使vGS>VTh时相 似,能在P型衬底上感应 出较多的电子,形成N型 沟道,将源区和漏区连通
② 可变电阻区 (vDS≤vGS-VTh )
iD Kn 2 vGS VTh vDS vD2S
iD/mA
可变电阻区 饱和区
电导常数Kn单位是mA/V2。
8 6
在特性曲线原点附近,vDS很 4
7V A
6V B
5V C
4V
小,则
2
D
vGS=3V
iD 2Kn vGS VTh vDS
E 截止区
5 10 15 20 vDS/V
电压vGS对漏极电流iD的控制
特性,即 iD f vGS vDS常数
由于饱和区内,iD受vDS的影
iD/mA 8
A
B
6 VDS =10V C
4
D
响很小,因此饱和区内不同vDS 下的转移特性基本重合。

电子电工学——模拟电子技术 第五章 场效应管放大电路

电子电工学——模拟电子技术 第五章 场效应管放大电路
1. 最大漏极电流IDM
场效应管正常工作时漏极电流的上限值。
2. 最大耗散功率PDM
由场效应管允许的温升决定。
3. 最大漏源电压V(BR)DS 当漏极电流ID 急剧上升产生雪崩击穿时的vDS值。
4. 最大栅源电压V(BR)GS
是指栅源间反向电流开始急剧上升时的vGS值。
5.2 MOSFET放大电路
场效应管是电压控制器件,改变栅源电压vGS的大小,就可以控制漏极 电流iD,因此,场效应管和BJT一样能实现信号的控制用场效应管也 可以组成放大电路。
场效应管放大电路也有三种组态,即共源极、共栅极和共漏极电路。
由于场效应管具有输入阻抗高等特点,其电路的某些性能指标优于三极 管放大电路。最后我们可以通过比较来总结如何根据需要来选择BJT还
vGS<0沟道变窄,在vDS作用下,iD 减小。vGS=VP(夹断电压,截止电 压)时,iD=0 。
可以在正或负的栅源电压下工作,
基本无栅流。
2.特性曲线与特性方程
在可变电阻区 iD
Kn
2vGS
VP vDS
v
2 DS
在饱和区iD
I DSS 1
vGS VP
2
I DSS KnVP2称为饱和漏极电流
4. 直流输入电阻RGS
输入电阻很高。一般在107以上。
二、交流参数
1. 低频互导gm 用以描述栅源电压VGS对漏极电流ID的控制作用。
gm
iD vGS
VDS 常数
2. 输出电阻 rds 说明VDS对ID的影响。
rds
vDS iD
VGS 常数
3. 极间电容
极间电容愈小,则管子的高频性能愈好。
三、极限参数
D iD = 0

MOS场效应管放大电路解读

MOS场效应管放大电路解读

2.67K
五、应用举例

• 3、计算电压放大倍数 Au 。

Au
gmRS // RL
0.258 //1000
1 gmRS // RL 1 0.258 //1000
0.67
注意事项
(1)在使用场效应管时,要注意漏源电压 UDS、漏源电流ID、栅源电压UGS及耗散功率等 值不能超过最大允许值。
• 从表中可以看出,rgs和rds数值很大,可以忽略;跨 接在g~d之间的电容Cgd可以用与晶体管分析相同的方法 折合到输入和输出回路:


Cgs Cgs (1 K )Cgd , (K gm RL )

Cds
Cds
K

1
C
gd
,
K

(K gm RL )
场效应管的高频等效模型
• 由于输出回路的时间常数比输入回路小得多,可忽
1.08
0
解之,得:ID1 1.52mA, ID2 0.535mA
由于I D1
1.52mA
I

DSS
不合
题意,舍去。故:
IDQ 0.535mA
UGSQ 1.08V
U DSQ VDD I DQ (RD RS )
16 0.535 (10 8) 6.37V
五、应用举例
• 2、计算输入电阻Ri和输出电阻RO Ri RG RG1 // RG2 1 0.16 // 0.04 1.03M RO RD 10K
(2)场效应管从结构上看漏源两极是对称 的,可以互相调用,但有些产品制作时已将衬 底和源极在内部连在一起,这时漏源两极不能 对换用。
(3)结型场效应管的栅源电压UGS不能加 正向电压,因为它工作在反偏状态。通常各极 在开路状态下保存。

第5章场效应管放大电路分析

第5章场效应管放大电路分析

如果接有外负载RL
Rg1
Rd d Vo
g sb
RL
Vi Rg2
Rg3 R
AV gm (Rd // RL )
Ri Rg3 Rg1 // Rg 2
g
Vi
Rg3 gmVgs R’g
d Rd Vo RL
Ro Rd
s R’g=Rg1//Rg2
27
源极电阻上无并联电容:
AV
Vo Vi
Vgs
gmVgs Rd gmVgs R
10
(2) 转移特性曲线 iD= f (vGS)|vDS= 常数
表征栅源电压vGS对漏极电流的控制作用, 场效应管是电压控制器件。
在饱和区内,FET可看
作压控电流源。
IDSS
转移特性方程:
iD=IDSS(1-vGS/VP)2
vGS VP- 0.8 – vG
0.4
S
11
(3)主要参数
夹断电压:VP 当导电沟道刚好完全被关闭时,栅源所对应的电
s
gd
N+ PN+
18
3 、特性曲线
4区:击穿

3区
截止区
vGS<V
T
vGD<V
T
VT
1区:可变电阻区: vGS>VT vGD>VT 沟道呈电阻性,iD随vDS
的增大而线性增大。
iD=0 2区:恒流区(线性放大区)
vGS>VT vGD<VT iD=IDO{(vGS/VT)-1}2 IDO是vGS=2VT时,iD的值。
VT R
g
m
(VT
)
VT R
VT
(gm
1) R
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

场效应管放大电路
一、偏置电路
有自生偏置和混合偏置两种方法,表1电路I利用漏极电ID通过Rs所产生的IdRs作为生偏置电压,即Ugs=-IdRso可以稳定工作点。

|IdRs|越大,稳定性能越好,但过负的偏置电压,会使管子进入夹断而不能工作。

若采用如表2和表3混合偏置电路就可以克服上述缺陷。

它们是由自生偏压和外加偏置组成的混合偏置,由于外加偏压EdRp(Rp为分压系数)提高了栅极电位,以便于选用更大的IdRs来稳定工作点,电路2、3中Rg的作用是提高电路输入电阻
二、图解法
用图解法求电路的静态工作点如下:
表一常用场效应管放大电路
(1)写出直流负载线的方程为:Uds=Ed-Id(Rd+Rs)=15-3.2Id
令ID=0,则UDS=15伏,在横坐标上标出N 点,又令
UDS=0,得ID=4.7毫安,在纵坐标上标出M 点,将M 、连接成直线,则MN 就是直流负载线。

(2)画栅漏特性(转移特性):根据负载线与各条漏极特性曲线的交点坐标,画出如下图B 左边所示的ID=f(UGS)曲线称为栅漏特性。

(3)通过栅漏特性坐标原点作Tga=1/Rs 的栅极回路负载线,它与栅漏特性相交于Q ,再过Q 点作横轴平行线,与栅漏负载线相交于Q’。

由静态工作点Q 和Q’读出:IDQ=2.5毫安,UGSQ=-3伏,UDSG=7伏,表1中的图解法与此相同。

三、等效电路分析法
场效应管的微变等电路示于下图,由场效应管放大电路写成等效电路的具体例子可参阅表一。

根据等到效电路求电压放大倍数及输入,输出电阻的方法与晶体管电路相同。

相关文档
最新文档